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QUARKS IN THE INSTANTON MEDIUM
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A systematic theory of quarks in the instanton medium is developed
beyond the framework of the zero-mode approximation. At large number
of colours a closed equation for the quark propagator is derived. The chiral
symmetry is shown to be spontaneously broken. The effective quark mass
and the quark condensate are calculated.

PACS numbers: 12.30.-b

1. Introduction

Since the discovery of the instanton solution [1] of the Yang-Mills equa-
tions, the instantons in QCD continue to attract theorists. In particular,
one should mention the work of Diakonov and Petrov who, starting from the
variational approach to the instanton vacuum in the pure gluon theory (2],
suggested a theory of light quarks in the instanton vacuum [3,4], explained
the mechanism of the spontaneous breakdown of chiral symmetry, derived
the effective chiral Lagrangian and proposed a chiral theory of nucleons [5].

In these papers the field of the instanton medium was represented as the
sum of the fields of separate pseudoparticles (instantons and anti-instantons)

Au(2) =) An(2). (1.1)

The fundamental parameters of the instanton medium are the average size
of pseudoparticles g and their density N/V, where N is the total number of
pseudoparticles (/N/2 instantons and N/2 anti-instantons) in the Euclidean
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four dimensional volume V. These parameters have been calculated in QCD
without quarks by means of the variational method [2]:

N/V = (200 MeV)?, (1.2)
o = (600 MeV)~1, (1.3)

and agree with the phenomenological analysis.

Let us now place quarks into the instanton medium (1.1). It is well
known that the influence of quarks on the gluon sector of QCD vanishes at
large number of coloursN.. Hence, one can use "quenched approximation”,
treating instanton medium as a given classical background field. In this
approximation the quark propagator § is

§= <(i¢9 +im+ ZAI)"> : (1.4)

Here the brackets denote averaging over positions, sizes and orientations of
all pseudoparticles. Naturally, such an averaging is a difficult problem. Tak-
ing into account the diluteness of the instanton medium with the parameters
(1.2), (1.3) one can neglect the correlation of different pseudoparticles and
can average over all pseudoparticles in Eq. (1.4) independently. Another
approximation used in papers [3,4] was the limit of large number of colours
N..

It is well known that the massless Dirac operator in the background
field of one instanton A; has a zero mode ¥;:

(iP+4,)¢r=0. (1.5)

In the instanton medium (1.1) zero modes of separate pseudoparticles mix
up and delocalize. The mechanism of spontaneous breakdown of chiral sym-
metry suggested by Diakonov and Petrov {3,4] is based on this phenomenon.
Taking into account the importance of zero modes these authors approxi-
mated the quark propagator in the background field of a single instanton
by the sum of the free propagator and of zero-mode contribution

(2|(if + 4; + im) ™ y) = (2|(if + im) ' |y)
REODION

py (1.6)

This approximation can be regarded as an interpolation between the
high momentum regime where the free propagator dominates, and the low-
momentum domain where the zero-mode contribution is the most essential

for the light quarks due to the singular factor m~1.
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The zero-mode approximation (1.6) simplifies considerably the calcula-
tion of the quark propagator (1.4) and of the correlation functions of quark
currents in the instanton vacuum. The results are in good agreement with
the experiment. However, this approximation faces certain problems. One
of them is the breakdown of the current conservation by the zero-mode
approximation.

This list of the approximations used by Diakonov and Petrov to con-
struct the theory of light quarks in the instanton vacuum [3, 4] is rather
large:

1) quenched approximation (1.4),

2) neglection of the instanton correlations,
3) large N, limit,

4) zero-mode approximation (1.6).

A natural desire arises to construct a more precise theory. As for direct
computer calculations beyond the assumptions 1)-3) one should mention
paper [6].

The aim of the present work is to exceed the limits of the zero-mode ap-
proximation preserving, however, assumptions 1)-3). As mentioned above,
the zero mode approximation breaks the conservation of vector and axial
currents. As a consequence one faces an ambiguity in extracting the pion
axial constant F, from the correlation functions of quark currents. The
approach we developed restores the current conservation. It also helps to
understand the status of the zero-mode approximation. A small param-
eter is found and the zero-mode approximation will be shown to reproduce
correctly the first order of the perturbation theory in this small parameter.

2. Equation for the quark propagator in the instanton medium
Let us construct a diagram technique for the quark propagator in the

instanton medium. In the Euclidean QCD the quark propagator can be
represented as the functional integral

<¢(z)¢1(y)> = Z“/DA/D¢/D¢T

X exp [/ d‘zzﬁt(iﬁ + 4+ imyp+ S(A)] , (2.1)

where §(A) involves both the Yang-Mills action and the gauge fixing terms.
Integrating over the quark fields ¢,¢t one obtains

($@W@) = 27 [ DA exp 5(4) det (1D + 4; + im)
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x (l(~ip — 4 — im)~'[y). (22)
It is well known that at large number of colours N, the planar graphs

without quark loops are dominating. Hence, in the limit N. — co one can
neglect the determinant of the Dirac operator in Eq. (2.2)

(s@wle) "= 27 [ D4 exp 5(4)

x (zl(~ip - 4 - im)~]y). (23)

In the instanton vacuum model an assumption is made that instead of
performing the full functional integral over gluon fields in Eq. (2.3) one can
use averaging over collective coordinates of instantons. The quark prop-
agators § in the instanton vacuum (1.1) can be written then in the form
(1.4). The technique of calculating averages of this type was developed by
Diakonov and Petrov [3,4]. One expands the inverse Dirac operator as a
power series in 4;

~(@p+ Y A +im) =) Y Sodp So-. 480,  (24)

n=0 I,...I,

where 5, is the free propagator
So = —(if +im)~'. (2.5)

Generally, the neighbour pseudoparticles are different in Eq. (2.4):
I, # I,,I, # I,... but in some terms there may appear insertions of a
certain repeated pseudoparticle I : ...S504;S504;5... . Such insertions can be
summed up

Sod;So+ Sod;Soh;So+ = 81— 5o, (2.6)

where
Sp=—(ip + 4, +im)~ (2.7)

is the quark propagator in the background field of a single pseudoparticle.
The partial summation (2.6) allows one to rewrite the expansion (2.4)

in the form
—(i+ ) 4, +im) =S+ ) (5r— 5o)
I I :
+Y (51— 50)85(57 = So)
I#£J

+ Y (51— 50)551(Ss — 50)S5M(Sx — So) + -+ - (2.8)

I#£], J#K
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Now we have to average Eq. (2.8) over collective coordinates of the in-
stanton medium. This problem can be simplified drastically if we neglect

the correlation of different pseudoparticles. It can be justified by the di-
luteness of the instanton medium (see Egs (1.2), (1.3)). We get from Eq.

(2.8)
- <(ia 34, ;m)~1> = So+ 3 (51— So)

+> (51— 50) 557 (S5 = So)

I#7
+ > (Sr—50)551(Ss - So) 55" (Sk — So)
T#£J#K#I
+) (51— 50) 851 (S5 — 50); 551 (Sr — 50)); + -+ - (2.9)
I#£J

Here it is taken into account that two cases are possible for three pseu-
doparticles I,J,K : I # K or I = K. Only the neighbour pseudoparticles
in the rhs of (2.8) fall under restriction I # J, J # K,.... Therefore, in
some terms of the expansion (2.8) certain pseudoparticles need special care.
Though we neglect the correlation of different pseudoparticles one has to
take into account the correlation induced by recurrence of some pseudopar-
ticles.

A diagram technique can be developed for the expansion (2.9) as shown
in Fig. 1. A circle with I inside denotes S; — S, and a solid line represents
S5, The circles of the same pseudoparticle are connected with a dashed
line (or with a bunch of dashed lines if the pseudoparticle appears more
than twice).

Let us now study the diagram expansion of Fig. 1 at large number of
colours N.. The situation is quite similar to that in the perturbative multi-
coloured QCD. The diagrams surviving at large N, make possible a simple
description. A graph for the quark propagator in the instanton medium will
be called planar if the dashed lines corresponding to different pseudopar-
ticles do not intersect. Among the graphs of Fig. 1 only the last one is
non-planar.

Just as in the perturbative QCD, in the instanton vacuum at large N,
the planar graphs dominate. To check this statement one has to take into
account the following sources of N,. First, the density of the instanton
medium N/V is of order N.. Therefore, if a graph contains k different
pseudoparticles the summation over them gives a factor N*.

Besides that, certain powers of N, arise after averaging over SU(N.)
orientation of instantons.
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Fig. 1. Graphs for the quark propagator.
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Fig. 2. Skeleton expansion for the quark propagator.

Now our task is to sum up all the planar graphs for the quark propa-
gator. Although this cannot be done directly, it is possible to write down a
closed equation for the quark propagator with all planar graphs taken into
account. First of all, let us construct a skeleton planar equation. To this end
we fix the first left pseudoparticle in each planar graph. Generally speaking,
this pseudoparticle may appear in the same graph more than once. If one
sums over all other pseudoparticles of the graph one will obtain a skele-
ton graph with bold lines between the circles of the fixed pseudoparticle
(Fig. 2). A diagram expansion can be written for the bold lines (Fig. 3).
If one compares it with the diagram expansion for the quark propagator S
(Fig. 1) one can see that the bold line is equal to S5'5S;!. Here we have
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subtracted S5'. because of the summation condition I # J # K # --- for
the neighbour pseudoparticles in Eq. (2.8).

Fig. 3. Diagram expansion of skeleton lines.

Next, we insert expressions of the skeleton lines in terms of S into the
skeleton expansion for S (Fig. 3). We get

5’ - So :z ({(SI - So)
+ (51— 50)(55 555" — S5 )(S1 — 80) ++--}55'5)
= ({57185~ ST)7isr = (S - ST (210)

Here according to Eqs (2.5), (2.7)
Sit =51 -4, (2.11)
Therefore, we can rewrite Eq. (2.10) in the form
§-51=% ((5‘ . 4;‘)-1> . (2.12)
I

Let us suppose that there are N pseudoparticles (N/2 instantons and
N/2 anti-instantons) in the four-dimensional Euclidean volume V. It is
clear that all the N/2 instantons give the same contribution to the sum in
the rhs of (2.12). Hence

§7 -8t =N (G- 4+ N2 (-4 (213)
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Hereafter we denote the instanton field A;, and Ay is an anti-instanton.
It is essential that in both terms of the rhs of (2.13) only one pseudoparticle
is involved in averaging, but not the whole instanton medium as in the
original expression (1.4). In Eq. (2.13) the operator (5§ — 4;")~! should be
averaged over the instanton position z;, its orientation matrix U; and its
size p;. Averaging over z; implies

(o) zp = V-‘/d'*z,---. (2.14)

The instanton orientation in the colour space is characterized by a
SU(N.) matrix U;

Ar — Ui AU, 2.15
1

and averaging over the orientation reduces to the integration with Haar
measure

1

<UI("‘)U}>U, = /dUIU,(.-.)U} = N—C-Trcolou,(...), (2.16)

where Tr.oou is the trace over colour indices.

As to the instanton size g; we shall put it equal to the average size p
(1.3). According to Ref. [2] the size distribution tends to §(¢ — @) at large
N.). Taking into account Eqs (2.14), (2.16) we obtain from Eq. (2.13) the
equation for the quark propagator

_ N = -
S-1_ So_l = EI—,—]-V— . Trcolour{ / d‘ZI(S - 41 1)'—1

+ [ (8- 477}, (2.17)

3. The quark propagator at small N/VN,_

Eq. (2.17) for the quark propagator is a complicated nonlinear operator
equation. It can not be solved analytically. But this equation contains the
parameter N/V N.. It should be reminded that in the instanton vacuum at
large N. N/V = O(N.), so N/V N, is stable in the limit of large N.. In the
real world N/V N, is numerically small. Indeed, in the chiral limit m = 0
we can use only the size of instantons g to build up a dimensionless ratio
out of N/V N.. Using the values (1.2), (1.3) for N/V and 7 one obtains

*N/VN, ~ 0.004 (3.1)
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At first sight Eq. (2.17) can be easily solved at small N/V N, by it-
erations. In the zeroth order one obtains the free propagator S = S,
+ O(N/V N_) and the first iteration gives

5o _ N ; 1 -
S = So ! + m:’l‘rcolour{./ d4zI(SO Y o { 1) ' + (I - I)}
+O[(N/V N.)?. (3.2)
Here we face the problem of inverting the operator
So— 47" = Solif + A, +im)4;". (3.3)

At zero quark masses this operator cannot be inverted because the
Dirac operator i@ + 4, has the zero mode (1.5). Therefore, the iteration
procedure fails at m=0. The reason of this failure is obvious. As we shall
see below, in the instanton medium model the spontaneous breaking of the
chiral symmetry occurs at whatever small N/V N.. Therefore, Eq. (2.17)
has not a single solution but a family of solutions with different 5 phases of
the quark condensate. It is clear that the iteration procedure which starts
from ghe free propagator cannot generate a family of solutions with broken
chiral symmetry.

It is well known that the spontaneous breakdown of any symmetry
usually leads to a nonanalytical behaviour of various observables. It is our
case too. The propagator § should be expanded not in integer but in half-
integer powers of the small parameter N/V N,.

Let us denote
a=+/N/2VN.. (3.4)
We shall search the solution of Eq. (3.2)

5'-1 - S(-)-l = az Trcolout {/ d421(’§ - ‘4;1)_1 + (I - j)} (3'5)
in the form _
§t=8"4a0 +aoy+---. (3.6)

Then the lhs of (3.5) is of order a. Let us show that the rhs of (3.5) is also
of the order of a in spite of the explicit factor a®. Indeed, in the rhs of (3.5)
one deals with the operator

(§- 41_1)_1 =4,(4,-5"57" = 4,(ip + 4, — a0y
+0(a?)) Y (—ip + O(a)). (3.7)
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As mentioned above, the Dirac operator in the background instanton
field has a zero mode ¥; (1.5). Due to the perturbation —ae, in the rhs
of (3.7) this zero mode becomes quasizero. At a — 0 the quasizero mode
dominates in the inverse operator

i —~ao a?)] = I a®
[ip + 4; — a0y + O(a?))] ortenon T O ). (3.8)

Let us insert (3.7), (3.8) into (3.5). Taking into account Eq. (1.5) one

obtains ﬁ|¢' %] ﬁ
_ 1 I |2 N =
=T [ TEIE v n} . 09)

It is a closed equation for ¢;. Thus the assumption about the expansion of
§ in half-integer powers of N/V N, is selfconsistent.

Equation (3.9) is easy to solve. Since o, is translation-invariant, its
matrix element (1;{o1|¢;) does not depend on z;. Due to the P-reflection
symmetry,

(brlorlyr) = (Y7 |on |7 )- (3.10)

Inserting Eq. (3.10) into Eq. (3.9) and passing to the momentum space
one obtains

1

(k) = - < Prloy |y >

’I‘rcolour khbf(k) X ¢;(k) +¢I(k) X z/}}k(k)]ﬁ’ (3'11)

The explicit expressions for the projectors onto the zero modes ¥y, ¥
(see Refs [3,4]) are

(k) v () = P s
07 () x v (k) = LEN e (3.12)
Here 7% = (7, Fi),7 are the usual Pauli matrices,
# (k) = 7 d/dello(2)Ko(2) - B(DEs(ucnerss (3.13)

where I, , K,, are the modified Bessel functions and p is the instanton size.
Putting (3.12) into (3.11) one gets

k*[¢'(k)]®

k) = = e

(3.14)
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According to Eq. (3.12)

4

ot =2 [ S @) (3.15)
Inserting Eq. (3.15) into Eq. (3.14) one has

k[’ (k)]

o (k) = - . 3.16
AR P A A PP (3.16)
The obvious solution of this equation is
k(o' (K))?
o(k) = —t———", (3.17)
‘ v2|lap?|
where
dq
12112 __ 271, .7 4
leg™* = [ o Pl @ (3.18)

These two solutions correspond to different realizations of the sponta-
neous breakdown of chiral symmetry. Substituting Eq. (3.17) into Eq. (3.6)
we see that, due to the spontaneous breakdown of chiral symmetry, the
quark has acquired a dynamical mass

M(k) = iaoy(k) + O(a®) = “\’;z;[lr ("c’)lll +0(a®). (3.19)

Using the values (1.2), (1.3) for the parameters of the instanton medium
we get
M(0) = 300 MeV . (3.20)

The spontaneous breakdown of chiral symmetry generates the quark
condensate

(¥y) = iN, / @) Tr S(k). (3.21)
In the first order in a we use Egs (3.6), (3.19)
. &k oy(k)
(P¢) = —-4aNc/ (2r)* k2
= —2vaaN. AP~ 50 Mevye. (3.22)

“llae”I?
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The quark condensate is not renormalization invariant. Here it was
calculated in a classical instanton medium without quantum corrections.
Therefore, the value (3.22) corresponds to the scale which is determined by
the instanton size g~'= 600 MeV. At this scale the phenomenological value
of the quark condensate is (240-250 MeV) [3].

We have calculated the effective quark mass and the quark condensate at
leading order in N/V N.. Comparing these results with the values obtained
by Diakonov and Petrov [3,4], one can see that they are numerically close.
This fact has a simple explanation. It can be shown [8] that the zero-mode
approximation of Diakonov and Petrov gives correct results at the leading
order in N/V N, with some incomplete admixture of high orders.

The technique described here can also be applied to correlators of quark
currents [7]. In this case the zero-mode approximation also reproduces the
correct leading-order contribution of the N/V N_ expansion but involves
incomplete addition of higher orders which is responsible for the currents
non-conservative in the zero mode approximation. The present approach
allows us, in principle, to construct a systematic N/V N, expansion with
the axial and vector currents conserved at each order.
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