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ory in Z° physics at SLC and LEP. The general theory is reviewed. Some
results of this application recently at SLC and LEP are presented. Fu-
ture directions for the theory’s further development and application are
outlined.
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1. Introduction

The need for high precision radiative corrections has been amply de-
scribed by many authors in the context of Z° physics. And, indeed, a sub-
stantial amount of progress in achieving such corrections in a useful way has
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been made. Here, we describe the theory, implementation and application
of our approach to these corrections, namely the renormalization group im-
proved YFS Monte, Carlo approach to the higher order radiative corrections
for SU(2L) x U(1) theory.

Namely, as we have described in Ref.[1], in order to provide a system-
atic, rigorous framework for the calculation and simulation if high precision
radiative corrections at SLC and LEP, we have combined the method of
Yennie, Frautschi and Suura [2] and the renormalization group of Weinberg
and ’t Hooft [3] to develop a Monte Carlo based approach to SU(2L) x
U(1) higher order corrections in which large infrared effects are summed to
all orders in « in a rigorous way. This development was motivated by the
current ongoing experiments at SLC and LEP on Z° physics.

Specifically, the basic strategy [1] is as follows. In order to discover any
deviations from Standard Model predictions which are at level of 1 %, one
should know the higher order corrections to these predictions at <0.3 % pre-
cision; for more precise tests, the requirement on the theoretical calculations
of known physics increases accordingly.

Fig. 1. The process e*e™ — ff'j— n(y). Pa is the four momentum of A4 in the initial
ete™ c.m. system, A = e, & f, f. '

e'kl 4

Fig. 2. Pure weak corrections to ete™ — ff + n(y). In (a), the n(y) system does
not interact directly with the W; in (b), it does.

Two distinct classes of corrections may be identified at order a: the
QED corrections illustrated in Fig. 1; and, the pure weak corrections which
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are illustrated in Fig. 2. Concerning both classes of corrections, substantial
efforts have been effected for SLC and LEP physics. These efforts have led
to two types of exponentiation methods for dealing with the large infrared
effects in graphs such as those illustrated in Fig. 1: the improved naive
exponentiation methods of Kuraev and Fadin, Berends et al., Nicrosini and
Trentadue, Greco, etc. [4], and, the rigorous implementation of the origi-
nal theory of Yennie, Frautschi and Suura by Monte Carlo methods by us
in Refs.[1]. In the former approach to the big QED effects, one arrives at
an inclusive cross section in which the large infrared effects are summed to
all orders by using an ansatz for the respective summation which was first
proposed in its unimproved form in Ref.[5]. In the YFS approach, all large
infrared effects are summed to all orders rigorously at the level of the Feyn-
man amplitude so that our Monte Carlo procedure yields an event-by-event
simulation of exponentiation in the actual respective exclusive distributions.
The YFS Monte Carlo methods, because they act at the level of Feynman
diagrams, admit the application of the 't Hooft-Weinberg renormalization
group so that it has been systematically improved for large ultra-violet ef-
fects. This YFS Monte Carlo approach is realized for ete~ —» ff + n(v),
f # e, by the program YFS2 Fortran [1] and for e*e~ — e*e™ + n(7y) at low
angles by the BHLUMI Fortran [1]. In this way we have arrived at 0.1 % ac-
curacy on the QED effects in ete™ — ff + n(v), f # e, and 0.7% accuracy
on the process ete~ — e*e™ + n(y) in the SLC/LEP luminosity regime.

The regime of 0.1% control over the QED effects for ete~ — ff + n(y),
f # e, takes us naturally to the level of the pure weak effects at O(a), since
a/m ~ 0.2%. The situation is as we have illustrated in Fig. 2. One may
obtain a partial simplification by observing that radiation from the internal
heavy weak lines, like the W in Fig. 2(b), is suppressed by In(s/m?) from
that of incoming e*, e~ lines. This means that the dominant pure weak
effects can be taken into account by improving the Born amplitudes to
include one-loop pure weak effects and proceeding with the exponentiation
of the respective big QED effects. It is, however, clear from Fig. 2(b), that,
for higher orders in a, this factorization of the pure weak and QED effects
is not strictly valid. This method of including the pure weak corrections
has been used in Ref.[6] to combine YFS2 and the pure weak libraries of
Hollik and of Stuart into the program KORALZ3 Fortran. In what follows,
we shall present some of the results which we have been obtained in this
way in the context of Z° physics in collaboration with Dr. Z. Was.

Thus our work is organized as follows. In the next Secton, we review
the elements of the YFS Monte Carlo approach to SU(2L) x U(1) radiative
corrections. In Sect. 3 we present some of the recent applications of this
approach to Z° physics. In Sect. 4, we present an overview of the various
future directions of investigations which exist for our methods. Sect. 5
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contains some summary remarks.

2. Review of the YFS Theory

In this Section, we present the basic elements of the YFS theory, in-
cluding its renormalization group improvement. We begin with the basic
elements of the theory.

Specifically, the n(y) emission amplitude illustrated in Fig. 1, M),
may be represented as

M®™ = exp(aB) Y M), (1)

n'=0

where n’ is the number of 7-loops in the respective Feynman diagrams cor-
responding to M,(:f) and the superscript (n) denotes the number of real

emitted photons in these diagrams. Mf:f) is free of all virtual infrared di-
vergencies; for, these are all contained in the YFS virtual infrared function
B, where

i dk
B_"ﬁ/kz-mgﬂ'e |
~2P, — k —2P,+k \°
_ _ o D)
X{ (k2+2kPe+ie k2—2kPe+ie) + } (2)

The rate corresponding to M(*) is determined by

2
| M™)|? = exp(2a Re B)

(>
> MP

n‘=0

= exp(2a Re B) {§(k1)...§(kn)ﬁo + ---+E,,(k1,...,k,,)}, (3)

where the infrared emission factor S(k) is well-known and is given by

~ a (P, P\’
=5 (7 7) “

and f3; are the famous YFS infrared divergence free hard photon residuals.
The corresponding cross section for ete™ — X is then
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do = exp{2a(Re B + B)} / exp {i(y(P. + P — Px.) + D)}

27 )t
X {Bo + 21 ] _/l:[1 dkfj ek, }dEx' d*Px, (5)
where
D= / ——.S' k) "”” — (K max — k)) R (6)

for some dummy parameter K,,,,, which may actually be a dummy func-
tional of the experimental scenario under study. The point is that the real
infrared function B is given by

k< Kmax &
2aB = / T~—k——§(k), (7)
(k* + mz )1/2
so that (5) does not depend on K,,,. The formula (5) is the formula which
we have realized via Monte Carlo methods in Refs [1] in the programs YFS2
Fortran and BHLUMI Fortran.

We emphasize that, because the starting point for (5) is the actual
Feynman amplitude M(*), we may apply the renormalization group to this
amplitude, and, hence, to the 8,. The result is that, under the renormal-
ization group of 't Hooft and Weinberg [7], we have the replacements

Bu(MP;}) = AB, ({P;}, a(A), min(M), u), (8)

etc., where we show the running of a and m;g explicitly only (the SU(2L)
coupling constant gr also would run) for reasons of pedagogy, d, is the
respective engineering dimension for 3, and g is the normalization point.
In this way, we have arrived at our renormalization group improvement of
(5) and its Monte Carlo realizations.

This completes our review of the methods. We turn now to some recent
applications.

3. Recent Applications in Z° Physics

In this Section, we shall present some of the recent applications of our
YFS methods in Z° physics. We begin with the total cross sectioninete™ —
ff+n(y),f#e.
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Fig. 3. Numerical realization of the YFS Monte Carlo methods. The dash-dotted
and solid curves represent the O(a?) and naive exponentiated O(a?) curves of
Ref.[8] for pji production; the solid dots come from our Monte Carlo. The MC
numerical accuracy is better than 0.1%. Here, s'/s =1 —v.

Specifically, the era of 210° Z%s at LEP (or the SLC) would require
that the radiative corrections to ete~"— ff+n(y), f # e should be known to
$0.1%. Accordingly, we have studied in Ref.[1] the comparison of our YFS2
Fortran Monte Carlo simulation of the ¢ross section ete™ — pji+ n(y) with
the exact second order exponentiated results of Berends et al.[4.8]. Our
findings are illustrated in Fig. 3. In this figure, the large dots are the YFS2
MC points, the dash—dotted curve is the exact second order result of this
same reference. The statistical error of the large dots is below their size.
Thus, in this way, we have indeed verified that our YFS2 MC simulation
of the total cross section in ete™ — pfi + n(7y) is accurate to 0.1 % insofar
as the pure QED initial state radiation is concerned. This YFS2 MC has
been recently incorporated into the MC program KORALZ Fortran (6] and,
indeed, for example multiple photon effects in ete~ — 77 + n(y) have been
properly realized in the respective KORALZ simulations by several Collab-
orations at LEP in determining ther various efficiences for such events. We
re-emphasize that, from Fig. 3, we know that these effects are properly sim-
ulated at the $0.1 % level; for, in KORALZ, the final state radiation of one
photon is also allowed.

Turning next to the subject of cross secton asymmetries, we shall con-
sider the following standardly defined quantities of this type: in ete™ —
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ff+ n(7y),

Op — 0O

Ay = v 7o (9)
g, — 0Oy
A, = 20 (10)
A“M'°l = (0’“ - ana) — (aav _ Uaa), (11)

ULP + ULB + de’ + URB

where we agree that o, is the respective cross section when cosf; > 0 (<
0) and o, is the respective cross section when e~ is left-(right-) handedly
polarized. Here, 6, is the ete~ c.m.s. f production apgle relative to the
incoming e~ direction. o,, then has both of the restrictions of o, and
0,, D = F, B and H = L, R for example. This completely defines the
asymmetries which we shall consider.

What we wish to explore is the flavor dependence of the interplay of
realistic detector cuts on the one hand and multiple initial state radiative
effects on the other hand. This we shall do in two steps as follows. In
the first step, we study the interplay of initial state multiple photon effects
and cuts for pji + n(y) final states. In the second step we study the flavor
dependence by comparing our pji + n(y) results with analogous results for
bb + n(y). In all of our work, the cuts are the MkII SLC/LEP type cuts
[9]:

| cosf,| < 0.8, |cosb,| < 0.95,
E,>2GeV, E,>02GeV, E; >0.15, (12)

where E, is the ete™ c.m.s. energy of a, a = p, v, and E,;, is the total visible
energy of the respective event in the detector. The effect of the multiple
photons may be isolated by comparing the results of our YFS2 Fortran
simulation with those of a typical 1y MC of the type in Ref.[10] (B-K-J).
In this 19 MC, the value of the infamous k, parameter which separates real
unsimulated and real simulated photons is set at 3 x 10~2 to get agreement
between the normalizations of the YFS2 and B-K-J simulations. In this
way, we arrive at the result in Table I, where we have imposed the further
cut on acollinearity in the A4, simulations. The statistics is ~ 10° events
per entry.

We see in Table I that the polarized asymmetries are only moderately
affected (a few % effect at most) by the radiative phenomena. This is
true for the YFS MC and the 1y MC. For A4, (), however, the size of
the radiative effects is comparable to Apg(p) itself. For both the 1y MC
and YFS results, the size of the radiative effects on A, (u) decreases as
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TABLE I

pii Asymmetries

No radiative corrections:

0.1164
0.0767
0.00893

LR

i1

PB,pol

S

Radiative corrections:

1y = (B-K-J, kg =3 x 107%) Ay, = 0.1139 £0.0012
YFS A, = 0.1137 £0.0012
19 = (B-K-J, ko = 3 x 1073) App o = 0.0753 +0.0012
YFS Agy,. = 0.0755 10.0012
1y (no acol. cut) A,, = —0.00779 £ 0.00166
YFS (no acol. cut) A,, = —0.00463 1 0.00166
1y (10° acol. cut) A,y = —0.00685 + 0.00166
YFS (10° acol. cut) Agy = —0.00398 £ 0.00169
1y (3° acol. cut) Aps = —0.00373 £+ 0.00167
YFS (3° acol. cut) A, = —0.00130 4 0.00171
1v (1° acol. cut) A, = 0.00179 4+ 0.00172
YFS (1° acol. cut) A,y = 0.00331%0.00170

TABLE II

bb Asymmetries

No radiative corrections:

A, = 0.0708

A, = 0.116

App = 0.609
Radiative corrections:
5 x 10° events (YFS2)

A, = 0.1126+0.0012

Apy,. = 0.6143+0.0012
(no acol. cut) A, = 0.0672+0.0012
(1° acol. cut) Ayy = 0.0689 +0.0012

we tighten the acollinearity cut. Regarding the comparison of 1y MC and
YFS MC results, the two sets of results are generally consistent with one
another if one allows for the errors; however, for A, (x), the two results at
no acollinearity cut are almost 20 apart. This suggests, but does not prove,



Renormalization Group Improved YFS Theory in Z° Physics 237

that they may be different. A higher statistics sample is under investigation
in this regard. Further, we should note that the closeness of the 1y and YFS
MC results for the polarized asymmetries does not mean that the respective
values of ogp are just as close. Indeed, the oyp differ at the 3-4 % level,
so that the YFS methods are indeed necessary for the highest precision
work. One conclusion from Table I is manifest: to measure A, (u), one
must observe a large enough sample of events to unravel the large radiative
effect. From Table I, 10° uji pairs may not be a large enough sample; the
specific required sample will of course depend on the level of accuracy one
is seeking.

Turning now to the second step of our asymmetries study, we consider
A,,, A, and A,, , for the bb + n(7) final states. The cuts are the p-
like cuts in (12), where we now consider A,, for the acollinearity angle
cut of 1° and for no such cut at all. Using again our YFS2 Fortran MC
program, we arrive at the results in Table II. Similarly to the pj + n(y),
the effect of the radiation is small on A,, and A4, .. For 4,,, we see a
dramatic change in the nature of the radiative effect: the percentage changes
due to the radiation are —5.1 % for no acollinearity cut and —2.75% for a
1° acollinearity cut. This leaves a relatively large asymmetry which appears
to be measurable with high precision, in view of the statistics in Table II, in
high luminosity unpolarized scenarios such as LEP and its planned upgrade
[11]. We should note that our results in Table II are consistent with the semi-
analytic results in Ref.[12], where a similar conclusion regarding A,,(b) and
its potential for an unpolarized LEP has been reached. Our analysis then
verifies this conclusion in the presence of realistic detector cuts and rigorous
n(7) radiation.

We wish to stress that, in the bb + n(y) case, we have not discussed
the effects of tagging, hadronization (QCD), etc. Matters such as these
are discussed in the semi-analytic work in Ref.[12] to some extent. What
remains to be done is to combine our YFS2 MC with a state of the art QCD
generator such as the Lund MC [13], augmented with a realistic detector
simulation scenario. This would afford a complete assessment of A,,(b) in
Z° physics with an unpolarized LEP, for example. We hope to participate
in such a study in the not-too-distant future. Our work here illustrates the
first phase of this complete assessment.

Turning next to our work on the luminosity regime for SLC and LEP,
w call attention to our YFS Monte Carlo program BHLUMI in Ref.[1]. In
BHLUMI Fortran we have realized the luminosity cross section ete~ —
ete” + n(y) with 6., 0, restricted to the region 2m./\/s € 05250 mrad,
6 = 6., 0;, on an event-by-event basis, when the energies of the outgoing
leptons are required to stay above some value z.,, EBEAM, for z ., ~
0.5 and EBEAM = /5/2 at SLC and LEP. We illustrate this in Fig. 4,
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Fig. 4. Luminosity monitor results for /s ~ M o; the dots represent our multiple
photon Monte Carlo result for By + B1; the crosses represent the 1 photon Monte
Carlo result of the type of Berends and Kleiss [14]. The statistical error is the size
of the dot. The monitor configuration is that of the MINISAM at the MkII at
the SLC: 16.2 mrad < 6, < 24.5 mrad, 15.2 mrad < 8; < 25 mrad, where 8¢ is
the respective c.m. scattering angle of f, f = ¢™, e*; E. + E. > 0.61/s in the c.m.
system, where E is the final state energy of f, f =e™, e*.

where, for the MKII MINISAM cross section, which we define by the cuts
16.2 mrad < 6, < 24.5 mrad, 15.2 mrad < 0; < 25 mrad, E! + E. > 0.6\/s
for z.ys = 0.5, where E/ . is the final state of f in the c.m. system, we
show the comparison of the YFS multiple photon results from BHLUMI
with the corresponding results from a 1y Monte Carlo program which is
similar to that of Berends and Kleiss in Ref.[14]; this latter program is
obtained as a switch in BHLUMI for the user’s convenience and we use
it in Fig. 4 at the 19 k, parameter of 1 X 10~2? so that its normalization
is close to that of our YFS multiple photon result from BHLUMI. We see
in Fig. 4 that the 17 and YFS results are close throughout the luminosity
regime. Indeed, at /s = 92 GeV, we get the comparison, for 6 x 10° events,
o(ly) = 246.8 £ 0.3 nb and o(YFS) = 264.4 + 0.7 nb; these numbers are
fortuitously close, in view of the errors, and, if one studies this comparison
over the 92 GeV region as it is done in Ref.[15], one may conclude that
the 1y and YFS results are indeed within ~ 1 % of one another for that
region. This knowledge that the higher order corrections to the SLC/LEP
luminosity are $1 % has already contributed to the discovery [16] by the
MKII Collaboration, which has been confirmed by the ALEPH Collaboration
and subsequently by the remaining LEP Collaboration, that the number of
massless neutrino generations, N,, is 3, since the uncertainty on the effect of
the higher order corrections gives an uncertainty to the absolute luminosity
measurement which generates an uncertainty on the absolute normalization
of the observed cross sections at SLC and LEP and it is from the latter that
the shape and peak parameters of the Z° line shapes are determined. These
parameters then determine the respective visible and invisible widths, the
latter of which is directly related to the value of N,.
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What remains to be done in this area of our investigations is to estab-
lish the absolute normalization of our BHLUMI simulations to the 0.2%
and below 0.2 % regimes respectively, as the statistical errors at LEP are
now (September, 1990) ~ 0.1 % on luminosity and the systematic errors
are ~ 0.7 % currently and are expected to be improved to the 0.2-0.3%
regime eventually [17] and the error on the radiative corrections should be
at or below 1/3 of this systematic error in order that it does not play an
unacceptable role in the respective’ physics analysis. Such accuracies on
the absolute normalization are indeed possible and, recently, we have made
progress in achieving them [18].

The high precision work on the luminosity cross section simulation (and
measurements) then naturally lead to the question of a corresponding ac-
curacy of the non-luminosity cross section, such as ete™ — uj + n(y), for
example. In our YFS2 Fortran program, we already have an event gen-
erator which simulates the respective initial state radiation effects at the
0.1% level. In practice, it is oftentimes efficient, for certain inclusive dis-
tributions, to use semi-analytic one-dimensional integral representations of
a given cross section in which the higher order corrections are represented
using the naive exponentiation procedure of Jackson, Scharre and Tsai [5];
this can be particularly useful if one is studying the p-pair line shape for
the Z°, for example. Indeed, in Ref.[4], Berends et al. have considered five
different improvements of the Kuraev-Fadin type of the methods in Ref.[5],
one of which is based on our rigorous YFS results in Ref.[1]. The conclu-
sion of Berends et al. is that the five different forms of improved naive
exponentiation are with 0.2-0.3 % of one another, with no definitive way of
distinguishing between them. Clearly, in the regime of 0.1 % physics at LEP
(and, perhaps, at SLC), such a conclusion needs to be sharpened. Recently
[19], we have been able to argue that the naive improved exponentiation
procedure based on our YFS Monte Carlo methods is in fact the best such
procedure among the five procedures in Ref.[4].

Specifically, we have analyzed the naive exponentiation techniques in
a “toy model” which was developed by one of us (S. J.) in collaboration
with Skrzypek in Ref.[20]. This toy model consists of an exact solution
for the all orders leading-log results for the simultaneous fragmentation of
two incoming beams (e*e~); this solution is constructed via a Monte Carlo
method using the representation

o™ (v) = /d’ul /dvg 6(1 —v—(1-v)(1- vz)) D(v,)D(v,), (13)

where the exact solution for the one beam energy loss is given by the fol-
lowing integral
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D(v) = exp [1y1n (¢/(1 —;v)) + 39]
S QI E(o- =)
<Tle(a (- £2) ) o(s- 75 0-X2). 9

=1

where x(z) = 1(1+ (1 - 2)?) and ¥ = (2a/x)(In(s/m?) — 1). Hence, we
can compare any given improved naive exponentiation procedure A with
our exact solution (13) by comparing (13) to the respective prediction of
the procedure for the simultaneous fragmentation of two incoming beams,
04(v). For example, the formula of Kuraev and Fadin (as it would be
realized by use of the result of Berends et al. [8]) would give

d = F) 7w {1+ 37+ 3G’}
+7(3v - 1)(1+ 71nv)

oy (__§+g__.l_i§_(é%‘:”_)21n(1._v)), (15)

whereas, in Ref.[1], we have found that our YFS Monte Carlo procedure in
the program YFS2 Fortran is, for p(v), very well approximated by

o\as = F(y)yv"~"e/* {1 +31+3G7 +o(Gv-1)

+7[_§_1_i‘_1(;:_”)11n(1—v)}}, (16)

where F(v) = exp(—C7)/T(1+7) &~ 1 — #*4?/12, and C = 0.5772156...
is Euler’s constant. These formulas (15) and (16) are two of the ansatz’s
considered in Ref.[4]. In Fig. 5, we show comparison of our o(®) result
with (15) and (16), as well as with the “so-called” most complete ansatz,
Eq.(3.31), in Ref.[4]. What we see is that, indeed, in the 0.1% regime,
the YFS-based formula is preferred. We conclude then, that for the high
precision Z° physics, either our YFS Monte Carlo proceduses [1] or, for
inclusive analysis, the YFS-based formula (16) should indeed be used.
Perhaps, one of our more important applications is in the area of the
interplay of the YFS multiple photon radiation and the pure weak correc-
tions to ete” — v, Z° — X, as we illustrated in Fig. 6. Indeed, in Ref.[6],
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Fig. 5. The ratio of the second order exponentiated distribution ¢(*)(v) and the
infinite order solution g(®) calculated by means of the Monte Carlo (10— 4-10-8
MC events per point). Numerical input was set for ete~ beams at /s = 92GeV.
Three curves represent exponentiation of the type (a) Kuraev-Fadin, see Eq.(15),
(b) YFS, see Eq.(16) and (¢) LEP workshop {4].
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Fig. 6. Comparison of Stuart and Hollik ef al. pure electroweak libraries in e*e™ —
putu~. Here, Myo = 92GeV, m; = 60GeV, and mp = 100GeV. In both cases,
the libraries were obtained from its principal author via private communication.
Note that vvmax is the maximum value of 1 — s'/s = v, where s = (p. + pe)?
and s' = (p, + pa)?. (This set of values for Mo and my is of mainly pedagogical
interest now.)

YFS2 has been interfaced to two different pure weak correction libraries,
one by R. Stuart and one by W. Hollik in the program KORALZ3. (In
collaboration with Z. Was, we are in the process of interfacing YFS2 to the
weak corrections library of Bardine et al. [21].) Hence, KORALZ3 has
now available for use the state-of-the-art multiple photon and pure weak
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corrections to ete~ — ff where for the latter corrections, we have imple-
mented them as provided by the respective authors. Accordingly, we may
show in Fig. 6 the comparison of the total cross section, as an illustration,
for ete™ — u*p~ + n(y) for the case that one uses the Stuart library or the
Hollik library {22,23]. What we see is that the two weak libraries produce
the same cross section at the 0.3% level. If we look at the available litera-
ture [21-24] from the various authors of weak corrections libraries, we see
that, for A, (u) at the Z° pole, the authors differ significantly as we show
in Table III (July, 1989). These discrepancies are being worked-on by the
authors 23] and by us. Such discrepancies as those in Fig. 6 and Table III
are unacceptable for the truly < 0.1 % physics regime which LEP will want
to probe in the not-too-distant future. Currently, however, the systematic
errors on total cross sections at LEP/SLC are ~ 0.7 %, so that the pure
weak corrections libraries in KORALZ3 are currently accurate enough for
use at LEP and SLC. And, indeed, it is in use at LEP and SLC for physics
analysis.

TABLE III
Comparison of Arp for ete™ — putyu—; M,o = 90 GeV, my = 100 GeV.

my [GeV]
Authors 50 100 150 200
Bardin et al. 0.0036 0.0044 0.0050 0.0054
Hollik et al. 0.0037 0.0043 0.0054 0.0071
Lynn et al. 0.0038* 0.0041* 0.0035*% | 0.0012*

m; [GeV]

60 90 130 180 230

Lynn et al. 0.0037 0.0041 0.0040 0.0028 0.0012

* Obtained by linear interpolation from the pablished results at m; = 30, 60,
90, 130, 180 and 230 GeV.

Thus, the YFS MC approach to 1 % precision SU(2L) x U(1) radiative

4. Future Directions

corrections is in active use at SLC and LEP. We look forward to future
applications with even higher precision and/or at higher energies.

The natural question to pose at this point is what should be the next

areas of investigation for our YFS MC approach to SU(2L) x U(1) radiative
corrections. We discuss the answer to this question in this Section.
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Specifically, what is not implemented in our YFS2 MC are the final
state radiative effects. These are handled at O(a) by KORALZ3 but a
complete treatment of the n(v) final state radiation is not implemented in
currently available software. We have recently completed the construction
of such a final state n(y) version of our YFS Fortran Monte Carlo’s; it is
version YFS3 and we shall present it in detail in Ref.[25]. These final state
effects, which enter at the level of a/m ~ 0.2 %, are clearly necessary to
probe the below 0.1% regime in Z° physics.

Perhaps, one of our most immediate issues is to resolve the 0.3 % cross
section discrepancies between the pure weak libraries in KORALZ3 Fortran.
Clearly, the high precision (=~ 0.1 %) regime which our YFS n(y) methods
would otherwise avail to us will not be accessible if we do not resolve this
pure weak discrepancy.

The most pressing issue is, of course, the normalization process ete™ —
ete” +n(v)at LEP and SLC. As we have noted above, the near term regime
of 0.2% for the absolute normalization uncertainty is a near term goal on
which we have made recent progress [18]. We should follow-up on the work
in Ref.[18] by extending it to the below 0.1 % regime in the not-too- distant
future.

Concommitent with our normalization research in connection with BH-
LUMI Fortran is our effort to extend BHLUMI to wide angles. The corre-
sponding version of BHLUMI, version 3.0, is in its initial stages of testing.
We hope to make it available in the near term.

We should also note the various applications of our work to other elec-
troweak physics scenarios, In particular, we have in mind the NLC/LEP II
type scenarios. Recently, we have been able to initiate the application of our
YFS methods to the process ete™ — WtW~ + n(y). Preliminary MC re-
sults have been obtained and we hope to arrive at a complete application of
our YFS methods to the NLC/LEP II scenario in the not-too-distant-future.

5. Conclusions

In conclusion, it may be said that our YFS methods are indeed of
significant use in the precision tests of the electroweak theory in Z° physics.
We are encouraged by their utilization at LEP and SLC to date,

However, several outstanding issues, each interesting in its own right,
must be addressed before we can talk about a complete application of our
methods to the Z° physics programs at SLC/LEP; below 0.1 % absolute
normalization uncertainty for BHLUMI Fortran, wide angles extension of
BHLUMI Fortran, resolution of the pure weak libraries discrepancy in KO-
RALZ3, and inclusion of n(7y) final state radiation in our YFS Monte Carlo
procedures. In all cases, we are making progress on the respective issue and
we look forward to its resolution in the near term.
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Further, we have initiated the application of our methods to the higher
energy scenarios at NLC/LEP II. We look forward to a complete application
of our methods to these higher energy scenarios in the near term also.

In summary, the YFS Monte Carlo approach to higher radiative correc-
tions is in place at SLC and LEP and, more importantly, it is in use at both
scenarios. We anticipate with excitement its many further applications.

The authors are grateful to Profs M. Breidenbach, J. Dorfan and G.
Feldman for giving them the opportunity to participate in the MkII-SLD
SLC Physics Working Groups, where a large part of the work in this manu-
script was conceived and effected. One of the authors (B. F. L. W.) is
grateful to Prof. G. Feldman for the hospitality and support of SLAC Group
H, where part of this manuscript was written.
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