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We discuss recent developments in the study of multiplicity fluctu-
ations where scaling properties are searched for and partly established
in full phase space (“KNO scaling”) and limited domains of phase space
(“Intermittency”). Such scaling properties are expected in parton cascade
models based on QCD which are well established in ete™-annihilation
with timelike parton evolution. In the other collision processes, in par-
ticular soft processes, similar phenomena are observed but no common
theoretical description is available yet.

PACS numbers: 05.40.+j

1. Introduction

From the study of multiparticle production processes we can learn about
the strong interaction dynamics. The fundamental theory, QCD, describes
the interaction between quarks and gluons, the partons, from which the
hadrons are built up. Scattering processes involving partons at large mo-
mentum transfers Q% can be treated in QCD perturbation theory. This
theory, supplemented with an appropriate assumption or model on the tran-
sition from partons to hadrons, has enjoyed many successes in the interpre-
tation of the multiparticle production phenomena, in particular, the hadron
jet production.

Out of the problems which are studied in multiparticle production we
emphasize the following: (a) Properties of the QCD cascade. The
evolution of the parton final state can be treated in QCD perturbation
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theory. For small parton multiplicities there are exact calculations up to
O(a?) which include quantum effects. For large multiplicities one can de-
rive the multiparton cross sections in leading logarithmic approximation
(LLA) with various refinements. The same branching processes of partons
are repeated at different scales during the evolution and one obtains a par-
ton cascade with selfsimilar structure. The question arises which limiting
scale Qo should be chosen to allow the application of perturbation theory
with sufficiently small coupling. Another question is' whether and how the
selfsimilar structure of the partonic branching process could be verified ex-
perimentally. (b) Strong interactions at small Q. At the end of the
cascade the partons recombine to hadrons at relative distances of ~ 1 fm.
It is not yet clear how to derive this process from the fundamental theory
and so one has to construct “hadronisation models” which take into account
consistently the experimental results. In processes with initial hadrons, one
has to deal with a similar problem, the parton exchange at low momentum
transfer. (c) Universal properties of various collision processes.
Only in the e*e~ annihilation process there is a good understanding of how
the parton cascade is initiated and evolves. Other hard scattering processes
(example pup scattering) require additional information about the parton
structure of initial hadrons. The role of QCD in the description of “soft”
processes, t.e. the untriggered collision of hadron or nuclei with their large
cross sections of O(10-100 mb) is even less clear. On the other hand there
is. a large body of similarities in the phenomenology of all these different
processes, though with differences in detail. An example are the scaling
properties of multipicity distributions (KNO-scaling, intermittency) which
we will discuss below. One can formulate the working hypothesis that the
parton cascade structure is at the basis of this universality, and the dif-
ferences of the different collision processes are due to the different initial
conditions for such cascades [1,2] though there is not yet a generally ac-
cepted theory. (d) Quark gluon plasma. Besides the parton cascade
process as considered in ete~ annihilation, there is the possibility of collec-
tive phenomena in heavy ion collisions, in particular of quark gluon plasma
formation and a subsequent transition into the hadronic phase. It is there-
fore of great interest to compare the various collision processes and to look
for trends which would indicate a phase transition.

In this lecture we focus on the consequences of selfsimilar cascade mod-
els of different degrees of sophistication to global multiplicity fluctuation
and those in small phase space domains of different dimensions (“intermit-
tency”). We also emphasise how the predictions could change for a system
with a second order phase transition which also shows selfsimilarity prop-
erties.
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2. Models for selfsimilar branching processes

Realistic models, such as the QCD parton cascade models can only be
analysed by Monte Carlo methods. It is therefore desirable to consider first
some simplified models and to study their properties, at least partly, by
analytical methods. '

2.1. Simplified “toy” models

(a) a model. This model represents a selfsimilar random cascade
structure and was used by Bialas and Peschanski (3] to describe multiplicity
fluctuations in rapidity. One considers a sequence of cascade steps n =

2...N. In the first step the original rapidity interval Ay is divided into
A subintervals of size Ay/A, in the next step these subintervals are divided
further in the same way and so on until after N steps dyy = Ay/AVN. Any
of the final M = AV intervals can then be labeled by a set of indices {o;}
(aj =1...7, j =1...N) refering to the particular path in the process of
subdivision. The density Xy in one interval after N steps is calculated in
the a-model from the product

Xy = w(ay)...w(az)w(ay)Xo, (1)

where X, is the initial density in the full interval §yo = Ay and w(a;) are
independent random variables with distribution p(w) which is assumed not
to depend on the step number and therefore define a selfsimilar branching
process. In the simplest case w takes only two values w, and w, with
probabilities p, and py = 1 — p,. Without loss of generality for normalized
quantities one can choose also (w) = p,w, + pyw, = 1. The model has then
two arbitrary parameters p, and w, for a given branching structure defined
by A and N.

The 1-dimensional a-model can be generalised in a natural way to higher
dimensions [4]. This is important if one wants to study more realistic cas-
cades evolving in a 3d momentum space. In d dimensions one starts from an
initial cube of volume (Agy)?; this is subdivided into A? cubes of edge length
(Ay/ /\) and so on for N steps. The density in one of the final volume ele-
ments is again constructed by multiplication of random numbers as in (1) .
The fluctuations of multiplicity in the 1d projection of the 3d model are
quite different from those in'the above 1d model, as will be shown below.

(b) Branching models in 141d field theory. Another group of
simple models is discussed by Chiu and Hwa [9,6]. A parton of virtuality
Q? > 0 initiates a branching process with successive degradation of virtu-
ality until a final cutoff Q2 is reached in which case the parton is identified
with the final particle. The longitudinal momentum fraction z in an infinite
momentum frame is distributed according to a distribution P(z). Contrary
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to the previous model the number of cascade steps fluctuates and so does
the multiplicity of particles.

(¢) Scale invariant cascade model. This model [7,8] again describes
the evolution of a cascade from an initial scale Q2 down to final hadrons of
mass @2, but now in 3d momentum space. At each vertex an intermediate
state of mass Q2 decays isotropically into two states with masses Q}, Q3
with distribution

dn
dpydp,

=F(”’l7ﬂ'2)$ f‘tfo/Q:' (2)

This distribution is finite and obeys exact scale invariance and is derived
from phase space arguments. The model is realistic insofar as it repro-
duces the main features of the jet structure of the hadronic final states in
ete collisions. However, the multiplicity fluctuations are predicted larger
[8] than experimentally found.

2.2. QCD parton cascade models

The description of multiparticle production in a hard scattering pro-
cess involving a large momentum transfer Q2 can be based on QCD. In a
first step there is an initial hard scattering process, such as ete™ — qg or
eq — eq, for which the matrix element can be calculated in QCD or in the
electroweak theory. In a second step the scattered partons radiate gluons
and initiate in this way the parton cascade process. The theoretical treat-
ment of this process in LLA and beyond has been improved over the last
years [9]. An important step was the observation that in a particular gauge
interferences between different Feynman diagrams can be neglected in the
given approximation so that a probabilistic interpretation of the results and
the application of Monte Carlo methods became feasible. Remarkably, this
property could be maintained after including next to leading corrections
from soft gluons by an “angular ordering” of outgoing partons. For reviews
of these works see [10].

In the LLA the “decay” of a parton a — bc¢ which transforms a final
state of N partons into one with N +1 partons yields the following recursion
formula for the respective cross sections in the limit of small angles

_ _dt, a,
daN-}-l = dG'N szé;Pa_.bc(z) . (3)
where an appropriate average or sum is taken over the polarisation states
and the azimuthal decay angle. Here ¢ is the virtual mass of parton a, 2
the energy fraction of a final parton, and P, ,.(2) the respective Altarelli-
Parisi splitting functions for the three possible subprocesses q — qg, g — gg
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and g — qg [11]. For final soft gluons there is an infrared singular factor
P(z) ~ 1/z. One can see that the density in a phase space interval is again
constructed recursively by the multiplication of random functions. The
approximate selfsimilarity of the branching process is due to the scale free
evolution of virtualities dt/t and energies dzP(z) but some scale breaking
effects are introduced by the logarithmic dependence of the strong coupling
constant a, on the QCD scale A and also by a necessary cutoff in the final
parton mass @2 and consequently in z.

2.3. Parton cascade and hadron final states

Several models have been proposed [9] which describe the transition
from partons to hadrons. The most popular ones are the string model
and the cluster model whereas a simple recipe is based on “local parton
hadron duality (LPHD)” [12]. The preferred models today are based on the
parton cascade with low cutoff Qo $ 1 GeV. Models based on O(a?) matrix
elements do not give a consistent description of the data (see, for example,
the intermittency analysis by DELPHI [13].) v

(a) String fragmentation. This is the basis of the LUND-hadronisa-
tion model [14] (for some earlier results, see [15,16]). It is assumed that the
parton final state corresponding to a particular cutoff Qo generates a color
flux tube of limited transverse size of ~ 1 fm between the partons. If the
partons are sufficiently energetic the string may break by the production
of a new qg pair. Assuming a tunneling mechanism one obtains for the
probability of the production of a pair of quarks, each with mass m, and
transverse momentum pr in a static approximation the factor exp(—Z(m3 +
p%)) where k & 1 GeV/fm is the string tension. In principle, such formulae
would predict the rate for different flavors and transverse momenta, however
there is considerable uncertainty on what quark (diquark) masses or string
tension should be used for a dynamical system and so one has to introduce
appropriate parameters into the formalism. Though the predictive power
of the model is limited by the possibility to choose various parameters its
overall ability to fit the data in detail, recently, for example, intermittency
effects at LEP, is quite remarkable.

(b) Cluster fragmentation. In another approach it is assumed that
at the end of the cascade, when the virtual mass becomes small (< 1 GeV)
and the coupling constant large of O(1), the gluons split into uii and dd pairs
nonperturbatively [17] (for other work on clusters see [18]). Quark and an-
tiquark pairs form color neutral objects of variable mass with a distribution
approximately independent of the primary energy. These clusters are as-
sumed to decay isotropically into the hadron states of the lowest SU(3),
meson and baryon multiplets according to a phase space probability. For a
small fraction of the clusters in the high mass tail, above a certain fission
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threshold (~ 4 GeV), a decay with preferred direction of the string type is
assumed. This model is impressive by the rather small number of adjustable
parameters. Results can be derived from the computer program HERWIG.

(c¢) Local parton hadron duality. There is the interesting question
to what extent the structure of the hadronic final state can be described by
the partonic final state disregarding hadronisation alltogether. It is clear
that this can only work in some approximate sense or for a suitable average
(for example resonance phenomena are not present at the parton level).

A remarkable similarity of this type has been found by the Leningrad
group [12]. The shape of the inclusive momentum spectra of hadrons is
found to be rather similar to the inclusive momentum spectra of partons
as calculated from the parton cascade in LLA including the soft gluon in-
terferences with the cutoff Qo = my, the final hadron mass. This works
reasonably well in dependence of hadron masses (7 ,K,p) [12], energy de-
pendence [19] and particle rates [20]. Recent results from LEP on charged
particles [19] which became available after this meeting, are shown together
with TASSO data from lower energies [21] in Fig. 1. A very good descrip-
tion of these spectra for In(p/1GeV)R — 1, or p R 0.35GeV, up to the
phase space boundary can be seen for all energies. The fitted parameters
are 4 = 0.253 GeV and the normalisation. Hadronisation models can fit
these spectra too and the above similarity can be obtained in the LUND
model, for example [22]. However, we would expect that in this case the
spectrum shape, in particular for large momenta, is strongly dependent on
the model parameters (such as fragmentation function, p/x ratio) which are
only weakly constrained. The understanding of the physical origin of LPHD
therefore remains as a puzzle and a challenge.

There had been suggestions to extend this duality beyond single par-
ticle inclusive spectra. It was noted [23] that the exclusive jet multiplicity
distribution at low resolution as a function of a mass resolution parameter
could be fitted by the parton cascade without hadronisation. It has been
proposed that exclusive multi cluster states above the resonance region with
mass resolution §m X 1 GeV could be represented by the corresponding par-
ton states which leads to an almost “exclusive LPHD”. A possible theoretical
scenario has been discussed assuming a duality in momentum space between
a partonic and a hadronic cascade — not in obvious contradiction to QCD
with confinement.

According to another suggestion [24] the normalised multiparticle core-
lation functions are proportional to the corresponding functions for partons.
This property is found for the LUND model at very high energies (above
200 GeV) from an analysis of multiplicity distributions.

As the suggestion of the various forms of LPHD are not very well
founded theoretically it appears to be an interesting research project to
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Fig. 1. Inclusive momentum spectra do/dlnp of charged particles at PETRA
enetgies from TASSO {21} and at LEP from OPAL [19]. For momenta p 2 300 MeV
these spectra are well described by the inclusive spectra of partons {mainly gluons)
from the modified LLA in accordance with the hypothesis of “Local Parton-Hadron
Duality” (from [19]).

establish phenomenologically the regime of validity and the limits of this
remarkable similarity.

3. Global Multiplicity fluctuations and KNO scaling

A well known scaling property in multiparticle physics is the multiplicity
scaling proposed in 1972 by Koba, Nielsen and Olesen (KNO) {25]. The
probability P,(s) to find n particles in one event depends on the total energy
/s only through the scaling variable z = n/n(s)

AP (s) = Y(n/n), 7 =7(s). (4)

In the derivation non asymptotic modifications O(1/%) are admitted. The
original derivation was based on Feynman scaling of the inclusive particle
spectra, but this hypothesis is not supported by today’s experiments any-
more. Another derivation of the scaling law (4) was given by Polyakov [26]
already before within a scale invariant field theory. His view of multiparticle
production as a branching process with virtual mass degradation is already
close to our present understanding of hard processes in terms of QCD par-
ton cascades. In the following we discuss some recent experimental results,
theoretical explanations and a possible extension to jet multiplicities.
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3.1. Recent ezpertmental results

KNO scaling has first been observed in soft hadronic collisions. Some
finite energy corrections can be taken into account if (4) is reformulated in
terms of central moments D, =< (n — #)? >/7 as

Dy() = ag(n - ¢), (5)
with nonvanishing constant ¢ [27]; Eqs (4) and (5) agree for high energies.
These relations (5) are found to be well satisfied up to the highest ISR
energies (/s < 60 GeV) [28], but a violation has been observed at the
collider for /s > 200 GeV [29]. Remarkably, (5) is valid down to very small
energies near threshold (“early KNO scaling”) which is not expected from
the theoretical arguments leading to (4).

In the last two years KNO scaling has also been established for hard
processes, which was in dispute for a long time. In e*e™ -annihilation, new
data from TASSO [30] and more recently from DELPHI at LEP [31] are con-
sistent with KNO scaling and, for example, in disagreement with a Poisson
distribution (for a review, see Ref. [32]). Other results became available
from deep inelastic ¥N scattering [33,34]. Also in this case “early KNO
scaling”, almost down to threshold has been observed (see Fig. 2).

r al wn —>p~X* L x5 b} vp —>p'X"
- PANEN
K ] Fe S,
z & “~ E v
- [v [ + ‘
a [+ r #°
c UA o
0L L 3 )
E ”

"AﬁVo I Pn —e X" K “‘“q‘ d} »p —>p x®
LIS * oexy 7 °;
z EF $° 5
a . q, F
ic . ‘T VT
10 Fo2<wW<3 j
o 3<W<4 07% ? s
A 4L <W<<E
v

S v e <cw<s
WE 8 <w<10

Fe10 <w <t

2 ! i ek 1 L H L fe i H H

16 2.4 32 o
2

Fig. 2. Global multiplicity scaling (“KNO-scaling”) also works in hard processes,
shown are results for neutrino scattering processes [33]. The scaling works “early”,
i.e. almost down to threshold.
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3.2. KNO scaling and cascade processes

KNO scaling is predicted in e*e~-annihilation from scale invar-
iant branching processes [26] and also for the QCD parton cascades [35,36].
As an example, we present an outline of the proof for the scale invariant
cascade model discussed in (2.1) which can be derived rather easily [7,37).

If the initial state of mass /Q% = /s decays into two states with

masses 1/Q? and 1/Q2 one can write for the respective multiplicities

Pn(Qz) = ZPV(Q:)Pn—V(Qg) ’ (6)
or for the generating function #(Q?,z) = L P,(Q?)e™*

¢(Qz’z) = /dl‘ldth(l"l’ﬂz)é(l‘le’z)é(ﬂzqzaz)’ (7)

with the scale invariant mass distribution F as in (2) and with @ = p,Q%. A
solution of (7) can be found by differentiation in terms of moments n*(Q?) =
#4)(Q2,0) as _

n*(Q%) = cx(Q%/Q3)** (8)

where the constants ¢; are solutions of

k ) alk—v
=) (V)c,,c,,_,, / dpydpaps” 3 * I F(p, pa) - (9)

From (8) one finds
nt ¢
Pl é = const (10)
which is equivalent to KNO scaling (4) at high energies. In particular, also,
the multiplicity grows with energy like a power #(Q?) = ¢;:(Q?*/Q3)°.
From the Monte Carlo analysis of this model one also obtains “early
scaling” as in (5). It is a result of the validity in this model of the same
scaling law for F at all scales, in some average sense even down to the
external mass. If one had two different dynamical regions, below and above
a certain energy, one would get in general a violation of early scaling [38].
For the QCD parton cascade a general proof of KNO scaling has been
obtained. This problem is more involved because of the singular structure
of the evolution equation (infrared and mass singuarities) and the running
of the strong coupling constant {35].
The numerical simulation of the QCD parton cascade [17] shows good
KNO scaling, over the present energy range, but the scaling function is still
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different from the asymptotic limit, i.e. the approach to “asymptopia” is
rather slow.

In hadronisation models one has a complicated interplay between fluc-
tuations at the parton and the hadron level. It has been reported for the
LUND hadronisation model that only both components together yield early
scaling, but the parton component alone does not [22].

In soft hadronic collisions KNO scaling is not usually related to scale in-
variant branching processes but to multicomponent models of various kinds
(for a review, see [39]). Early KNO scaling appears so far to be a prop-
erty of all types of collision processes though each one with different scaling
function ¥(z) in (4). It is a challenge to understand the meaning of this
universality, which we will meet again below in the intermittency studies.

3.3. Scaling of cluster multiplicities

In a strictly scale invariant model, such as the one discussed above
in (2.1), the only scales are the total energy /Q? and the external mass
+/@2 . Therefore the moments depend only on n*(Q?, Q2) = n¥(Q?/Q2). If
we consider @2 now to be a variable mass of a cluster or of a jet of final
state particles the multiplicity scaling also holds for fixed total energy and
variable mass [23]

APa(3,Q2) = Y(n/R), 7= (s, Qd). (11)

This property has been tested by a Monte Carlo simulation of the simple
scale invariant model applying the JADE cluster finding algorithm [40]. It
would be interesting to see whether this also holds for the QCD cascade.

If such an extended multiplicity scaling could be established experi-
mentally, it would be a further hint to an underlying scale invariant cas-
cade mechanism. This would be particularly interesting for the case of soft
hadronic collisions and a distinction from the multicomponent models may
become possible.

4. Multiplicity fluctuations in limited domains of phase
space and intermittency

4.1. Moment analysis and the intermittency hypothesis

Many discussions have recently been generated by the proposal [3] that
the multiplicity fluctuations may reveal a selfsimilar structure if analysed
in phase space domains of decreasing scale size. If selfsimilarity holds over
a large range of scales one speaks of fractal structure which is known for
various physical and geometrical systems or objects [41]. More specifically,
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for the selfsimilar multiplicity fluctuations in the multiparticle production
the name “intermittency” was chosen in some analogy to fluctuations in
turbulent fluids where also similar simple models had been applied (“a
model”) [42].

In a first analysis of this type Bialas and Peschanski [3] studied the
dependence of the multiplicity distribution in rapidity intervals of size §y
(from a subdivision of the full interval Ay into M = Ay/6y bins) on the
scale size §y. The multiplicity distribution was analyzed in terms of scaled
factorial moments

<n(n-1)...(n—¢qg+1)>
<n >

F@(8y) = : (12)
where the average is taken over the M bins in one event and also over the
event sample. If these moments follow a power law

Fl)(8y) ~ (by)~*, (13)

over a range of §y scales one speaks of intermittency, and such behaviour is
expected in simple models with selfsimilar dynamics as will be discussed in
more detail below. A singular behaviour as in (13) implies ever increasing
multiplicity fluctuations for decreasing §y scales and the occurrence of ir-
regular “spikes”, which have actually been observed [43] and provided one
motivation for these studies.

The moments F(9) in (13) yield an estimate of the usual moments C(?)
=< n? > [ < n>? of the underlying probability distribution in the case of
finite statistics if a Poisonnian noise is assumed [3]. For a Poisson distribu-
tion one obtains F(?) = 1 for all ¢. Also, if F(9) # 0 is observed for large q
at small 6y there is at least one “spike” of multiplicity q, so these moments
can serve as filter for such spikes. For these properties the F(9 moments
are often used but other methods have been proposed also in closer analogy
to the theory of fractals [44].

4.2. Overview of experimental results and the theoretical discussion

A rise of factorial moments with decreasing éy has been observed in all
types of collision processes: e*e~ [45-47,13)], up (48], hh [49-51] and nuclear
collisions [52,53]. As example we show in Fig. 3 the results on »*p,K*p
collisions by the NA22 collaboration. The moments show a stronger rise in
the region éy > 1 and a smaller rise in the region §y < 1 consistent with the
power law (13). It is somewhat controversial whether and for which 8y scale
there is a saturation of the moments. The EMUOQ1 collaboration working
with heavy nuclei has found no further rise of the moments in a region with
8y < 0.1 which was accessible within good experimental resolution [53]. The
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Fig. 3. Scaled factorial moments for a 1d analysis in rapidity. The straight lines
for 6y < 1 correspond to the power law of intermittency (from Ref. [50]).

intermittency slopes a, are largest for the elementary processes (e*e~, up)
decrease for hadron-hadron collisions and become even smaller for heavier
nuclei.

Results became also available for 2-dimensional analyses in the y — ¢
plane (¢ is the azimuthal angle around the jet axis). In this case the effect
is much larger and the slopes are bigger by factors ranging from 2 to 6 as
was actually predicted for cascade models (8] (for a survey, see [4]).

Another interesting finding is due to Sarcevic and Satz [54]. They found
a power law for moments as in (13) in the complementary range of large
8y intervals near the maximal value §y < ymax to be valid in pp collisions
of different energies. They also related this behaviour to scale invariant
cascades.

A theoretical discussion goes on about the physical origin of the rise
of the moments and, in particular, whether the effects can be explained by
conventional ideas on particle production.

Recent results (which became available after this school) from LEP
on ete” annihilation [13,55] have been found in good agreement with the
LUND parton shower model. The same was also reported from CELLO at
PETRA energies [46] contrary to previous findings by TASSO [45]. In all
other processes (up,hh, AA) the conventionally used models did not give a
satisfactory description of the data: for §y S 1 they give either no rise of
moments at all or too weak a rise. The rise of moments for §y £ 1 can be
explained by conventional short and long range correlations due to resonance
or hadronic cluster decay.

The proposal that also for small §y < 1 conventional correlations of
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various types can be responsable for the moderate rise has been suggested
by several authors [56-58]. They use exponential or Gaussian functions to
parametrize the rapidity correlations and therefore predict a saturation of
moments for éy — 0 and so they do not require a selfsimilar structure.
These models obtain acceptable fits of the data. Apparently the assumed
correlations are stronger than those in explicite fragmentation models which
have the known resonance effects included and nevertheless are unable to
explain the data.

Another source of very short range fluctuations are Bose-Einstein
correlations of identical particles [59]. Experimental studies comparing
particle pairs with same and opposite charge come to the conclusion that
the rise of moments cannot be entirely due to this effect [50,45,48], though
it cannot be neglected [46].

The possibility that the power law observed in a limited §y range should
be related to an underlying selfsimilar structure has been considered by
various authors and will be discussed in more detail below. Selfsimilarity
can naturally be realised by random cascade processes (see section 2);
results have been obtained for the a-model [3], scale invariant cascade model
[8] and QCD parton cascade models with or without hadronisation [60-
64] Another realisation of selfsimilarity is found in statistical systems with
a second order phase transition. This has been studied in the Ising
model which describes a spin system on a lattice with nearest neighbour
interactions [65—67]. Recently it has been suggested that these results could
be relevant for the phase transition from the quark gluon plasma to a hadron
gas which could occur in heavy ion collisions [68].

In pursuing the idea of selfsimilarity in the multiparticle data one has
to consider the following problems.

(a) For finite statistics a singular behaviour as in (13) cannot be realised
and below a certain scale §y the moments have to vanish when no more than
one particle is left in any bin. With increasing statistics the moments at
fixed small §y may rather suddenly jump from zero towards the asymptotic
value (this happens in the model discussed in Ref. [8]) or only approach
it slowly from below (see examples by Redner [69] and Kittel[70]). This
requires some caution in the interpretation of data for small §y where data
show large fluctuations.

(b) The finite multiplicity prevents a singular behaviour, even for infinite
statistics. Here one may study the trends of the correlations with increasing
energy (multiplicity) [71).

(c) Selfsimilarity can only be expected to lead to a power law of moments if
the dimensionality of the moment analysis match the dimensionality
of the space in which the scale invariant dynamics is acting [4]. Generally
this requires a moment analysis in the three momentum space dimensions
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although under special circumstances already in lower dimensional space a
power law could appear. This has been found in an analysis of the multidi-
mensional a-model [4], for a model employing a correlation function with a
powerlike singularity [72] and also for the Ising model [73].

In fact, whereas in one dimension of rapidity the validity of the power
law is restricted to a limited region with §y < 1, in the two-dimensional
y — ¢ analysis a power law is observed in the full range of scales presented
in the up [74] and in the 7p/Kp [50] experiments (see Fig. 4). These are
the best examples of intermittency up to now. A power law in a large range
is also observed in ete~annihilation at LEP [55] and in a restricted range
analysed in heavy ion collisions [75]. A final discussion about the range of
validity of a power law and selfsimilar dynamics has to await the results
from the 3-dimensional analyses.

T T T T T T T T T T

(a} up 4-20 GeV EMC % {b) Tp/Kp 22GeV NA22

log F@

q=3 ’1"
=2 ¥aasa]

-In by &y -ln &y by

Fig. 4. Scaled factorial moments from a 2d analysis in rapidity and azimuthal angle
around the beam for (a) pp data [74] (b) xp/kp data [50]. The data are consistent
with a power law (straight lines) in the full parameter range presented suggesting
intermittent behaviour in the higher dimensions.

In the following we discuss in more detail the expectations from random
cascade models in multidimensional intermittency analyses.

4.3. Role of phase space dimensionality

Intermittency in one-dimensional models. In the 1d a-model the
density is given by a multiplicative random process. Selfsimilarity occurs
if the same random function enters at all scales (see Sect. 2.1). The mo-
ments of the probability distribution of X in one interval (Eq. (1)) can be
calculated (using F(9 ~ C(), disregarding the statistical noise) as

CY=(<w?!>/<w>)", (14)
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and with N = log(Ay/éyx)/log A one obtains [3] the power law of inter-
mittency (13) with exponent

ag =log(< w?> / <w>?)/logA. (15)

This power law occurs in the variable for which the branching process is
defined. If the fluctuations are measured in another variable § (y = ¢(%)),
one finds in the limit 4§ — 0 by inserting 6y ~ ¢'(§)67 into Eq. (13),
again a power law with the same exponent o, as before, but with different
normalisation of the moements.

The numerical analysis of the 1d field theoretical models discussed in
Sect. 2.1 again yields a power behaviour in a large range of scales which
is defined by the total energy /@? and the final mass Q,. Moreover, the
slopes a, are found to be independent of energy but strongly dependent
on the type of parton splitting functions P(z). The slopes for the infrared
singular “gluon model” with P(z) ~ z~! for z — 0 are more than an order
of magnitude larger than those for the twin model with P(z) = 6(z — ) or
the 2 model in six dimensions with P(z) = 6z(1 — z). The slope ratios
ag/a, on the other hand are the same within about 20% and the rise with
g is between linear and quadratic.

An exact power law is also obtained in the 1d model by Sarcevic and
Satz [54] which describes a 1d branching process of massive initial states
into hadrons.

1d projections in multidimensional models. First we consider the
2d a-model for the y — ¢ plane (see Sect. 2.1) [4]. As the density in a 2d
phase space element is again given by the product of random variables as
in Eq. (1) a power law as in the 1d case is obtained.

Next we calculate the moments for the densities in the 1d projection
onto the rapidity-axis, where we restrict ourselves to the case of two subin-
tervals (A = 2). The density Xy in one §y interval after N steps is calculated
as a sum over the densities in the corresponding M = 2V §¢-intervals. In-
serting an extra branch at the beginning of the cascade one finds a recursion
relation for the random densities

Xy = w(l) Xn(1) +w(2) Xn(2). (16)

which implies for the moments

9

1) =3 () ) RREE) for N 21

(X9 =1. (17)
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For the normalized moments one obtains after division of (17) by (Xy)? =
2Ne

q
Ag _ 1 T\, o\ g-vy A
CNu = Eio (u) (w*Y w?™¥) Cy’ for N>1
CW¥ =1. (18)

Starting from the initial condition one finds by iteration the form

,(g>._a,(1+z b(")(? 1) ) (19)

for ¢ = 2 explicitly

R T >((1-—(<w*>—1)(<";2>) ) (20)

We obtain the interesting result that these moments tend towards a finite
value in the limit N — oo or §y — 0, provided that

(w9) < 2971, (21)

or, in case of the simple 2-valued distribution of w, if Max (w,,ws) <
2. Otherwise the moments would exponentially diverge, which does not
correspond to the actual physical situation. A completely analogous result
has already beem obtained for the total multiplicity distribution in the 1d
a-model; in this case the saturation of normalised moments corresponds to
KNO scaling [76]. Therefore we conclude from these results: if a system is
intermittent in two dimensions it is not necessarily intermittent
in the one dimensional projection, and, in fact, it is not so in the
2-dimensional a-model.

Similar results have been obtained for other models. Bialas and Seixas
[72] studied a model with singular correlation functions. The two-particle
distribution for example, was taken in the form

p2(p1,P2) = pr(p1)er(P2) Q17 - (22)

Here Q2, =| (p§ — p4)? | measures the distance of particle 4-momenta p*

= p1(p) = exp (-—-6-25\/mi + pi) (23)
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represents the single particle distribution. The factorial moments are ob-
tained by integration of the multiparticle distributions over the domain A,

2

dépy [ d°p. &y
F(z)(A):/ EI:I/ E?Pz(]’upz)/ /‘Fpl’l(?) . (24)
a a

A

Whereas in 3d space the moments are power behaved the moments are
reduced in size and tend to saturate in.the 2d or 1d projection.

More generally, it has been shown by Bozek and Ploszajczak [77] that
for a 2d correlation function with factorising singularities in both dimensions
intermittency is obtained in the 1d projection, whereas for a non-factorising
singularity it is not. '

Wosiek [73] has shown that whereas there is intermittency in the 2d Ising
model in the fluctuation of the block spin (see below) saturation occurs in
the 1d projection.

4.4. Multidimensional intermittency analysis

From the above it becomes clear that the analysis has to proceed to
higher dimensions, i.e. up to three, in order to fully explore the fractal
structure of multiparticle production. In the following we describe a method
and apply it to some realistic models in 3d momentum space.

A natural choice of variables for a full 3d analysis would be the set y, ¢
and p, , the transverse momentum of a particle with respect to the jet axis.
However, one has to remove the influence of the trivial fluctuations which
arise from a variation of the average multiplicities over the various bins,
i.e. the variation of the inclusive particle distribution, if the “horizontal”
average over the bins is taken. These fluctuations in rapidity can be avoided
by restricting to the central rapidity region. Alternatively one can multiply
the bin averaged moments with a factor which takes this variation into
account [60]. Here we use an alternative method which is easy to apply also
to the 3-dimensional case where this problem becomes essential. We choose
new longitudinal and transverse variables for which the projected densities
are constant.! :

Consider first the rapidity variable y in which the particle density has
a bell shaped distribution dn/dy = p(y). We define the new variable by the
transformation

§y) = / p(y')dy'/ / p(y')dy' (25)

Ymin Ymin

1 For some more details and applications, see also [78]. A similar approach has
also been suggested by Bialas and Gazdzicki [79].
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which can be constructed from the observed density p(y). The new variable
satisfies d

a—;;:const, 0<g<1. (26)
Intervals of constant length 4§ correspond to intervals of variable length
dy; in the original variable y, such that the average particle numbers in §y;
are the same, i.e. intervals near the peak of p(y) are smaller than near the
minimum. For a 2d analysis suitable variables are § and ¢ (or y and ¢ with
a y cut [8]).

In case of the 3d analysis we choose py as the third variable. This choice
is suggested for there is no strong correlation between y and py (except in the
fragmentation regions). We therefore restrict ourselves here to independent
transformations of y and pr, t.e. we only require constant densities in
certain projections. Then we can obtain the transformed variable pt by the
same formula as Eq. (25) in terms of the density p(pr). Because of the rapid
variation of p(pr), at small pq it is advantageous for numerical applications
but completely equivalent to start from the distribution in the variable
[ = log(2p1/+/3) instead of pr and to calculate pr(!) from an integral over
p(1). With this choice the variable space is a cylinder with unit length and
radius. To study intermittency one can subdivide the total space of each
variable §j,pr and ¢ in a sequence of steps N = 1,2,3.-- into 2,4,8,---
subintervals of equal length, so that the total number of intervals M, in a
d-dimensional analysis is

My =2%, (27)

In the 1d analysis the interval size is then §§ = 1/2V.2

In Fig. 5 we show the behaviour of the moments F(?) as a function of
N, the number of steps of subdivisions into halves, for different dimensions
d of the variable space §, ¢, pr and for different realistic particle production
models, as discussed in Sect. 2. The ld moments always show an early
saturation after some initial rise as expected from the above analysis of
toy-models. The 2d moments rise more strongly but still show curvature or
saturation. In case of the parton model, there is even a drop for large NV,
which comes from the angular cutoff which terminates the cascade. The 3d
analysis finally shows the strongest rise. In case of the cascade model in (a)
one obtains a rise consistent with the power law of intermittency which is
a consequence of the underlying exact scale invariance of the model. In the
QCD parton model (b) some deviation of the power law is visible which can
be related to the scale violations for the running coupling constant «, and

% in [78] we also considered the division into equal intervals in the variable £ =

VPr and a I-dependent number of ¢-intervals to avoid very elongated bins.
Only small changes of results were found.
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Fig. 5. Predictions from cascade models on factorial moments in different dimen-
sions d using the variables §, ¢, pr. The strongest rise of moments appears for
d = 3, with power behaviour for the scale invariant model in (a); deviation from
the power law occur in the parton models because of various scale breaking ef-
fects in (b, c¢). The d = 1 moments saturate; energies (a) /s = 35 GeV, (b, ¢)
Vs = 90 GeV. The MC calculations have been carried out in (a,c) with about
10,20,30k and in (c) with 20,40,60k events for d = 1,2, 3 respectively.

to the cutoff. In the full hadronisation model there are in addition effects
from resonances and heavy quark decays. One can see from this figure that
the scale invariance of the dynamics and the scale breaking effects can be
studied most directly in the 3d analysis where exact scale invariance leads
to a power law of moments in the full range of scales.

4.5. Scaling properties of higher moments and multiparticle
correlation structure

Power laws for higher moments. It was found for simple 3d scale in-
variant cascade models that the higher moments F(?)(§y) in the 1d analysis
follow a modified power law (8]

F@(8y) ~ (9(dy))™, (28)
with arbitrary function g(8y) or, equivalently, by expressing g(dy) in terms
of F()(8y)

log F9(8y) = 22 log F(*)(6y) + d . (29)

Subsequently these relations were found to be valid in a larger class of
models (including the a-model, and parton cascade models) so that they
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seem to be another general property of scale invariant cascade models. Also,
these relations are found to be fulfilled by experimental data [4]. Recently,
these relations are found also to hold in higher dimensions in the same mod-
els with the same slope ratios a,/a; in all dimensions and again agreement
with available data for d = 1 and d = 2 is found [78]. As an example we
show in Fig. 6 results from 1d and 2d analyses of up and e*e™-collisons.

T T T Al T T
up EMC e'e © DELPHE f5:91Gev gt
¥524-20GeV « TASSO ¥3=35GeV d=1
° d=9 8 TASSO d=2
o d=

0.6 2

q=3

XN o

log F®

62

0.0 L
[

log FW

Fig. 6. Test of the linear relationship between the log of moments F@ ford=1
and d = 2 for up collisions [48,47] and e*e~ annihilation [45,13] (TASSO used
a different normalisation than the other groups). Also shown are the predictions
from the negative binominal distribution.

In the 2d a-model one can see in which way Eq. (29) arises. For the
parameter range relevant to the experimental situation and large N the first
term of the sum in Eq. (19) for the moments &%, with coefficient b7 yields
the dominant contribution. Then all moments have the same dependence
on N(8y) ~ logdyx and one finds

log CP ~ loga, + b ((w?)/2)" (30)

which is of the form (29). A more general derivation which could be taken
over to other models is still missing.

It is interesting to compare these results with other suggestions on the
relation of higher moments or, equivalently, of multiparticle correlation func-
tions to the second moment on the two-particle correlation function.

Negative binomial distribution (NB). Multiplicity distributions in
full and restricted rapidity ranges can be well fitted by the NB distribution.
This was first observed for pp collisions by the UA5 collaboration [80] and
subsequently for various other processes [81]. The higher moments of the NB
distribution are determined by a recursion relation without free parameters
from F(®) (see e.g. [71])

F@ = pla-1(1 4 (¢ - 1)(F® - 1)). (31)
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In Fig. 6 this relation is indicated by the dashed line, which shows a small
curvature. In some cases the NB relation is rather well satisfied, in others
not (see also [82,4]). On the theoretical side the NB form has been de-
rived in a simplified description of the QCD parton shower with or without
hadronisation [1]. Therefore the similarity of both results (28) and (31) is
not surprising. It is an interesting problem to reduce the number of free
parameters in the relations (28).

Linked pair approximation. Further insight into the correlation
structure has been gained by the observation that the multiparticle correla-
tions can be expressed by the two particle correlations through the “linked
pair”-ansatz [57,83] and that the NB distribution is a special case of it [82].

One starts from the n-particle cumulant correlations K,(y1,...y,) or the
reduced correlation ko(y1,..-,9n) = Ko(v1,---2%)/p(¥1)...p(yg). These
correlations (for n = 2 : K3(y1,¥2) = pa(¥1,y2) — p1(¥1)p1(y2)) express the
nontrivial correlations of a given order; they vanish if any variable becomes
statistically independent. In general, K, can be expressed as a sum of terms
involving all distributions p;(y1) -« - pe(¥1,- -, ¥). The linked pair approxi-
mation consists in expressing all k,, by products of 2-particle cumulants k,,
for example,

a?
k3(¥1, Y2, ¥s) =~§(kz(yl,yz)kz(y1,ya)
+ ka(31, yz)kz(yz, Ys) + ka(y1, ys)ka(y2,s 93)) s (32)

with one free parameter a, for each ¢g. For special values of these param-
eters one obtains the NB. The linked pair approximation is supported by
various data including those which are not fit by the NB, but a satisfactory
theoretical explanation of this simple structure is not yet known.

4.6. Intermittency and phase transition

So far we have discussed how intermittency can originate from selfsimi-
lar cascade processes. Selfsimilarity is also realised in statistical systems at
the critical point of a second order phase transition. The important aspect
of this system is that the correlation length £ diverges and therefore observ-
ables show scale invariance for finite length scales L <« £. Intermittency
effects have been studied for the Ising model which describes the magneti-
sation of a spin lattice, both by computer simulations [65,67] and analytical
calculations [66]. We first give a short outline of the analytical result (for
a more detailed introduction see also Hwa [84]) and then discuss a possible
application to heavy ion collisions [68], where a phase transition from the
quark gluon plasma to a hadron gas could occur.
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Ising model. One considers a d-dimensional lattice with R sites in each
dimension. With each site we associate a spin variable s; = +1, i =1..- R4,
The Hamiltonian is given by

H:—EZs;si—BZsi, (33)
i 3

where E is the interaction energy of any pair of nearest neighbours and ), ;
goes over all pairs; B is the magnetic field strength.

The intermittency properties at the critical point have been derived
analytically by Satz [66]). The lattice is first subdivided into M = (R/L)?
blocks of size L¢. If the temperature approaches the critical value 7T, the
correlation length diverges and the “blocked” system behaves as in the orig-
inal model. Then one can introduce the block spin §; = %1 for block I

as
3 s/ = Q(L)S:, (34)
tel
with a scale dependent factor Q(L) and the Hamiltonian can be written in
terms of the block spins S; insted of s; in (33) with rescaled E(L) and B(L)
parameters. For the scale factor one obtains Q(L) = L* where « is related to
the critical exponent which governs the behaviour of the correlation function
of two spins separated by the distance r at T : I'(r, T.) ~ r~2~,
Now one defines the moments for the block spins as

A=< 37 35 OZa/ B D elBY >, ()

where the average is taken over all spin configurations. Inserting now, for
T =T, (34) into (35) one obtains the intermittency power law

fq(L) = fq(l = 1)(1/L)a' ’ (36)

a, = gx (g even), ag, = (g - 1)k (g odd). (37)

For & one finds 1/8 and 1/2 for 2 and 3 dimensions, respectively.

Quark gluon plasma phase transition.The important point ab-
stracted from the previous considerations is the linear behaviour of the in-
termittency slopes a, on ¢ for a second order phase transition. For cascade
processes one rather obtains a stronger rise of the slopes, as one can de-’
duce, for example, from Fig. 6 for ete~ data which are fitted by the parton
cascade model.

Bialas and Hwa [68] pointed out therefore that the study of g-depen-
dence of slopes could distinguish between the two possibilities ~ cascade
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process or second order phase transition. This assumes that the exponents
are not significantly altered in the final evolution phase with T' < T, away
from the critical temperature where the above reasoning applies. This seems
plausible if long hadronic decay chains are unimportant. If there is a first
order phase transition no selfsimilarity is expected and therefore no inter-
mittency.

A compilation of published slope values from linear fits of log F(9
vs. log éy in limited éy ranges indicate a tendency towards a linear rela-
tion ship a, ~ (g — 1) for heaviest nuclei [68]. Recently we determined slope
ratios a,/a, from plots log F(9) vs. log F(®) as in Fig. 6 using data from
the full §y ranges in which a power law is valid. Then all collision process
from ete~ to heavy nuclei show a rather universal pattern, an exception
being the sulfur-emulsion data from the KLM collaboration, in particular
for d = 2, so the experimental situation is not yet fully conclusive [78]. It
will be very interesting to study this new idea further. .

5. Summary and Outlook

We summarise what has been learned and could be studied further on
the problems listed in the introduction.

(a) The moment analysis has turned out to be a sensitive tool in the
study of selfsimilarity in the multiparticle production as well as of hadro-
nisation phenomena. A full exploration of scaling properties requires a 3d
analysis in the appropriate variables, only in this case scale invariant cas-
cade models yield a power law of moments (intermittency). Results from
ete” annihilation on 1d and 2d analyses are in good agreement with mod-
els based on the QCD parton cascade with low cut off (Q2 $1 GeV?) at
high energies (LEP) and possibly also at lower energies (PETRA). A low
hadronisation scale is also suggested by the early onset of KNO scaling.

(b) In the study of hadronisation it appears to be an interesting research
project to investigate further the role of parton hadron duality, which
works for inclusive particle spectra and for jet multiplicities in ete~ annihi-
lation. Which observable quantities can be described by the corresponding
parton model calculations disregarding hadronisation?

(c) Another challenge are the observed similarities of the different
collision processes with respect to KNO scaling, rising moments in 1d
analysis, stronger increase in 2d analysis, great similarity of all slope ratios
ag/a;. The.2d moments in up and hh collisions actually show a power
behaviour in a large range of scales which provides the best evidence for
selfsimilarity so far. These phenomena suggest that not only in the e*e~
annihilation process but also in the other, even soft processes, selfsimilar
cascades play an important role.
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(d) There is the interesting suggestion that also a phase transition from
the quark gluon plasma to a hadron gas could lead to intermittency, but
with characteristics of higher moments different from the case of cascade
processes. Whereas most existing data involving nuclei are not very different
in this respect from the others (except for some effects in the collisions of
the heaviest (sulfur) nuclei) this remains an interesting problem for further
investigations.
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