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Anomalies related to an external global symmetry of the gauge-fixed
action may well possess relevance in physical observables. Their gauge-
(in-)dependence is most suitably controlled by a combination of the BRS-
technique which includes a BRS-transformation of the gauge-parameters,
with the external symmetry coupled to an external gauge field. For an
external symmetry which commutes with BRS, anomalies are shown to be
essentially gauge-independent (to one loop order). A nontrivial example
is the ghost number anomaly of the bosonic string. However, e.g. the
anomalies of superconformal transformations do not fall into this category.

PACS numbers: 11.15.-g

1.

In a quantized gauge theory the Green functions already depend on
gauge-parameters. Only physical observables, like the S-matrix, are gauge-
independent. Actually, in the latter the gauge-dependence of wave-function
renormalization constants for external lines, of “polarizations” and of the
(amputated) Green functions can be shown to neatly compensate each other.
It must be emphasized that not gauge-invariance, but precisely this gauge-
independence is a prerequisite for the physical observable, although not
a sufficient condition. Both properties are related, but sometimes in a very
sophisticated manner, so that gauge invariance does not necessarily guaran-
tee gauge-independence. A quantized gauge-theory must not be anomalous,
t.e. must not break the symmetry at the quantum level. In the absence of
such “internal” anomalies, however, some “external” (global) symmetry of
the action may develop an (external) anomaly in the conservation equation
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of its Noether current. The chiral symmetry with the triangle anomaly (1]
is an ancient famous example. As an additional insertion in S-matrix el-
ements it may even lead to physically observable consequences — like the
7% — 24 decay rate [2]. Therefore, also such amplitudes should be gauge-
independent. In fact, a related proof has been given long ago [3] based upon
the elegant “extended” BRS-technique [4].

2.

Recently also the gauge-(in)dependence of the ghost current’s anomaly
in string theories has attracted interest [5,6]. In the action L = [ (Linv+Lgb)
of the bosonic string (a = 0,1) in a flat background

mv = 2\/ gaﬁa X apX'

Loy = 3(bapK*?) = BapK® — bap(sK*?), (1)
the general gauge condition K*?(g,§,p) = 0 , involving a background field
§ and gauge parameter(s) p, is taken care of by the auxiliary field B,s. In

the “standard” gauge K°# = g*f — §*f. The harmonic gauge corresponds
to

Ko = n"0,/ G (0% ~ ) + 5/ T- VD) (2)

where n® is an “axial” gauge parameter and the covariant derivative V is
expressed in terms of §. In gauges with first derivatives it is useful to move
d, as in (2) to B,g. From the invariance of f Liny under diffeomorphisms
and Weyl-scaling, (1) retains the BRS-invariance

sgaﬁ — _CGIAg cﬁl)‘gka + CA aﬁ _ cgaﬂ ,
Sb"{& = Bap N
SBag =90 ) (3)

with all other fields y = (X*, ¢*, ¢) transforming like scalars:

sy = 'y (4)
The conservation of Faddeev-Popov (F.P.) ghost number (¢ is now the pair

(%))
] (£-53)
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in (1) is broken by quantum mechanical corrections. In the standard gauge
the well-known result [5,6] for the Noether current of (5) is

() 3 _
OuT* = - V=4 R(§)- (6)

Not surprisingly, this need not be true in other gauges, because J#
is not BRS-invariant. As shown, however, in [6] the action (1) may be
effectively replaced by

L = Ly, + f (BasKePhe — Bopkgfs™)
B = g — 5,
K = 0K*[8g%| _, » (7)
where °# is given by the r.h.s. of the first Eq. (3) with g*# — §°A. (7)

shows a linearized BRS-invariance

s =/ (B% +&%), (8)

which commutes with a U(1)-invariance

() ) )
T=T+/ (h%—B-b:E). (9)

The generalization of the ghost current, the “Rebhan-Kraemmer” (RK)
current corresponding to (9) exhibits a gauge-independent anomaly [6].

3.

A general argument, yielding a compact proof of the gauge indepen-
dence of an “external” anomaly seems to be missing. The generally used
technique [7] either considers internal and external anomalies separately,
or, even in an application of the “extended” BRS-technique [3] only makes
statements for vanishing sources of the internal fields. The main line of our
argument is this [8]: With the shorthand notation &, = (¢,¢,b, B) for the
fields, the right and left F.P.-ghost, and the auxiliary field B, the generating
functional W(j, k, ¢, B, z) is written as
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W:/ expz'(i,+/ jAsPA), (10)
(4) .z
=1L+ / (541 +d)BK + ka(5+ )84 . (11)

z

In (11) we have generalized the original BRS-operation in the gauge-
breaking term by adding not only a BRS-variation of the gauge-parameter
(d = zg, 2% = 0 for one parameter ) [4], but also by an (anticommuting)
symmetry operator

- . .. & |
i~ [ @ o g+ [ L) (12)

t is related to a certain “external” global symmetry 7 ([7,s] = 0) of the
original L by the introduction of an external ghost #‘ as {4 = @'(z)r%, and
the original symmetry 7 is “gaugified” ¢.e. whenever a derivative acts on a
field participating in a symmetry 7, this derivative is replaced by a covariant
one 8, — D, = D,(¢), involving a new external gauge field @. In order
to maintain - = 0 for nonabelian fields, £, with @, = (@, #’) acts in an
appropriate manner also on #. Gaugifying L to L(®, ) may include even
(s84) as well, if, as in the example of strings above, L, — f,gb participates
in the symmetry. Then besides tL, , = 0 even tbK = 0, but this is not
necessary for our argument. We require only 3, = 0, i.e. (5 + £)? = 0 for
the specific external symmetry to be true even after this “gaugification” has
been completed. Hence also sources k, are introduced for § + £.

Changing the variables ¢4 by §¢4 = 6A(5 + {)ps = 61344 leaves (11)
invariant, if the simultaneous variation of the external fields @, by  is
subtracted out (the grading of ¢4 and j, is denoted by the saine symbol A
= 0,1)

T .
_ _1)A+L; - “ . .
0—//[( 1) ]A.s@A—i—d(sbK)-i-ta&ﬁa] expt L+/]A45A . (13)

(¢) = =

This presupposes, of cogrlse an invariant measure and an invariant reg-
ularization. Replacing d [ 3bK = d(L+ [, ja¢,) the “symmetry-extended”
Slavnov-Taylor identity follows:
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/[(--1)“+1 6—g—+t°£]w+dW—0 (14)

The usual Legendre transform to the 1-p-i-functional I'($,k,,p, z)
=7~ [ jada, W = exzpiZ, ¢a = 6Z[0jasja = (-1)**1 61 /8¢, yields
(¢4 — ¢4 from now)

' (6T 6T ;8T
B(F):/ (35137:7+ m)mr A, (15)

where in the r.h.s. of this “Lee-identity” already a candidate anomaly A
has been included, which appears if no covariant regularization is employed.

Defining
86X § 86X 6 . 8
Be= [ (Savois * fhares * oign) + (19)

z

and using the identity BxB(X) = 0 leads to a consistency relation {7,9] for
the anomaly:

BrA=0. (17)

(15) and (17) determine the internal (BRS-identity) and external
(Ward identities) symmetries of the theory and their anomalies in a com-
prehensive manner. To lowest loop order and after expansion in z (17)
becomes

B A=(B"+:B")(A°+zAY)=0. (18)
The term of O(z) expresses the gauge-dependence of A%:
0A° 140 1
3 -B'A° - B°A'. (19)

Eqgs. (15)-(17) may be simplified, because the BRS-transformation of b
is linear and sB = 0 so that k; and k,, the sources for (5b) and (5B), may
be eliminated if tb = tB = 0 . Repeating the argument yields

or ér or or
= — — dr =
B(T) /(M,, T 6%) tar=4, (0
where the sum a = 1,2 extends over ¢ and c only. A further sxmphﬁcatlon
is possible for linear gauges K = F($, p)p. Then the “equations of motion”

for B and b produce two relations between the derivatives in I and
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F =1 (¢osbrs ks y0,2) = T - / (BFp + dbFy) ,

fulfills a relation like (20), but without the term linear in B. In this case
B' = 0 in the nilpotent (for B(X) = 0 ) operator defined by analogy to
(16) and the content of (19) is that gauge-dependent terms may be removed
by local counterterms [ .A'dp, the locality being guaranteed by the “ac-
tion principle” [7]. For nonlinear gauges this statement must be somewhat
restricted [8]. _

It is instructive to study the interplay between consistency equations
for an external symmetry which affects only fields, not contained in the
gauge condition — as the chiral fermions for the chiral symmetry. Then
tbK = 0 trivially and the external ghost @ only resides in the last term of
(11) as [ 4*t5;¢p. For (10) this yields the additional identity

] Ay o O _

which implies (after Legendre-transform) that

I=TI(&,k @)+ / kyi®typ o5, (23)

z

where p; is the external gauge-field. The symmetry-extended Lee-identity
(15) and its consistency equation for the anomaly (17) then decompose as

B(l)=A, (24a)
DI = A, (24b)
and
BrA=0, (25a)
BrA* = DA, (25b)
DA —DPA* = [0, A7, (25¢)
where

. Y 5 5
Do) = Digires + s (@) gy ~Bazss)  (29)
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contains the gauge-transform Dg = 8 + t3;@s with respect to the external
field, but also a term which is characteristic for a local version of the external
symmetry. f,g, are the structure constants of t. B(I') and B are defined
by analogy to (15) and (16) but without the term proportional to £, they
are the “extended” but not “symmetry extended” operators. The simple
calculation leading to (24) and (25) trivially implies the decomposition

A=A+/&“A°, (27)

i.e. the external ghost appears only linearly. (25c) means that A is the
“consistent” anomaly, because for vanishing “internal” fields ¢ = k4 = 0,
(26) coincides with the gauge-derivative in the classical Wess-Zumino consis-
tency condition [9], and (24b) represents the associated “anomalous Ward-
identity”. From the BRS-formalism it is clear that there is no necessity to
search for a “covariant” anomaly, more important for a physical observable
is the gauge-dependence which is controlled by (25b). E.g. for an anomaly
with A = 0 and §.4%/8k = 0 (25b) becomes at one loop order

BrA® = (3 +d) A%, (28)

i.e. the consistent anomaly in that case is BRS-invariant ((28) at z = 0) and
gauge-independent (28) at J(z)). It should be stressed, however, that our
formalism is very general and covers much more than this special situation.

4.

Our string example falls into the range of this theorem; actually the
“Lee-identity” is even simpler here because of the linearity of (8) [10]. Gaug-
ing of the U(1) symmetry (9) means

- . § .6 § § )
t_/u(z)(c‘—sz—b;%%»h&—h*—BgE)+/uip'6-5;, (29)

z z

and the derivatives on (c, k) and (b, B) must be replaced by 8, — 8, + @,
and 8, — 8, — @,, respectively, i.e. ¢ — & in (8). The gauge condition is
effectively linear according to (7) and thus the general argument of section
3 applies although the simplification from tb = tB = 0 is obviously not true
here. This is offset by the linearity of (8) which allows k4 = 0 in (11) and
leads to a trivial linear Lee-identity (3 + d).A = 0 [10]. In Ref. [6] this result
was obtained by a special argument.
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For the chiral anomaly tbK = 0 because the Dirac-fields do not appear
in a reasonable gauge-condition. Less trivial applications may occur, how-
ever, if the gauge-condition involves the scalar fields (c.f. the t’Hooft gauge)
which in turn, may be affected by the external symmetry t [8].

An interesting application of our argument occurs in the generalization
of chiral symmetry to the supersymmetric (SUSY) Yang-Mills theory. The
chiral fermion fields ¥, are here a component of a chiral superfield

¢+ = (81, ¥s, Fi), (30)

which also contains complex scalars §; and auxiliary fields Fy. A chiral
transformation

56y = +ib, by (31)

affects all these components in the same manner. As can be seen easily, it
also commutes with the SUSY-BRS-transform

s¢py = tcy Py, (32)

where ¢, = ct is the (chiral) F.-P. ghost in the appropriate representation
of #,. Since the requirements for our arguments are met, this SUSY gener-
alization of chiral symmetry has an essentially gauge-independent anomaly,
which implies here that the anomaly is independent of the way in which
we have fixed the components of the vector superfield. E.g. in the Wess-
Zumino gauge, the ordinary gauge-field and the “gaugino” may be used to
calculate the anomaly.

The situation is different for superconformal transformations which
comprise besides the conformal ones also chiral transformations and the
SUSY-transformations themselves. The corresponding anomaly, in turn, is
composed of the chiral and of the conformal anomaly and the anomalous
relation may be written in terms of superfields [11]. However, chiral trans-
formations are generated here by the so called R operator (6,,a = 1,2 are
Weyl-spinor Grassmann variables spanning the super-part of superspace)

.8 - 0
R = 0 6—0: + 9(‘,% (33)
as
6¢y = i6fRd+ (34)
with

R(S:t, Wia F:E) = (0’ :twiv i2Fi) 9 (35)



Anomalies and Eztended BRS- Technique 45

so that [R, s] # 0 may be shown. As suggested by a simple toy example [8]
in such cases not only our argument for gauge-independence does not apply,
but even gauge independence is lost. The calculation of anomalies in differ-
ent SUSY-gauges can thus be expected to yield different results. Thus we
do not see a necessity to insist on a “SUSY Adler-Bardeen theorem” which
would require the coefficients of the conformal and of the chiral anomaly to
coincide. It is interesting that discrepancies precisely on that point are the
origin of a long-standing controversy [12].
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