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Modifications of meson and baryon properties due to the presence of an
external hot baryon medium are investigated in the Nambu—Jona-Lasinio
model. The corresponding meson sector is solved for a quark continuum
at finite density and temperature. We use two regularization schemes with
3-dimensional sharp, Pauli-Viffars and proper time cutoff types. Due to
the medium the constituent quark mass and the pion and sigma masses
are modified. We find a first-order chiral phase transition at relatively low
temperatures less than 100 MeV which changes to second order at higher
temperatures. The corresponding temperature—density phase diagram is
non-monotonic.

PACS numbers: 12.90.4b

The QCD is generally accepted as a theory of the strong interactions
with three important concepts: on the one hand the colour confinement and
the asymptotic freedom and on the other — the spontaneous chiral symme-
try breaking. At high density and/or temperature, however, in accordance
with the asymptotic freedom idea one should expect a restoration of the
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chiral symmetry and a deconfinement. Indeed the nonperturbative QCD
properties seem to be verified by the lattice calculations as well as phase
transitions concerning the chiral symmetry restoration and colour deconfine-
ment are suggested at finite temperature [1] (see also [2,3] and References
therein). The pure gauge lattice calculations indicate that both phase tran-
sitions are present at approximately the same critical temperature of about
250 MeV, whereas the inclusion of light quarks (“full” lattice QCD) lowers
the critical temperature to about 200 MeV or less. It is amusing that the
estimates of the critical temperature done in the chiral perturbation theory
(4] give similar numbers.

The nature of the phase transitions, however, is not clear. Most of the
pure gauge results suggest a clear first order-phase transition whereas the
“full” lattice QCD calculations do not show a consensus: the phase tran-
sition is a weaker first-order or even a second-order. Even for the simplest
case of finite temperature and zero chemical potential (zero density) the
present lattice QCD methods are not able to give a quantitative reliable
description of the phase transition characteristics and of the bulk phase
properties close to the transition, point not speaking about the meson and
nucleon properties. This is a motivation to apply effective models like the
Nambu-Jona-Lasinio (NJL) [5] and the linear o-model [6], as there is some
hope to justify those models as a limiting case of the low-energy QCD [7, 8].
Indeed the investigations [9-12] based on these models give a chiral phase
transition from Goldstone to Wigner phase at both finite temperature and
density in a qualitative agreement with the Monte-Carlo lattice calculations.
Similar to the lattice calculations there is no clear opinion about the order of
the phase transition: in Refs [10, 9] authors find a second order transition,
whereas Asakawa and Yazaki [12] suggest a first-order at low temperatures
which changes to second-order at higher temperatures. Medium [13] and
low temperature [18, 19] effects in the properties of the mesons and of the
nucleons have been successfully studied as well. One might expect also
non-trivial effects at finite both temperature and density {20].

We study some meson properties and the chiral transition in hot and
dense baryon medium as similar to Refs [17, 20]; the basic assumption is
that the nucleon medium can approximately be replaced by a quark uni-
form medium. The latter is described by the NJL model {5] with scalar
and pseudoscalar couplings regularized by means of two different regular-
ization schemes with three cutoff types, namely noncovariant sharp cutoff,
the Pauli-Villars [21] and the proper time method [22]. The parameters
of the model are chosen to match PCAC and to reproduce the structured
vacuum.
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1. The model

In our approach we assume a physical picture in which the nucleon,
being off-shell by the presence of the medium, is simulated by an on-shell
nucleon facing meson fields modified by the medium. It means that the
influence of the medium is expressed in terms of modified value of the con-
stituent quark mass and the meson masses. We use an approximation which
consists of treating the baryon medium as a uniform quark matter neglecting
the nucleon substructure in it. Obviously it is rather rough approximation
to study the bulk properties of the nuclear matter but seems to be reason-
able {17, 20] for our aim — the modifications of the meson and nucleon
properties in the medium.

1.1. NJL model with a chemical potential and finite temperature

The Lagrangian of the NJL model used includes a local scalar and
pseudoscalar four-fermion interaction with [5]:

L= ¥(iy"d, — mo) ¥ + %[(7!{')2 + (Tiys7E)Y. (1.1)

The Dirac field ¥ describes the quark with SU(2)-flavours (u and d quarks)
and an average current mass mo = (m, + myq)/2. The non-zero current
mass breaks explicitly the chiral symmetry in (1.1). Introducing auxiliary
boson fields ¢ = —g ¥ ¥/A? and ® = —g ¥iv;7 ¥ /A? with the new constants
a = —-A¥my/g and G = ¢g?/A? the Lagrangian (1.1) can be also represented
in an equivalent bosonized form [23]. The new parameter X is not included
in the original Lagrangian (1.1) and in this sense it is redundant. Because
of that it should be fixed in a self-consistent way.

In accordance with the PCAC hypothesis the divergence of the axial
vector current in the NJL model should be related to f,m2# which gives
a=—f,m?.

Using functional integral techniques the quantized theory at finite den-
sity and temperature can be written in terms of the corresponding gener-
ating functional in grand canonical form for non-zero chemical potential u
and temperature T = 1/4:

Z2= /D—!fDWDa D# exp (i/d%{@—[i*y"a,‘ ~ g(o 4 iys® - 7)| @
:\—2— 2 4 22y 2 . o
+ (0" +7) = fomeo — 7'} )(1.2)

Performing a Wick rotation the quarks are integrated out replacing the

integration over the imaginary time by a sum joﬂ (%’5 — 5 e« [24] over
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the fermionic Matsubara frequencies k4 — (2n+ 1)r /8. For the summation
over n we follow Dolan and Jackiw [25].
Finally one obtains for the density of the thermodynamical potential

S 1 1 e
ﬁ; = ~—E{§(sa—p)+51n[1+e (ca Mﬁ]}
+iX%(e? + 7%) - frmia, (1.3)

where V is the volume and ¢, are the solutions of the Dirac equation:

=

[—i&- V + fglo+ i‘ys?-‘?)] ) = eqla). (1.4)

The baryon density gg is related to the thermodynamical potential by

an 1 1
QBNc—-E‘“—Z:{—E-Fm} . (1.5)

The static solution can be obtained by minimizing the thermodynamical
potential 2 (or the effective action):

an _on , an
E;——a';_r;'—o with -—-&;—93. (1.6)

This procedure is equivalent to the minimization of the Helmholtz free en-
ergy F =1 — u8/8u with a constraint and in this case p plays a role of
a Lagrangian multiplier.
The second derivative of the free energy F with respect to the meson
fields determines the meson masses:
0*F &*F
-é-o_—zzm: and _é¥;=m:' (1.7)
In that one has to keep in mind the constraint (the second equation of
(1.6)) concerning the baryon density. It means that the fluctuations of the
meson fields should be along the true path of the system. Since the inverse
field propagators can be obtained from the second order variation of the
effective action, the meson masses defined by Eqs (1.7) correspond to the
poles at ¢ = 0 of the meson propagators, obtained in the small amplitude
approximation, if the imaginary part appearing due to the lack of the colour
confinement in the NJL model is neglected [26].
In the calculations we use the plane wave basis ¢, = £, = +vk? + M?,
where M is the constituent quark mass. We also substitute:

&k d®k
za: ~ /W(Ek < 0) + / ‘(':2‘;‘)—3‘(61; > 0) . (1_8)
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1.2. Regularization schemes

The NJL model is not renormalizable because of the local four-fermion
interaction included. In order to cure the divergence of thermodynamical
potential (1.3) we regularize it introducing a momentum cutoff. Actually
we realize this in two different ways. In each of them we use also different
types of momentum cutoff.

"In the first scheme we isolate the divergent part of the thermodynam-
ical potential 2(x = 0, T = 0) and regularize it using a non-covariant
3-dimensional cutoff

&3k
24(0,0) = —4N, / @ (1.9)
k<A
the proper time method [22]
Nc dr. ~M3r
124(0,0) = | =° M (1.10)
A-3
as well as the Pauli-Villars [21] method
d*k A - M?
A - _ _ o4
24(0,0) = —4N, / o {e,, el + g } (L11)

In the case of Pauli-Villars we cure the divergencies subtracting two addi-
tional terms in which the momentum cutoff plays a role of a heavy mass.
The divergent part is coming from the negative-energy Dirac sea. The reg-
ularization procedure is schematically illustrated in Fig. 1(a). As can be
seen in this case only the negative part of the quark spectrum is cut from
bellow whereas the positive part is not affected. The finite part of the
thermodynamical potential is

2(p, T) - £2(0,0)

= 4N, /(2 )8{(5k+u) —In[1+ ~(en-mp] ;m[ue(e.mﬁ]}

+iX}(o? + #%) — frmio. (1.12)

The total regularized thermodynamical potential is then given by the sum
of its-finite and regularized parts. In this regularization scheme the baryon
density defined as —92/3u does not include the momentum cutoff A.

In the second regularization scheme the momentum cutoff affects the
negative- as well as the positive-energy part of the quark spectrum (see
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Fig. 1. The quark spectrum in NJL model regularized in two different ways: (a) a
cutoff is introduced in the negative energy sea; (b) both parts of the spectrum are
affected by a cutoff.

Fig. 1(b)). Because of the imaginary-time formalism only the 3-dimensional
cutoff appears

2 = 4N / _.da_k- w— lln [1 + e—(eu—#)ﬁ] _ —1-1n [1 + e(trHl-)ﬂ]
©J @rp B B

k<A

+iX%(o? + 7)) - fomlo (1.13)
and the Pauli-Villars method

1 .
_= —(ex—-n)B) _ (ex+p)B
2= 4N/27r)”{ [1+e ] ,Bln[1+e ]

+% In {1 n e—(e;.‘-m] N %m [1 " e(‘fﬂdﬁ]

A% ~ M? 1 1
B 2¢f 1+ elei-#)B 1 + e (ed+u)B

+30%(0? + ®*) - famlo (1.14)

can be used to regularize the effective action. In contrast to the first scheme
all expressions concerning the bulk quantities and in particular the baryon
density include the cutoff.
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1.8 Fizing model parameters

Besides the redundant parameter A the NJL Lagrangian includes ba-
sically two parameters — the constituent mass M (or!coupling constant
g) and the momentum cutoff A. We fix them reproducing the vacuum
properties, namely the pion decay constant f, = 93 MeV and pion mass
m, = 139.6 MeV as well as the empirical values (gg) = —(283 + 31 MeV)?
and (m, + mq)/2 = 7 + 2.1 MeV of the quark condensate and the quark
bare mass [27).

The stationarity condition Eq.(1.6) at the u = 0 and T = 0 leads to
#o = 0 and to the gap equation:

Jo (Az - 4Ncg2J1/z(M, A)) = f,mi , (1.15)

where

b Bk 1
(2r) (&2 £ M)

Due to the non-vanishing vacuum value of g, the quarks acquire a con-
stituent mass M = go,. We use Eq.(1.15), however, to eliminate the param-
eter A in favour of the constituent mass M. Thus, the redundant parameter
is determined in a self-consistent way.

Fixing the pion mass from Eq.(1.7) at its physical value one gets the
Goldberger-Treiman relation at the quark level M = go, = g f.

The next quantity which we use to fix our parameters is the pion decay
constant. It can be calculated from thediagram shown in Fig. 2. Combining
the result with the Goldberger—Treiman relation one gets the condition:

Ja(M, ) =

(1.16)

A
dtk 1
4N g* =1. 1.1
9] (@r) (k2 + M) (1.17)
k
P
_____ S
Gpq s % %
p—k

Fig. 2. One-loop diagram for the pion decay.
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The integral in Eq.(1.17) is divergent and we introduce a momentum
cutoff to make it finite. The particular expressions for different cutoff types
are:

Zf: {ln(A/M) + VM +1 - ——“ﬁ%ﬁ} =1 (1.18)

in the case of 3-dimensional cutoff,
N . M?
_sgz{m.fi_.+_»_1} - (1.19)

for the Pauli-Villars method, whereas in the proper time method the regu-
larization integral cannot be calculated analytically:

oo
Nc 2 _C_lze—M’r

4wzg T
1/43

=1. (1.20)

Thus, for a given value of the constituent mass M(g), the cutoff 4 is fixed
by the condition (1.17). It should be noted that the same condition is
needed for a derivation of the Gell-Mann-Lévy Lagrangian as an effective
Lagrangian from the NJL model using a gradient expansion [23]. The above
condition leads to a cutoff independent expression for the sigma mass in the
NJL model:

m2 =m? +4M?. (1.21)

All those conditions together leave the constituent mass M (or quark-meson
coupling constant g) as the only parameter undetermined so far. To fix it
one may use the values of the quark condensate and the quark current mass
coming from QCD sum rules [27]. The uncertainties of the empirical values,
however, leave a lot of room for the possible values of M.

2. Results and discussion

We fit simultaneously the quark condensate and the quark current mass
coming from QCD sum rules [27] as well as the nucleon mass My = 938 MeV
obtained [17] in the projected chiral soliton model keeping f, = 93 MeV and
m, = 139.6 MeV. The value of the constituent mass found in that way is
M = 465 MeV. We use this number as a common value in all regularization
schemes. The momentum cutoff is determined by the conditions (1.18)-
(1.20). It is assumed to be density and temperature independent. The
values of the cutoff as well as the vacuum characteristics obtained using
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different regularization methods are presented in Table I. As can be seen the
Pauli-Villars method seems to be the most preferable. It provides the best
description of the vacuum because the cutoff value is larger than those of the
other two methods. The sigma mass coming from the cutoff independent
relation (1.21) is m, = 940 MeV. It should be mentioned also that apart
from the sigma mass the meson properties as well as the quark. condensate
and current mass are rather independent [28] of the particular value of the
constituent mass ranging between 360 and 500 MeV.

2.1. Constituent quark mass and meson masses
at finite density and temperature

In this section we present the results concerning the meson sector of
the medium obtained in the first regularizations scheme with Pauli-Villars
cutoff. Actually the other schemes and cutoffs show similar results.

In the medium we use unchanged vacuum values of ¢ = M/F, , A and
A%, At finite density and temperature the stationarity condition (1.6) leads
to the gap equation for the constituent mass value M* (marked by an as-
terisk in order to distinguish it from the vacuum value). The values m’ and
m; of the meson masses are evaluated from Eqs (1.8). We found that the
pion mass scales as

m2 = m:M/M" (2.1)

in all regularization schemes. Thus, as can be seen from (2.1), the chiral
symmetry breaking term is not modified at the medium. This implies that a
relation similar to the PCAC should exist also in the hot and dense medium.
For the sigma mass the cutoff independent relation (1.21) is no longer valid.
The calculated constituent quark mass and the meson masses as a function
of the temperature are shown in Fig. 3(a) and (b) for four different baryon
densities. At finite temperature above the critical value the m’ coincides
with the m}: the mesons become degenerate. The latter, together with
the strongly reduced constituent mass, is a clear indication of the phase
transition. The combined temperature-density effects change the behaviour

TABLE 1
Vacuum properties for different cutoff types
Cutoff A (- (gg))'/? mo B
Sharp cutoff 577 305 5.8 198
Pauli-Villars 862 264 9.0 199
Proper time 640 208 18.0 201
QCD sum rules — 283 + 31 7.0+ 2.1 240 £+ 16
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of the constituent mass and the sigma mass to non-monotonic. In contrast,
for finite temperature and density far from the critical values m} shows
a rather weak medium effect. Close to the critical density all masses are
affected strongly by the medium: at low temperature meson masses are
very close to each other, with increasing temperature they deviate strongly
and close to the critical temperature they approach again similar values.
Similar to the constituent quark mass, the quark condensate shows also a
non-monotonic temperature dependence at finite density. A similar increase
of the quark condensate with temperature at fixed density is also found by
Dey et al. [29].

oeo
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Fig. 3. Constituent quark mass M (a), sigma and pion masses m, and m, (b)
and bag constant B (c) as functions of temperature at different medium densities.
T. = 200 MeV, g, = 2.50nm. Medium baryon density is 0 (solid line), gpm (long-
dashed line), 20, (short-dashed line) and 3g,.m (dotted line).

2.2. Chiral phase transition

Because of the finite pion mass, however, the observed chiral transi-
tion is smooth — the constituent mass is strongly reduced but does not
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Fig. 4. T — g chiral phase diagram. The curves labelled by I correspond to the first
regularization scheme and those with II to the second scheme,

vanish. In order to further identify the transition, besides the reduction
of the constituent mass, we make use of the fact that because of the chiral
symmetry restoration the pion and the sigma fields become degenerate. Op-
erationally, we take the point at which the sigma mass changes its behaviour
to the one similar to the pion mass (see Fig. 3(a) and (b)). Looking at the
high density and vanishing temperature one realizes that, before the chiral
transition occurs at high temperature, the chiral transition from the Wigner
to Goldstone phase with a “restoration” of the chiral symmetry breaking
takes place. The calculated phase diagrams on the g-T-plane for the differ-
ent regularization schemes used are shown in Fig. 4. As can be seen at zero
temperature the critical density (about 2.5 p,,,), is almost independent of
the particular scheme which is not the case at the critical temperature, T,
at zero density. The latter depends strongly on the way in which the mo-
mentum cutoff is introduced. In the first scheme the critical value is about
200 MeV whereas in the other case it is larger — about 260 MeV, The first
number seems to be more reasonable: it agrees with the estimates of the
lattice QCD calculations (see for instance Ref. [3]). All chiral transition
critical curves presented in Fig. 4 show a non-monotonic behaviour of the
critical density with the temperature. Quantitatively the effect, however, is
much more pronounced in the first regularization scheme than in the second
one: In the first scheme (see Fig. 1(a)) the cutoff is introduced only in the
negative energy part of the quark spectrum. Thus at finite temperature the
quarks are free to occupy all positive levels up to infinity. Critical curves
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for nuclear matter close to ours in the first scheme are obtained by Waka-
matsu and Hayashi [30] and Kawati and Miyata [31] employing a simplified
o model and a model with a scalar four-fermion interaction with nucleons,
respectively. Similarly to our approach in both those approaches the baryon
density is not affected by the regularization. In contrast to the first scheme
in the second one the cutoff is introduced in both the negative and the posi-
tive part of the quark spectrum (see Fig. 1(b)). The quarks are constrained
to occupy only the levels up to the cutoff. Apparently in this scheme the
finite temperature effects are suppressed in some sense artificially. It is il-
lustrated in Fig. 3 — the restoration of the Goldstone phase at intermediate
temperatures is less pronounced and the critical temperature value at zero
baryon density is larger than in the first scheme. The second type regular-
ization scheme with a 3-dimensional cutoff is used by Hatsuda and Kunihiro
[9, 18] as well as by Bernard et al. [10] and the latter show a critical curve
[10] identical to ours in the case of the second scheme.

As it was outlined in the Introduction both the lattice QCD and the
studies based on the NJL model do not provide an unambiguous result
about the order of the phase transition. Hatsuda and Kunihiro [9, 18] as
well as Bernard et al. [10] find the second-order phase transition at finite
temperature and density. The latter use as a criterion the positivity of
the energy density difference throughout the critical line. In contrast to
them Asakawa and Yazaki [12] have studied carefully the behaviour of the
constituent quark and meson masses as functions of the chemical potential
at vanishing as well as a finite temperature. They found that the masses
have a discontinuity at common critical values of the chemical potential
at low temperature values which suggest a first-order phase transition. At
relatively higher temperature (for parameter values used it is about 50 MeV)
the picture is smeared out and no evident critical point can be defined in
T — p-plane. Barducci et al. [32] have studied the chiral symmetry breaking
for a QCD-like gauge theory at finite density and temperature. Similar to
Asakawa and Yazaki [12] they have found a first-order phase transition at
low temperatures which changes to second order as the temperature crosses
a given critical value.

This situation motivates us to investigate more carefully the nature of
the chiral transition. To that end we evaluated the equation of state (EOS)
of the quark matter and apply the Ehrenfest classification of the phase tran-
sitions. In accordance with it a first-order transition is characterized by a
continuous Gibbs free energy density but its derivatives are discontinuous.
The calculated pressure as a function of the baryon density for different
temperatures is shown in Fig. 5. The pressure of the Dirac sea (p = 0)
is subtracted. The calculations are done in the first regularization scheme
with the Pauli-Villars cutoff. The other scheme and cutoffs give similar
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Fig. 5. Equation of state (EOS) of the quark matter. The EOS of the nuclear
matter at zero temperature taken from [33] is depicted by the dotted line.

results. At lower temperatures (< 100 MeV) the isotherms show a clear
minimum at the critical density and a maximum at low density. We note
that for the density values lying between the maximum and the minimum
the stability condition (0P/89)T > 0 is not satisfied and the EOS is not
well defined. At these densities there is a coexistence of the two phases with
equal temperature, chemical potential and pressure. At zero temperature
the unstable region covers the densities from 0.15 gppm up t0 2.5 gom. It is,
however, not surprising since one should expect there the nucleon matter
to be more preferable configuration than the quark one. In contrast to the
quark matter the EOS of the nuclear matter [33] (shown also in Fig. 5) sat-
isfies the stability criterion in this region. At temperatures higher than 100
MeV the isotherms change their behaviour to increasing functions of the
density with an inflection. At the critical values T it is a simple, monotoni-
cally increasing function. Using the isotherms we reconstruct the density of
the Gibbs free energy. For the low-temperature cases (T < 100 MeV) this
quantity is a continuous function but its derivative with respect to the pres-
sure shows a discontinuity. The latter disappears at higher temperatures.
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Thus we found a first-order transition at low temperature values < 100 MeV
(including the zero temperature case) which changes to second-order one at
higher temperatures. It means that our analysis supports the conclusions
of Asakawa and Yazaki [12] and Barducci et al. [32] and not those of Hat-
suda and Kunihiro {9, 18] and Bernard et al. [10]. The nature of the phase
transition is important [2] for the analyses of the processes in the early uni-
verse as well as in the ultrarelativistic heavy-ion reactions. Because of the
phase coexistence and possible superheating and supercooling phenomena
one expects different effects in the case of the first-order transition from
those in the second-order. Furthermore, one should expect signals from
quark-gluon plasma formation at low as well as at high temperatures but
not at intermediate temperatures and high densities.

2.3. Bag constant at finite density and temperature

Following the intuitive understending of the bag constant as an energy
cost for creating an interaction-free space volume we identify it with the free
energy density needed to restore the chiral symmetry B = F(o = 0, ¥ = 0)
— F(00,# = 0). The vacuum values of the bag constant calculated using
different cutoffs is presented in the last column of Table I. The numbers are
practically independent on the particular cutoff and are close to the values
frequently used in the bag model calculations. Fig. 3(c) shows the bag
constant as a function of temperature at different density numbers. Similar
to the other results shown in this figure, the first scheme with Pauli-Villars
cutoff is used. As can be seen at finite temperature and density, the bag
constant shows a behaviour similar to those of the constituent mass. In
contrast to the latter, however, it is much less reduced at critical density
and temperature values.

3. Summary

The Nambu-Jona-Lasinio model has been considered to study the me-
son properties and the chiral transition in a hot and dense baryon medium.
In order to cure the divergence of the NJL model two regularization schemes
with three different types of the cutoff, namely 3-dimensional sharp cutoff,
Pauli-Villars and proper time method, are used. The corresponding me-
son sector of the model is solved for a quark continuum at finite density
and temperature. This results in modified values of the constituent quark
mass and the pion and sigma masses in the medium. At critical values of
the density and temperature we find the chiral symmetry phase transition
with a non-monotonic teperature- density phase diagram.We conclude that
a first-order phase transition occurrs at finite density and relatively low
temperatures (less than 100 MeV) which changes to a second-order one at
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high temperatures. The quark constituent mass, meson masses and the bag
constant show a non-monotonic temperature dependence at finite density.
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ung und Technologie (Contract 06-B0-702), the KFA Jiilich (COSY Project)
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