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The N @-sector of the Lee model is studied in the framework of a
relativistic theory, in which also the recoil oft - and V-particle are
taken into account. For several values of the mass rati6s the g-wave phase
shift and total cross section are calculated as functions of the energy.-The
Riemann surface of the scattering amplitude as a function of the complex
Mandelstam variable s is investigated. It is found to have an infinite
number of sheets. The poles of the S-matrix on the first (physical), second
and third sheet are calculated and found to describe orbits of a peculiar
form when the coupling constant is varied. In order to compare these
results with nonrelativistic potential scattering the same quantities were
first calculated for the §-shell potential. It is concluded that even this
simple relativistic field theory and the nonrelativistic field theory have
very different characteristics.

PACS numbers: 11.20.Fm

1. Introduction

There is no proof of the consistency of quantum field theory and it will
certainly not be given in this paper. It is, however, not unreasonable to
hope that by studying simple models, some insight in this problem might
be gained.

For that purpose the Lee model [1] N+ = V was revived and extended
to include a relativistic description of the N- and V-particle [2]. It was shown
that for sufficiently strong coupling the V-particle turns into a tachyon. Also
the phase shift for N-0 scattering changes so rapidly with energy that it
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becomes inconsistent with the requirement of causality. Since causality is
related to the analyticity of the §-matrix it seemed worthwile to find the
analytical continuation of the scattering amplitude in this extended Lee
model. The results are given in the next Section.

In order, however, to compare them with nonrelativistic scattermg, the
remaining part of this introduction will be devoted to a discussion of s-wave
scattering by a §-shell potential,

V(r) = aVob(r — a). (1)
For arbitrary angular momentum the scattering amplitude M, (k, k') is ob-

tained from

M,(k, k)= lim M, (k¥|z), (2)

z—k'?a3fie

where M, (k, k'| z) satisfies the Lippmann-Schwinger equation

% k2 dk"
M¢ (k, k'l z) = Wt (k, kl) - Sﬂmaz/m

0

Wg (k, k”) Ml (k", k'l Z) (3)

and

W, (k, k') = 1 drr25,(kr)j(k'r)V (r)

0

~ sfjnjt(ka)jt(k'a) (4)

with the dimensionless “coupling constant” defined by

g = 2mad’V,. (5)

Because of the product form of W, (k, k') Eq. (3) can be solved imme-
diately. Writing M, (k,k'| 2') = j/(ka)j.(k'a)T, (2') one obtains

n()—8m[g+/uzf_(':) ] , (6)

0o

For s-waves the integral is equal to

(o]

I(z) = / sinz" du = \;_ (1 - e_z‘/‘_‘) )

u — z 4./ -z
0
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in agreement with Eq. (15.15) of reference [3], where the same model is
discussed. From this explicit expression of Tp(z) it is seen that the scattering
amplitude is a meromorphic funcion in the complex plane, cut along the
positive real axis and with at most one pole on the negative real axis. This
pole really exists if

=]

1 /’ sin® u r
g u? 2

0

te. if ¢ < —2/7x. Its position — dividéd by 2ma? — gives the energy of
the bound state with zero angular momentum. The same situation, i.e. the
right hand (unitary) cut and a number of poles on the negative real axis, is
found for other models [4,5], although a special class of potentials, known
as Yukawa-type potentials, has additional cuts along the negative real axis

[6].

From the explicit form Eq. (7) it is seen that z = 0 is a square root
branch point. Using the discontinuity of I(z) across the cut (which can
easily be obtained from the integral representation Eq. (7)), we choose the
following representation for the analytical continuation of I(z) to the second
sheet (in this representation the Riemann surface on which the analytical
continuation of I(z) is defined has only two sheets):

L(z)=1(z) F 2L sin®yz for Im z20. (8)
vz

This expression is used to find the poles of the scattering amplitude in the

second sheet of the Riemann surface. They are defined as the solutions of

1/9+ I,(z) = 0.

There is one real solution when g is in the interval —~2/7 < g < 0, which
was called anti-bound state, For g decreasing below —2/x this pole moves
through the branchpoint z = 0 to the first sheet, to become a real bound
state pole. All other poles in the second sheet lie in the complex plane, as
is shown in Fig. 1. For |g| < 1 they are very far removed from the values
of z on the upper rim of the cut, which corresponds to the energies in a
scattering process. Only for |g| > 1 the poles approach the real axis and
give rise to the well known resonances. For |g| = co these poles turn into
real bound states at z, = n?z? (n=1,2,...).

The structure of the pole orbits as shown in Fig. 1 is similar to what is
found for other potentials. The purpose of showing this figure, therefore, is
not to present a new result, but to be able to contrast it with the case of a
simple field theory, which we will discuss now.
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Fig. 1. Resonance and bound state poles for the §-shell potential.
2. The relativistic Lee model

In the Lee model [1] the only allowed transition is between a V-particle
with bare mass My and an (N, §)-state with an N-particle with mass My
and a @particle with mass m. No recoil of the N- and V-particle took place,
because their energy did not depend on their momentum. This situation
will be remedied by adopting a previously published theory [7], by which it
is possible to calculake the relativistic scattering of two or more particles.

In this quasi potential theory the scatternig amplitude Mp, for a tran-
sition from the state a to the state 3 is given by

Mp, = lim Mp,(s;) with s=P?=P2. (9)

sg—s+te

The functions Mp, (3o) must be solved from the following Lorentz invariant
Lippmann-Schwinger equation

Mo (30) = Voo = [ Vel (3,5 L (s0) My (s0)  (10)
r

with equal velocities ¥, = g‘g =Ug = i:?;, for the initial and final states a
@ 4

and B. Also in the intermediaté states v the total velocity is conserved as
can be seen from the form we choose for the propagator of these states,
namely
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2
L© (s0) = =~
) B
L) (3, 8) = (1= 93) (1 - 92) b (& — %) - (11)

Both expressions are invariant under Lorentz transformations.

The idea of velocity conservation has recently been used [8] to construct
an effective Lorentz invariant field theory for heavy quarks. The theory
formulated in this way is finally completely specified by making a choice for
the matrix elements Vjz, of the potential. In ordee to be as close as possible

to the static Lee model, we take for the transition from a = (N , 5) + (0, k )
to B = (V, 4_1' ) the following invariant function

gm?

Voa = ———= = Via(a|p, k) = Va1 (1, Kl 4) (12)
’ y(@+k)’

where g is the dimensionless coupling constant and the #mass is denoted
by m. ,

With this choice of the potential Eq. (10) reduces to two coupled integral
equations for the amplitudes M, (q |p, k) and M, (p', k'| p, k) for the tran-

sitions (N,;) + (9,’:) - (V,;) and (N,;) + (O,I_c’) - (N,;?) + (0,1;')
respectively.

Substitution of the first into the second equation gives the following
equation for the elastic N-0 scattering amplitude:

M (P, F|p, k) = W., (¢, ¥, k) - / dpy dky 6 (K2 — m?) 0 (k) § (o7 — M2)

263 (1)

X (p(l)) 81 (31 - 30)

W-'o (Pl, k’|P1,k1)M(P1,k1|Pa k) ’ (13)

where the “optical” potential W,, is defined by

W., (P, k' |p, k)

263 (v2)

33 (83 — 30)

= —/ dg, 8 (2 — M2) 6 (a3) Var (P, ¥'| 42) Via (g2| p, k)

(14)
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— 2 _ a2 = _ Pyt
and s; = (p; + k1) ,32—Q2av1‘-;§ﬁ'§'9v2—io

With V;, and V5, as given in Eq. (12) W,, becomes

g*mt .
Vs's (M2 — so)’
=(p'+ k')2 i s=(p+ k). (15)

W, (s'8) =~

This is a separable potential (with only s-wave scattering) and for that
reason Eq. (13) can be solved exactly, resulting in

gzm4 1

M(s]s) = V3's 9?°m?B (o) — (MZ — o) (16)

with

pog= T [ LB,

82 (s — so)

s:=(Mytm)®, A(s,MZ,m?) = (s—s.)(s—s_). (17)

The formulae for the phaseshift and total cross section, which can be derived
from this amplitude, have been given in Ref. [2] dnd will not be repeated
here.

Instead, a more detailed study will be made of the analytic properties
of M (4’| s) as a function of the complex energy variable so. As in the non-
relativistic theory, bound states can be identified with poles on the real axis.
This means that the value of s*, which satisfies the equation

M} —s* —¢*m’B(s*) =0, (18)

is equal to the square of the mass of the physical V-particle, s* = MZ. From
Eq. (17) it is seen that if s, is real and s¢ > s, the function B (s, + i¢) has
a non-vanishing imaginary part. Therefore, if Eq. (18) has a real solution at
all, which will happen for sufficiently large g2, the mass My, . will necessarily
be less than the threshold value My + m for decay into an (V, §}state.

In the original Lee model [1] divergences occurred, which could be hid-
den by introducing a renormalized coupling constant. Although in the
present case all integrals converge, it is nevertheless possible to define a
renormalized coupling constant g by calculating the transition matrix ele-
ment of the interaction between the V*state and an (V, f)state, and putting
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the result equal to the expression in Eq. (12}, but with g replaced by gg. In
this way it is found that

2

2 _ g
dr = Lt gt (33(8) (19)
I 9s )5=g
which can be also inverted to give
2
? Ik (20)

9" = .
dB(s)
22
1-—-gpm ( s )szs*

From the wave function of V* the probability for the bare V-particle to
occur can be calculated. The result is

Pr(V) = [1 + g*m’ (af;i”)s _ 3*] A

ﬁ_ 3.2 8B(s)
% 1o g (250) (21)

Since dB(s)/ds > 0 for s < s, this probability is positive and less than
one, as it should. Also B(s) > 0 for s < s,, so that according to Eq. (18)
8* < M}; due to the coupling there is more binding and the V-particle gets
lighter.

There is, however, also another point of view, in which the V*particle is
considered as elementary, together with the M- and éparticle, and in which
it is illegitimate to ask questions about the occurence of the bare V-particle.
In that case there is no need for Pr(V'), as given in Eq. (21), to be less than
one and g2 and g? are allowed to become negative. Then Eq. (18) implies
that s* may be larger than M and there might be even a second solution
s*' to Eq. (18) with s*' < s,. Since in this case the number of stable bound
states has increased by one, as compared to zero coupling case, this should
be reflected in the behaviour of the phase shift. According to Levinson’s
theorem the decrease in phase shift from zero to infinite energy should then
be equal to x. Fig. 2 shows that this is indeed the case. In the three pictures
g° equals —20, —23.2 and —32 respectively. These values correspond to the
situations in Fig. 4 of first one, then two poles in the first sheet on the
negative real axis, and finally two poles moving into the complex plane of
the first sheet.

The argument above shows that for some values of g? the scattering
amplitude has two poles. These poles will move when g¢* is changed and
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Fig. 2. Phase shift for My = 2m and My = 1.1m, as function of k/My with

k= 178,

although they may collide, they will not disappear. In order to follow their
trace, however, it is necessary first to give the analytic continuation of

Bi(2) = B(2) :/%ds,

Tm?2.

with f(s) = 57 V(s—3:)(s—s_). (22)

B;(2) is analytic in the whole complex plane cut along the real axis from
8, to +o0o, the unitary cut. The discontinuity across the u-cut is purely
imaginary and is given by

lim Im Bi(stie)=+tnf(s) fors>s,. (23)

The Riemann surface on which the analytic continuation of B, (2) is'defined,
has an infinite number of sheets. Except for the function B;(z) on the
physical sheet, the function B,(z) on the n'® sheet (n > 2) has two cuts. In
addition to the u-cut, there is a cut from s_ to |z| = co. We have chosen to
put this cut along the negative real axis, and call it the 1-cut. The function
B(z) (k=1,2,...) is continuously connected to B;j_;(z) along the u-cut
and to Bj;41(z) along the l-cut. These statements can easily be verified
using the following representation of the functions B,(z):

Bai(2) = By(2) £ 2xkif(z) for Im 2 2 0,

Boiy1(2) = By(z) £ 27kif(z) for Im 2 2 0. (24)

In Fig. 3 a number of ‘paths are drawn, which show how the sheets are
connected through the 1- and u-cuts. Here f(z) is defined as that analytical
continuation of f(s), which has a cut from s_ to s, with a positive (negative)
imaginary value on. the upper (lower) part of the cut and with the real
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Fig. 3. Cut structure of the Riemann surface. The physical sheet has only the
u-cut and not the l-cut.

positive (negative) values on the real axis for z > s, (z < s_). It can be
shown that the branch points s, and s_ are of the square root type and
that z = oo is a logarithmic branch point. With the function B(z) defined
on the whole Riemann surface it is now possible to determine the position
of the poles of the scattering amplitude, given by Eq. (16), on each sheet.
They are solutions of the equation

M} -z~ g*m*B,(2) = 0. (25)
By changing the integration variables in the integral B,(z) tot = Z ~ ::+

and decomposing the resulting integrand into rational functions, the func-
tion B,(z) could be calculated explicitly. The roots of Eq. (25) were then
determined using a Newton-Raphson method for two real variables. With
-some confidence it can be said that in this way all roots were found. The
results are collected in Figs 4 and 5. In both cases My /m = 2, but in Fig. 4
all values of M2 are less than s,, while in Fig. 5 MZ > s,. The curves
shown are the paths followed by the poles when g? varies from —oo to +o0.
The value of g2 for which z = s, is denoted by g (b for bound). In Fig. 4
g2 < 0 and in Fig. 5 g > 0. The point z = s_ is reached in all sheets for
the same value of g2, and is called g2. Its value is positive in all cases that
are shown. The expressions for g2 and g? are

gzzM;‘;"’- g2:M3‘3+
8 szl(S__) ’ b m2B1(3+) )

From Eq. (18) it is easy to see that in all sheets the point 2 = M} corre-
sponds to g2 = 0. Moreover, in all sheets but the first, poles approach the
origin when g2 approaches zero, and pass through the l-cut towards another
sheet.

A complicating factor for solutions in the third sheet is that there are
two points (which we will call transition points) between s_ and s, in
that sheet, where the corresponding value of g2 jumps from +00 to —oo for
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Fig. 4. Bound state and resonance poles in the complex energy plane, for My /m
= 2 and M} < s;. From top to bottom My/m = 1.1, 1.9, 2 and 2.5, while
from left to right the first, second and third sheet are shown. The arrows indicate
increasing values of g2. The pictures are described in the text.
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both points. Thus, there is a solution in the third sheet, which starts at
the left transition point for g2 = —oo and ends in the right transition point,

where it arrives for g2 = +00. The transition points are marked in Figs 4
and 5 with a small vertical bar.

The connectivity of the orbits through the cuts can be rather compli-
cated. In addition to the single solution in the third sheet, which we have
just described, in Fig. 4 for My /m = 1.1 and My /m = 1.9, four pairs
of poles can be distinguished, each pair consisting of two poles, which at
g? = ~oo are very far apart. Since poles in the firs sheet which are not on
the real energy axis imply acausality, we can expect that the large derivative
of the phaseshift for these values of g? (Fig. 2) is just another manifesta-
tion of the same phenomenon. On increasing g? the members of each pair
approach each other, collide and move apart as g* goes to plus infinity.

The first pair starts as remote poles in the upper and lower half of the
first (physical) sheet. They collide on the real axis, somewhere between M
and s, at a value of g? for which g% diverges. One pole then moves to the
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Fig. 5. Pole trajectories in the complex energy plane, as in Fig. 4 with My /m =2

and MZ > s;. From top to bottom My /m = 3.26, 3.27 and 6.

[1T

N

left along the negative real axis, where there is no cut. The other pole moves

to the right until it reaches the branch point s, for g = g2 < 0. There it

disappears from the first sheet, only to reappear on the second sheet and

to move back along the real axis passing through the cut in s_ for g% = g2.

On the third sheet it moves to the left transition point, where it arrives for
? = +o0.

The second pair also starts very far apart, but now on the second sheet
for Re z < 0. On increasing g2 both poles move towards z = 0 (a massless
particle on the second sheet), where each of them crosses the 1-cut (without
colliding) into the third sheet. Here they move apart again in the same half
space Re z < 0. The third pair has a similar behaviour as the second pair,
except that it starts in the third sheet for Re z > 0. After passing z = 0
both poles enter the second sheet again with Re z > 0. Of the fourth pair
only the beginning of the path of one member is shown. For ¢> = —o0 it
starts at the right transition point and moves along the real axis towards
z = s, where it arrives for g> = g. It then crosses the cut into the fourth
sheet, where it will meet its counterpart.

For My/m = 2 and My /m = 2.5 only the second pair can still be
recognized. The other three pairs, and probably more, have joined to form
one big structure of colliding poles moving from one sheet to another.

When My > My + m = 3m, the structure develops further in a way
that is shown better in Fig. 5 than can be told in a thousand words.
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3. Conclusions

When comparing the analytical structure of the §-matrix for the rel-
ativistic Lee model and for potential scattering, the following observations
should be made.

In both cases the right hand cut is.present as it should in order to
satisfy the requirement of unitarity. For a theory where particle production
is allowed, like in the V #sector of the Lee model, there should be additional
branchpoints on the u-cut, at each point where a new channel opens. In the
N Bsector this does not occur.

For potential scattering the form of the interaction (but not its strength)
is usually reflected in fixed singularities on the negative energy axis. A
Yukawa potential has branch points in the s-wave amplitude, while the
square well and exponential interaction have fixed poles. The é-shell poten-
tial and the Lee model, however, have no fixed singularities on the negative
energy axis at all. This is probably caused by the fact that both are in effect
theories with a separable potential. Still the Lee model is much richer than
the 4-shell potential, because the s-wave scattering amplitude is a meromor-
phic function with an infinite number of sheets, each of which (except the
first) having a branch point at s_ = (My — m)®, which is characteristic for
a relativistic theory. All other singularities are poles and move when the
strength of the coupling is changing. In the theory of nonlinear systems this
phenomenon, which is called the Painlevé property, is characteristic for its
integrability [9]. It is not clear whether in the present context this analogy
is more than just a coincidence.

The orbits of the moving poles in the Lee model are very much different
from those of the §-shell potential. In the former they move from one sheet
to another in a very intricate way, whereas for the latter only the bound
state pole moves from the second to the first sheet, while all other poles are
restricted to the second sheet.

Another important difference between potential scattering and field the-
ory is that for weak coupling the poles in potential scattering are always
far away from the physical region, whereas in the Lee model, at least for
My > My + m, even the weakest interaction causes the V-particle to be
unstable, leading to a resonance in N éscattering.

For the Lee model the motion of the two poles on the physical sheet
causes unphysical effects in the two limits g2 - +00 and g2 - —oc0. For
g2 — +oo only one pole remains on the physical sheet. Since, however, its
position moves to minus infinity, it must be interpreted as a particle with
imaginary mass, .e. as a tachyon. This can only be prevented either by not
letting g2 take on too large values, or by changing the theory in such a way
that also on the first sheet a branch point occurs at s_. This will probably
happen if crossing symmetry is incorporated into the theory.
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It is usually stated that for negative g? the Hamiltonian becomes non-
hermitian, leading to acausal effects. The same remark applies to the Lee
model, because if g? is sufficiently large negative two poles appear in the first
sheet off the real axis, which contradicts the causality condition. There are,
however, negative values of g%, for which the two poles are still on the real
axis. The first has the characteristics of the original V-particle, whereas
the second is more like an N-§ bound state. Due to Levinson’s theorem
this additional bound state will lead to an observable effect in the energy
dependence of the phase shift.

Th.W.R. would like to thank Professor J. Namyslowski for drawing his
attention to Ref. [8] and for explaining its contents.
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