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~ We review the path integral formulation for relativistic spinning par-
ticles and show how the spin factor appears as a geometrical phase. We
also explain how the three dimensional spin factor can be expressed as a
Wilson loop in a Chern-Simons gauge theory.
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1. Introduction

In these lectures we review some recent work on the path integral for-
mulation of quantum mechanics for spinning particles. We do not intend
to give a complete picture of the status of this much studied problem® but
will concentrate on the formulation in terms of so called spin factors. Very
roughly speaking, the spin factor #[C]is a phase which depends on the path
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C = z(7) and when included in an ordinary path integral (i.e. sum over
space-time histories C) for spinless particles turns it into a path integral for
particles with spin:

Ano spin — /e—S[C]a[C] - Aspin = /C_S[C] @[C]G[C] (1)
C C

Here A is some quantity of interest like the partition function, or the
propagator, a is some function of the path C, and § the corresponding
action.

We will approach the spin factor from various different directions. We
start by a short recollection of the first quantized version of relativistic
quantum theory in the path integral formulation. Although this is standard
material, it is not included in most textbooks with the result that many
students believe that relativistic quantum mechanics can only be formu-
lated as a field theory. We give a simplified derivation of the relativistic
path integral formula for the scalar propagator starting from the more fa-
miliar second quantized result. We then discuss how to incorporate spin
and discuss two different ways to arrive at the spin factor.

The next main objective is to understand the spin factor as a geometri-
cal phase. In line with the pedagogical aim of this review, we introduce the
Berry phase, essentially following Berry’s original paper, and then go on to
discuss the spin factor. When the relation to the Berry phase is established,
we can use known results to calculate an explicit expression in the three
dimensional case. We then show that in four or higher dimensions, the spin
factor is still a geometrical phase, but this time of the non—Abelian type.

The last section starts in a seemingly completely unrelated way, namely
with a discussion of anyons and their relation to Chern-Simons gauge theory. -
The connection to the previous discussion is made when we establish that in
three dimensions, the spin factor is the expectation value of a Wilson loop
in a Chern-Simons theory. In connection with this we also briefly discuss
the relation to Witten’s topological field theory and the closely related issue
of how to regularize the Wilson loops.

2. The spin factor
2.1 Path wntegrals for relativistic spinless particles

Consider spinless particles with mass m. From the standard theory of
the Klein—Gordon field, we have the Euclidean space propagator,

1

Az, y) = (‘”|m

1), (2)
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where we used a bra-ket notation for the Fourier transform. Since we can
think of the integrand in (2) as the imaginary time propagator for a non
relativistic particle with mass 1/2, we can immediately write

Az, y) = /dt /3(1)— D(z(s))e™ 5",

(0)=y
= /ds [}:i:z +m2] . (3)
0

As written, S depends on the parametrization of the path, but it can be
turned into a reparametrization invariant form by introducing an “einbein”
field e as follows,

1

ds = 3e(u) du, %/e(u) du=1. (4)

0
It can be shown [1] that integrating over ¢ is the same as integrating over

gauge inequivalent e(u). Thus, modulo the (infinite) gauge volume of the
reparametrization group,

z(l)==
s = [o) [ DG«
Salz] = %/du (% +em?). (5)

0

We might have guessed this, since S, [2] is simply a reparametrization invari-
ant form of the usual classical (euclidian) action for a relativistic particle,

Salz)=m /1 du'z2, (6)

which is nothing but the mass times the length of the space time path.
Classically S, and §c1 are equivalent, as can easily be seen by eliminating
the auxiliary field e by the equation of motion. It is shown in [1] how to use
(6) in the path integral. Both forms will appear in subsequent Sections.
So far we discussed the propagator, but a similar expression can be de-
rived for the partition function Z = det™'(p? + m?). The partition function
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gets contributions from an arbitrary number of particles but for a non-
interacting theory this exponentiates so the free energy F = —In Z is sim-
ply the contribution from a single particle. The corresponding path integral
expression is,
! - -m f ds Vi3
F = Trln(p* + m*) = f Ble(s))e o, (7)

where the integral is over closed paths, and where we used the form (6) for
the classical action.

2.2 Path integrals for spinning particles

Ever since Feynman formulated quantum mechanics in path integral
language [2] it has been a challenge to incorporate spin in this description,
preferably in an intuitively appealing way. Several methods have been used
to achieve this goal, amongst them coherent-states quantization [3-8], the
use of anticommuting variables and local supersymmetry [9-12], geometric
quantization [13], phase space path integrals [14] and the introduction of
terms depending on the éxtrinsic geometry of the world-line [15]. In addi-
tion, recent work by Polyakov [16] on spin in connection with Bose-Fermi
transmutation in 241 dimensions has inspired comments and generaliza-
tions [17-21]. We shall not attempt even to briefly review this large body
of work, but concentrate on the spin factor formulation referred to above.
The spin factor itself can be derived in several different ways. One method
is to rewrite the partition function for a Dirac field as a path integral in the
same way as we did above for the Klein—Gordon case [22,23]. The expression
corresponding to (3) for the free energy reads,

F :/fit_t_%D(z)p(p)eif:dl(:’!p—‘ip“'y"_im)’ (8)
o

where again the integral is over closed loops. This expression is more difficult
to handle than (3). First, it is a matrix expression, and second the integral
is not Gaussian?. Strominger carefully regularized the path integral by
discretizing the proper time variable in N steps. Following his treatment
one obtains, :

F= f B(z(s))B[Cle ™I #VZ, 9)

2 There is no p? term, and a formal integration gives the nonsensical result

Ty = Yu-
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where the spin factor is given by

N

#(C] = lim Tr ] L(1 + 7 ). (10)

As-—-0
k=1

Here As = T/N, where T is the proper time of the path. In this con-
nection we should also refer the reader to the interesting recent work by
Korchemsky [24,25] where this derivation is worked out in detail together
with a discussion of many of the mathematical properties of the spin factor
in different dimensions.

We now discuss a second way to derive the spin factor which is due to
Polyakov [1,26]. The idea is to start from a classical action for a spinning
particle. Such actions differ from the usual bosonic ones, in that they include
anticommuting numbers (i.e. Grassman variables). Without any further
comments we now write down the path integral expression for the partition
function for a spin half particle,

W = / Dz*(s)De(s) / DY*(s)D(s)Dx(s) e, (11)

where

T

S = /ds (2% —em? - v — ¢ + 2xEY + 2mex¢). (12)

o}

The integration in (11) is over periodic functions z#(s), e(s) and anticom-
muting antiperiodic functions ¢(s), x(s) and ¢*#(s). Here p = 0,..,D -1
where D is the dimension of the (Euclidean) spacetime and we have sup-
pressed contracted indices.

The action (12) and its {super)symmetries have been extensively dis-
cussed in the literature [9-12] and a short discussion relevant for the present
calculation can be found in [27].

Imposing the ghost-free gauge condition ¢ = 0 the fermionic part of the
path integral can be calculated:

T
= | Dy*Dyexp |} [ ds(v¥ — 2x39)
[reoe i

T

="fr/'Dx Pexp | — /d.sx—e“ , (13)
AP V2
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where P denotes path ordering and we have rewritten #* as
& = ve*, e'e, =1. (14)

In the last equality in (13) we have translated the path integral into operator
language using the rules of canonical quantization of fermionic systems [12].
For convenience we have introduced a normalized trace Tr such that Tr1 =
1. The details of this calculation can be found in [27].

Next we use time-slicing to perform the x-integral. Apart from a factor
that modifies the bosonic part of the measure in F, the result is

As—0

N
¢ = lim Tr [] ef (15)
k=1

where again As =T/N and e} = e#(T — kAs).
Using the identity

Y 24s ., -
€ TVu€hs1Ty =1~ Tefek(’)'w Yv) + 0((A3)2) (16)

we can rewrite the spin factor on the form given by Polyakov, for a closed
curve [26,1]:

T
& = TP exp -%/ds e*éou |, (17)

G
where o, = %[7“,7y].~The spin factor for an open curve is the matrix

obtained by removing Tr.

Note that the expression (10) looks quite different from (15), but it can
be shown that it gives the same final expression (17).

The spin factor in (17) is very natural from a geometric point of view.
The matrix of which the trace is taken in (17) gives the spinor version of
the Fermi-Walker (FW) transport. The FW transport of a vector along a
curve keeps the tangential component of the vector constant and makes no
rotation of the vector in planes orthogonal to the tangent. This means that
the angular velocity tensor of the transport is e#é” — ¢”é* (where e* is the
unit tangent vector to the curve) and our statement about the role played
by the matrix in the spin factor follows. From the interpretation of (17)
as the trace of an SO(D) rotation operator in a spinor representation it is
clear that & is real. This can also be proved by using properties of charge
conjugation matrices.

Equation (17) is not quite correct as it stands. It is well known from
quantum field theory that a minus sign goes with each fermion loop, and
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a clear discussion of why unitarity makes this necessary has been given by
Feynman [28]. Basically it is the sign associated with a rotation by 27 of
a spin % particle that has to be compensated for. The 27-rotation sign is
present in the spin factor, the compensating statistics sign we have to insert
by hand. This is of course irrelevant in single particle problems, but when
comparison is made with spin factors deduced from results derived by many
particle methods it must be included.

The evaluation of the covariant spin factor (17) is difficult for a general
curve since it involves a path-ordered exponential of non-commuting opera-
tors. In two dimensions, however, there are no ordering problems, and (17)
is easily evaluated, and one finds

$,[C] = ~ cos %/dsw | =(-1)", (18)

where n is the number of self intersections of the curve C, and where we
included the statistics sign referred to above. It is possible to relate this
result to the 2-dimensional Ising model on a square lattice [1,26]. It is well
known (see, e.g. [29] that its partition function can be written

Z = exp (Z kL<°>(—1)"<°‘>) , (19)

where k is a constant, C' denotes closed loops on the lattice with length
L(C) and n(C) self intersections. In the continuum limit this looks like
the partition function for a free field theory with first-quantized transition
amplitudes ~ Y, exp[-mL(C)](-1)"(©) for the excitations (c.f. the dis-
cussion at the end of Sect. 2.1 above). This corresponds to a relativistic
theory with spin factor (—1)"; t.e. a theory of relativistic 2-dimensional
spin% particles. That the Ising model is closely related to spin—é particles
in two dimensions is known on other grounds as well.

3. #[C] as a Berry phase, and the Thomas connection
3.1 The Berry phase

We start with a brief reminder of what a Berry phase is [30]. Assume
that we have a Hamiltonian H(R;(t)) which depends on some external pa-
rameters R;(t). We can now define a complete set of instantaneous eigen-
states |n(R;(t))) by

H{n(Ri(t))) = Ea(t)|n(Bi(1))), (20)
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and we shall for the time being assume these states to be nondegenerate.
We also assume that they are continuously defined around any closed curve
in the parameter space. If the time dependence is slow, the adiabatic
theorem tells us that if a system is in the state |¥,(0)) = |n(R;(0))) at
t = 0, then it will evolve into the state

|2a(t)) = €™ n(Ri(t))), (21)

under the action of the time dependent H. Note that (20) define the
instantaneous eigenstates only up to phases that can be picked arbitrarily
at any given time, so the phase a in (21) is purely conventional. Berry’s
fundamental observation was that although this is true in general, if we
consider adiabatic evolution where the parameters R, return to their original
values, the phase a is uniquely determined and has a deep geometrical
meaning. To demonstrate this we make the ansatz

)

—i | dt'Ba(t'

. )
|2.(2)) = &™e o In(R:(t))), (22)
where we have separated out the dynamical phase e J; #'B-) Direct
substitution in the time dependent Schrédinger equation gives

-

Yo = iR - A,, (23)

where

A, (By = i(n( )|V gln(E)). (24)

For A, to be well defined it is important that the states were assumed to

be continuous in the parameters E. Integrating (23) around a closed curve
in parameter space yields

vE = fdiz' - A,. (25)

It is now clear that the Berry phase factor e’~ does not depend on how
we choose the phases in (20), since a change in phase

In(Ri(t))) — €*Oin(Ri(t))) (26)

corresponds to the gauge transformation

—

A, > A, - VszofR) (27)
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and the Berry phase factor, being a Wilson loop of the gauge potential (24),
is gauge invariant.

As a concrete example, which will be important in the following, we
consider a spin in a time dependent magnetic field of constant magnitude
B, i.e. we study the Hamiltonian

H =-B¢é(t)- 4, (28)
where é(t) is a time dependent unit vector, and & the Pauli matrices. If

we define é- #|é;£) = +|é; 1), then for € = (siné cos ¢, sin @ sin ¢, cos 8),
7! = 0!, 7% = o? the + states are

so [ cos0/2
lev +> = (ei¢ sin0/2) ’ (29)
and the vector potential for the + states is given by Ay = 0 and 4,

= —sin® /2, i.e. the vector potential of a magnetic monopole. The Berry
phase is now easily calculated

2r 2x
1) = [dpay= - [apsinto2 = 30, (30)
0 1]

where 2 is the solid angle swept out by the unit vector é during a complete
cycle.

3.2 The spin factor in three dimensions

We are now ready to analyze the spin factor in three (Euclidian) di-
mensions. Define the Hamiltonian,

iH(s) = %w,“,cr“" = %(é X é) ‘0= -4, (31)

: =2
where é = Z (and ¥ = 1), and note.that ¢[C] in (17) is just the “time”
evolution operator for a spin half in the magnetic field @. (Our “time” is the
length along the curve.) We now introduce a continuous set of normalized

eigenstates to the spin along the tangent of the curve: é(s) - #|é(s),+)
= *|é(s), ). By writing

exp(—iAsH(s)) = L[1 + (&(s + As) - &)(é&(s) - 7)) + O(As?) (32)

it is easy to see that the operator exp[—iAsH(s)] does nothing but evolve
|é(s), 1), the eigenstate of &(s) - &, into the state [é(s + As),+), which
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is an eigenstate of é(s + As) - 7. Geometrically this follows from (31) by
noting that & is the angular velocity of é. As already mentioned, this is the
quantum mechanical counterpart of Fermi—Walker transport. Thus we have
the time evolntion

B(s), £) = ™ jé(s) , L) (33)

Note that (33) is exact; no adiabatic assumption is involved. This calcula-
tion differs from conventional calculations of Berry phases in that the states
|é(s), L) that evolve into each other are not eigenstates of the Hamiltonian.
In fact,(é(s), £|H(s)|é(s), L) = 0, which follows from (31) and & -é = 0,
so the dynamical phase is identically zero and we will be left with a geo-
metrical phase, characteristic of the curve only. (A general discussion of
systems exhibiting such “pure” Berry phases has been given by Aharonov
and Anandan [31].) To see this we follow the derivation of the Berry phase,

i.e. we substitute in the Schrédinger equation and integrate around the
curve to get

vy = ifds<é(s),+|§;|é(s),+> - ?{dz. i, (34)

C C

where A(s) = i(é(s)‘,+|6]é(s) ,+). As shown in the previous subsection,
v+ = F2/2 where 2 is the solid angle subtended by é [30], so the final
expression for the spin factor becomes,

$5(C] = ~ Reexp ifdz. A| =—-Ree 5", (35)

C

where Re denotes real part, and where we again included the statistics sign.
3.3 ®[C] as non-abelian Berry phases, and Thomas precesston

As we already saw, the FW transport of spinors, defined by the matrix
in (32), has the property that eigenvectors of ¢(0) - v are transported into
eigenvectors of e(s)-v with the same eigenvalue. This is true even when the
eigenvalue is degenerate as is the case in dimensions higher than three, (as
can be easily seen from the explicit expressions for the gamma matrices).

Thus if we consider the degenerate eigenstates |e(0); a) of e(0) - ¥ with
eigenvalue 1, we have

Pexp{- / ds & Ly, 1]} e(0); ) = le(s); B)Upals)s  (36)
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where {|e(s); @)} is a complete set of orthonormal eigenstates of e(s)-vy with
eigenvalue 1 that are continuously defined around the curve and the index
B which labels the degenerate eigenstates is summed over. In differential
form

~te-72é-le(s); BUpa = L 1e()iB)Upa + le(s); B) SUpe  (37)

Since (e(s);alle-7v,é- ‘7“6(3 ; B) = 0 we conclude

d g
75 Uas = —le(s)ial 16(3), Wap = —€(e(s);al 5—le(s);7)Unp.  (38)
Solving this equation we get the contribution of elgenstates of e - v with
eigenvalue 1 to the spin factor for a closed curve

T

S, x Y UnolT) = TrPexp[i/ds e A, (39)

with the non—Abelian vector potential A,, given by

AL = ile(s)sal g 16(8) B)- (40)

That the Berry phase factor turns into a non~Abeha.n Wilson loop in the
case of adiabatic evolution of a degenerate subspace of the Hilbert space,
was first discussed by Wilczek and Zee [32]. The arbitrariness involved
in defining {|e(s);a)} again corresponds to gauge transformations of this
vector potential. States with eigenvalue —1 give a similar contribution, &_,
and ® =&, + S_. '

That “boosts” around a curve give rise to a spatial rotation is familiar
from the phenomenon of Thomas precession (see, e.g. [33]), and under
slightly restricted circumstances we can use the vector potential formulation
above to make the relation between Thomas precession and the spin factor
explicit. A natural set of eigenstates {|e(s);a)} is obtained by picking a
reference “time” axis and “boosting” eigenstates {|a)} of 1° with eigenvalue
1 in this direction to eigenstates of e(s) - 7v:

le(s); @) = U(e)lex). (41)
This is a continuous set provided the curve is nowhere tangent to the “time”

axis, i.e. , e-y # +7° always. With this choice of basis, the vector potential
must belong to the Lie algebra of SO(D) and thus takes the form

kAP = ié"(aw(e)f—q;U(e)lﬂ)

ze“(al(‘ 0"[‘)'0, Te] + lw,'i'['rk, 71])|ﬂ)
e“w (O‘H‘)’k,%]lﬂ) (42)
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wi = é*wkl, k1 =1,...,D — 1 is the angular velocity tensor for “spatial”
rotation (mtatxons in pla.nes orthogonal to our chosen “time” ams) which
arises because the “boosts” in different directions do not commute, t.e. , the
angular velocity tensor of the Thomas precession [33]. With {|a)} replaced
by eigenstates of y° with eigenvalue —1, the same calculation gives the vector
potential for the contribution of eigenstates of e(s) - v with eigenvalue —1
to €. Since [‘yo, [7%,7"]] = 0 we get as the final expression for &

& =TrPexp [ ds Lok, ] | - (43)

4. Spin factors from Chern-Simons gauge theory
4.1 From Anyons to C-S gauge theory

In this section we shall concentrate on the three dimensional case where
there is a remarkable field theoretic expression for the spin factor as a Wilson
loop in a Chern-Simons gauge theory. In order to understand the deep con-
nections between spin, statistics and gauge interactions in three dimensions,
we should recall some facts about anyons.

The simplest way to understand what anyons are, is to consider the
following Hamiltonian for two identical particles of mass m,

P (7-a)
= — 44
H m T m (44)
where P and p are the total and relative momenta respectively, # the relative
distance, and
.8 7
= —gV L, 45
i = Lo (45)
To understand the significance of this vector potential, we calculate the
corresponding magnetic field,

b= —£8;a; = 206*(7). (46)

This means that @ is a pure gauge everywhere except at ¥ = 0, where there
is a pointlike flux. Classically, the particles are free, but in a quantum
mechanical treatment the (long range) vector potential gives rise to a phase
exactly like in the Aharonov-Bohm (AB) effect [34]. Also in analogy with
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the AB effect, we can trade the vector potential for a phase in the wave
function, by performing the gauge transformation,

i ad+ 6%,

v exp s ¢) ¥, (47)

where ¢ is the polar angle of the relative coordinate 7. Note that this gauge
transformation is singular and the resulting wave function is multivalued.
Exchange of the two particles, corresponds to a = rotation of 7, and accord-
ing to (47), the wavefunction picks up a phase #. In the case of fermions
the wave function changes sign under exchange of two identical particles.
Thus, if we take § = =, and let the Hamiltonian (44) act on bosonic (i.e.
symmetric) wave functions, it can either be thought of as describing inter-
acting bosons, or free fermions, the necessary sign change under exchange
arising as an AB phase®. Clearly the system is periodic in  with period 27
so all even multiples of 7 correspond to bosons and all odd ones to fermions.
We now have the possibility of taking 6 not being a multiple of * — such
“fractional statistics” particles are called anyons.

It is easy to generalize the above Hamiltonian to an N particles system.
The resulting picture is that of a collection of thin “solenoids” interacting
via a long range gauge potential. A couple of points are worth mentioning.
There is no dynamics in the gauge field (since it is simply a function of
the positions and momenta of the particles) and consequently no photons.
Also the interaction (44) is not that of charge — flux tube composites —
there is a long range static vector potential, but no electrostatic potential
[36]*. Another interesting property of anyons is that they carry fractional
spin, 8/2x, and hence there is a generalized spin statistics connection. For
a general discussion of anyons [38] we refer to the review paper [39].

Now we give another description of the many anyon system based on
a coherent state path integral formulation{40]. We start from the second
quantized form of the many body version of the Hamiltonian (44)

n= [are@ (-om (-9-a0) oD w9
where

i _i:’j 2:1' T 7
()= e [ o ) (49)

3 For a discussion of the relation between the phase associated with a real rota-

tion and the one coming from a permutation in the wave function we refer to
[35].
* For a discussion of charge — flux tube composites, or cyons, see [37].
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and where we have set i = ¢ = 1. This Hamiltonian describes a system
of identical particles with mass m which are créated by the complex field
operator ¢. The particles interact via a two-dimensional “statistical” gauge
potential d@. If we take the ¢ field to be bosonic, the above Hamiltonian
describes “anyons” obeying 8 statistics. ‘

From (49) we immediately get the following expression for the “statis-
tical” gauge field b

b7) = ~e0i0,( = 2o = sloar (X)), 0

which corresponds to associating 8/7 = s units of flux to each particle.

We incorporate the constraint (50) by means of a Lagrange multiplier
field ao, to get the following coherent state path integral representation for
the partition function

214"} = [ D(#D(a)D(a0) exp (15[, T, ) (51)

where a is a transverse gauge field (i.e. satisfying 8°al = 0), and

§ = [ dtd7 L with

2
L = i¢" 8o — H($) + "¢ — ao(g—ee*fa,-af +ed d). (52)

The term ~ &% in this expression is nothing but the Chern-Simons action
in radiation gauge [41-43]. The covariant form of the Chern-Simons term
(see Sect. 4.2 below) can be obtained by reintroducing the (infinite) gauge
volume (i.e. by reversing the usual Faddeev-Popov gauge fixing procedure

[44]).
4.2 The spin factor as a Wilson loop: Writhe, Twist & Linking.

We shall now make the promised connection between the spin factor
&3{C] in (17) and the Wilson loop in a Chern-Simons gauge theory [16].
For this we consider the non-relativistic version of the model (52)

$= [ % (18, + iAu)el? - mlel) + 5., (53)

where §, = ;13 f d®z e#*?A,0,A, is the covariant Chern-Simons action. As
discussed above, this model describes anyons. This has also been establisiied
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by other methods [45, 46]. In particular, for § = 7 the excitations are spin }
fermions. Using the identity {47]

Z[A] = / DeDy" e'°
:NZ::OIV—?/E'ngexp (ig/dsi(m\/@?(_&)

+3t Au(z:)) + is,,) , (54)

(with S given by (53)), and integrating out the gauge field we get
oo 1 N N
Z= Zm/H’DzieXp (iZ/dsim\/iz?)
N=0 1
X exp (zOZW 1+ 2102L C,,C]]) (55)

=1 1<J
where 1
= 4—/d2“/dy '36;;110 (56)
1 [ z°
L[C,‘, CJ] = Z"—r- ¥ A d’y 1—’«“'-8-6‘“’"’ 1 # ] (57)
C: C;

W is the so-called writhe of the closed curve C' and L[C;, C;] is an integer,
the Gauss linking number for the curves C; and C; [48]. L is a topological
invariant whereas W is not. The integral in (56) is well-defined; however,
it is not a smooth limit of the integral in (57). The Wilson loop in (54) is
ambiguous; by using the gauge 0, A* = 0 one obtains (55,56). This implies a
physically sensible definition of (54), as will be discussed in Sect. 4.3 below
[49]. For 8 = =, corresponding to Bose-Fermi transmutation, L disappears
from (28) and we can identify exp(ixW{[C]) as the spin factor for a closed
loop. We showed in [17] that W is related to 2 by

]
=-—+k 58
W= __+k, (58)
where k is an odd integer (see below). Thus the spin factor deduced from this
D=3 model does coincide with the one obtained for D=3 spin % particles, a
result that lends support to the idea that the excitations in this model are
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¢pin 1 fermions. Here we should also note that the analysis from (53) and
onwa.rds can also be made for 8 # x. In this case (53) is known to describe
anyons, at least in the non-relativistic limit.

The concept of writhe of a closed curve is perhaps not a familiar one.
We give here a brief discussion of some of its properties.

The writhe of a closed curve is closely ‘related to the Gauss linking
number. If a framing of the closed curve is introduced one has

W=L-T, (59)

where L is the linking number of the original curve and the curve at the tip
of the frame vector. T is the twist, ¢.e. the integrated angula.r rotation of
the frame vector about the tangent vector divided by 2= [48]7 The twist is
related to the solid angle

2 = —2xT mod (27). (60)

For a squashed knot {2 is a multiple of 2r and W is an integer. 2
and W vary smoothly when the curve is deformed continuously. When the
curve intersects itself W changes by 2. For a circle W = —1. (58) then
follows from (59) and (60). (58) and (59) can be used to evaluate W for a
curve. In particular, (58) shows that the non-integer part of W is equal to
the non-integer part of 2/2x. This provides an intuitive understanding of
the writhe.

For an explicit example of how to calculate the writhe of a curve in
three dimensions, we refer to [27].

4.3 The need for regularization

In the previous Section, we stressed that the integral in (56) is finite
and equal to the writhe, W, of the curve C; no regularization needed. On
the other hand (56) is the expectation value of a Wilson loop, and Witten
has argued that it is a topological invariant since, in a pure C-S theory,
neither the Wilson loop, nor the action depend on the metric [50]. Writhe,
however, does depend on the shape of the curve (and hence the metric), but
if one instead defines:

gt 7§ @l
C

FiC)=lm ¢ dz* ?{ PR _. — D) _gpic,a),  (61)

c
where the unit normal #(¥) defines a “framing” of the curve C, one obtains
a topological invariant. In fact L is nothing but the linking number between
the two edges of the ribbon defined by the curve C and the frame 7. The
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apparent contradiction between (56) and (61) is resolved by noting that
the limit ¢ — 0 is not smooth, since for a general twisted ribbon one has
W = T — L, where T is the twist of the ribbon. It is natural to ask which
one of the two above definitions is of physical relevance. We show that in a
theory with an F? term in the action, introducing a framing has no effect,
and the result is unambiguously the Polyakov one i.e. §W|[C].

We take the following Lagrangian for the gauge field,

L= g5 Fu P + e 4,0,4, (62)

T 4er ™

and obtain the (Landau gauge) propagator

) 1 # —ur) 4 g €Y
Au@E =)= o | =ewos (=t un)e™) 4o ——|,  (63)

where r = |£ — §]. The pure C-S theory is obtained in the limit e? — oo
(keeping @ constant), which gives the result (56). To see how the presence
of the F? term modifies the fields close to the loops consider,

= v 2= v A e’
0@ = § a0 2,E-0) = § @y (10wt +ou5r ) (04
c c

where f(r) ~ 1/(pr?) for » > 1/p and f(r) — p for r — 0, so the
singularity connected to the C-§ term is smoothened and instead we have a
usual Coulomb type singularity (the last term in (64)). Since the long range
part ~ 1/ur? is pure gauge, the field strength is smooth and concentrated
to a region ~ 1/u around C. For a purely timelike stretch of the curve C
this is easily understood. The point-like magnetic flux present in the pure
C-S§ theory is spread out over a region with size ~ 1/u, but we also see the
screened electric field due to the charge [46]. Since there is no short distance
singularity left in the term ~ e#*? it is clear that a framing cannot change
the result (56). It is also clear that for two curves C; and C; separated
by a distance > 1/u one obtains L where L is the linking number of the
two curves. This leads to the statistical phase discussed in [17]. For curves
that come within the distance 1/p from each other the magnetic fluxes
overlap and no simple interpretation in terms of statistics is possible. This
proves the assertion that by adding an F? term for the gauge field one will
unambiguously get the result (56) for the Wilson loops. For more details
connected to the regularization procedure, we refer to Ref. [49].
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