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We present a new method of deriving under some mild assumptions
the most general options for the B.R.S.T. transformation, without hav-
ing recourse either to Lagrange or Feynman’s integral-over-all-paths for-
malisms. It turns olt that these different variants can be reduced eventu-
ally to two cases, from which one encompasses the conventional B.R.S.T.
transformation.

PACS numbers: 11.15.Kc, 11.10.Tk

I am happy to be the first speaker at the meeting. One hour of emotions
and stress and I am a free man. To quote Wilhelm Busch from Fliegende
Bldtter:

Ist der Ruf erst ruiniert

Lebt es sich ganz ungeniert.

Nevertheless — I hope — the subject I chose for my talk will be of some
interest to this audience. It is related to some work done few years ago
by Dr Zumino, who is participating in this School and is present here at
this talk. As a matter of fact his clearly written lectures on gauge theories
and anomalies, given in Les Houches in 1983 [1], as well as of Wess, given
in Dubrovnik in 1986 [2], helped me to understand the subject better and
stimulated my own activities in this field.

My talk will be devoted to some speculations concerning so called
B.R.S.T. transformations. Some people use the catchword B.R.S., short
for Becchi, Rouet, Stora [3]; I added also the letter T standing for Tyutin

* Presented at the XXX Cracow School of Theoretical Physics, Zakopane,
Poland, June 2-12, 1990.
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[4] whose work was accomplished approximately at the same time but was
originally overlooked by most of the physicists. Usually the B.R.S.T. sym-
metry transformations arise as a substitute of gauge transformations as soon
as one introduces so called ghost fields of Faddeev and Popov into the orig-
inal framework of non-abelian gauge field theories. The standard procedure
is to apply the functional formalism of Feynman, the integral-over-all-paths
procedure, which in turn makes use of the Lagrange formalism as a tool [5].
The subintegral functional is gauge covariant, an unwanted feature under
these circumstances. So this symmefry gets broken by introducing a gauge
fixing term. It turns out, however, that after introducing the fictious fields,
the Faddeev—Popov ghost field mentioned above arising from the Jacobi de-
terminant of the integral, a new symmetry of the Lagrangian is born. This
is just the B.R.S.T. symmetry.

In this approach the ghost fields appear rather as a technical artifact
void of deeper physical meaning. The significance of this technique for re-
cent developments in gauge field theories seems, however, to indicate that
the appearance of the ghost fields can be a physically deeper rooted phe-
nomenon. In this note we try to refrain from the approach which uses the
integral-over-all-paths method and from the Lagrange formalism. We are
aware of the fact.that there exist a vast literature concerning the problem of
ghost fields as well as B.R.S.T. transformation in which no use of Lagrange
formalism is made [6]. The approach presented here differs, however, from
that displayed there [7].

Incidentally, I shall underscore my conviction, based maybe upon emo-
tions, that the Grassmannian variables are only a technical device and one
could do very well without using them. We are going to use differential
forms instead.

We start with the standard derivation of the B.R.S.T. transformation,
which does not have recourse either to Feynman or Lagrange formalism (see
[1] and [2]). One introduces a hermitian 1-form gauge field located in the 4-
dimensional Minkowski space and belonging to Lie algebra of some compact
semisimple gauge group, vz.

a(z) = 1a,(z)de” = a,dz*,
where aj(z) = a(z) is a cl2ssical gauge field, z = (25, 21,23,23), p =
0,1,2,3, » = 1,...,n and 7, are finite dimensional hermitian matrices
representing the generators of the compact semisimple gauge group G.
[ Note:
UTpy Tr] = — CprsTes
tr(7,7,) = &,

the structure constants c,,, are antisymmetric in all three indices.]



Some Remarks Concerning (...) 7

These generators are, of course, ¢ independent. The gauge group itself
is presented by unitary 0-form matrices g(z,t), where ¢t stands for the set
of n group parameters t = (;,...,t,). Although ¢ = t(z) one does not go
wrong by considering = and t as independent variables. For instance

r 0 , N
dt oY stands just for /d:c dt (x)m

Using a and g one may consider a new hermitian field, a 1-form with respect
to the variables z and belonging to the Lie algebra of the group G, viz.

A(z,t) = T, A (2, t)de* = g lag +ig~'dyg, (1)
where the 1-form in z
do = 99 4o
9 Jzk )

In case a = 0 one gets the pure gauge field
A°(z,t) = ig~'dg. (2)

One may vary g or A with respect to the group parameters. With the
notation

99 4

ot

(it is a 1-form with respect to the variables t) one gets from (1)

bg =

[ Note: Since g~'g = 1 we have §(g7!) = — g~8gg~" as well as d(g™') =

— g 'dgg~'. Taking into account that a does not depend on ¢ and is a

1-form we get
A= —g'6gg 'ag — g 'abg — ig g g 'dg - ig~'dég
= —g '8gA— Ag 'ég +igT'dgg g — igT'dbg
= —g 69 A— AgTlég — id(g7")5g — ig~'déyg
= — g '8g A~ AgTtsg — id(g'6g)

and we end up with (3).]

§A = —dv® 4+ v A + i AW°, (3)
where
v? = T,,.(’UO): dt* = ig~'8g (4)

is a 1-form in t. The latter is just the Faddeev—Popov ghost field. §4 is a
mixed 2-form in Minkowski as well as group parameters spaces. Notice that
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(v°); is a classical field, commuting with itself as well as with other classical
fields. We should keep in mind that

dt" de# = —de* dt"
dz¥de” = —dz¥ dz*

dt’ dt’ = —dt* dt” .

From (4) follows

50° = i(o°) (5)
One may now define the field strength as follows
[ Note:
(A)* = —A? when A2 = 4% in A = 7°A%dz" ]
F(z,t) =g ' fg = dA —iA’® (6)
with

[Note: da = 8,a,dz*dz” = 1(8ua, — 8,0, )dz* dz |

f=37f,de"d2" = | f, d2* dz¥ = da - ia®.
The field F' can be viewed as curvature in the space with connection A. For
a pure gauge field A° this curvature vanishes, viz.

dA® = i(A°)?. (7)

Relations (2) and (7) have similar structure to (4) and (5) mutatis mutandis.
Indeed, (5) expresses the fact that the Lie group is flat with respect to its
-own geometry, the content of the Cartan-Maurer theorem [8]. This becomes
clear if we write (5) in the form

8, (v°)* = 8,(v°)* = icime (v°)} (v°)7

with
[Tl, Tm] = iszpr B

To get the B.R.S.T. transformation one proceeds as follows. One forgets
about the definitions (1) and (4) as well as about the derivation of the
formulae (3) and (5) and just defines the transformation

sA = —dv® + i(v°A + A2°), (8)

sv® = i(v°)?, (9)
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which we are going to call the B.R.S.T. transformation. Here s is a 1-from
in the parameter space, viz.
8 = s, dt’.

Notice that we have
d=s=ds=3sd=0. (10)
Incidentally, relations (8) and (9) supplemented by (6) and
sF = i(v°F — Fu°)
are invariant under the Stora transformations [9]

d —+d+s§(i,

s — s,

A > A+00= A°,
% — 20,

F - F.
Then (8), (9) and (6) can be written concisely

F=dA° - i(4°). (11)

To conform to the standard procedure we need still two more fields, the so
called anti-ghost field and the gauge fixing field.

To justify the appearance of the anti-ghost field let us call attention of
the reader that transformation (9) of v°® was adopted because of formulae (4)
and (5). Notice that it would be quite justified to call v° a pure Faddeev—
Popov ghost field, in analogy to A°. It is quite reasonable to ask the question:

why do not we extend v° to v in a similar way a8 we used to extend A° to
A[10]? If we do so we get
v = T, dt’

which satisfies the relation
C = sv—iv? (12)
instead of (9). Here C is an additional field,
C=1r,Crdtdt,

a 2-form in ¢ and a curvature implemented by v. Both fields v] and C?, are
classical fields. Unfortunately, the relation

d*C = id(AC — CA) =0
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derived from (12) and (8), where v° has to be replaced by v, imposes a
stringent condition, viz.
FC =CF. (13)

The same constraint follows from
$*F = is(vF — Fv).

To get rid of (13) we are forced to introduce, in addition to C, a further
new field
7 = 1,7,,dz" dt’
and replace (8) by
SA+dv=1i(vA+ Av)+ 9. (14)
Relations (6), (12) and (14) are consistent as far as the action of s and d
operations are concerned and display a complete reflection symmetry

d < s,

F o C,
A o v,
v e v,

The equation (11) has to be replaced by

ﬁ:dz‘i~ix‘i2,
where }
F=F+C+1,
A=A+v.

The last relations show clearly that, in principle, we are dealing here with a
gauge field theory in a (4 + n)-dimensional space. The Minkowski and pa-
rameter spaces are treated on the same footing and are to some extent akin
to a Kaluza—Klein theory. This is not our geal as far as this presentation is
concerned. We want to cling to the original qualitative asyrametry between
the Minkowski and parameter spaces in our present appreach. To achieve
that it is enough to put either C or F equal to zero. For physical reasons
we put

C=0.

As far as © is concerned we may keep it and we are geing to do so.
We introduce still one more field

Q =1, Q¢,, dz* dt" dt’ (15)

BT
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which we are going to call the gauge fixing field. The motivation for intro-
ducing such a field is only partly of conventional nature. Another reason
for having such a field is that from a rotation of a vector A, viz.

dA

no conclusion whatsoever can be drawn as far as the divergence of it is
concerned,viz.

d"A.
We believe that @ is somehow linked to d~4 [10].

Before we enter into further considerations concerning the probing of the
most general variants of the B.R.S.T. transformations we have to settle the
fundamental problem, which fields can be viewed as variables independent
from each other. So far we dealt with the fields A, v, F, v and Q as well as dA
and dv. Further candidates are dF,dv and d@ . Two of these fields can be
easily excluded. Because of (6) either F' can be given in terms of d4 and 4 or
dA in terms of F and A. So one of them is redundant. We are going to keep
F as a variable. Notice that F does not vanish identically by assumption.
Notice also that in case ¥ versus dv in relation (14), the situation differs
from the one in (6) since in (14) enters the B.R.S.T. transform of A,sA
and ¢ cannot be defined in terms of dv and other fields mentioned before
using this relation only. Therefore we shall keep ¢ and dv as independent
variables. As far as dF is considered we have the Bianchi identity

dF = — AF + FA

which follows directly from (6).

We make an additional assumption, hiding in it an element of arbitrari-
ness, namely we assume that the fields do and dQ depend on the remaining
fields treated as independent from each other.

So we are left with the independent variables A,v, F,%,Q and dv, all
belonging to the Lie algebra of G. The first step we tzke is to cvaluate dv
and d@). The most general ansatz for the differential forms, belonging to
the Lie algebra, reads

dv = 0,(0A — AT) 4 05(Fv — ¢ F)
+ o3(Adv — dv A) + g4{vA? — A%v), (18)

dQ = ¢ (dvt ~ 5dv) + &(Fo® — v'F)
+ $a(A%0? - 27 4%) + 5,(AQ — QA)
b ds(TAv — mAD + TvA — Avd)
FPev AT - TAv — vTA + Av)
+ ¢7{dv Av — vAdv + dvvA — Avdv)
+ ¢s(vAdv — dv Av — vdv A + Advv). (17)
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Here o’s and ¢’s are numerical coefficients to be evaluated. Notice that the
term ©% does not enter on the r.h.s. of (17) as it does not belong to the Lie
algebra, viz.

v = Ymem + mime )0, 0, det dt” dz dt’.

To evaluate the numerical coefficients in (16) and (17) we have to exam-
ine d’% = 0 and d?Q = 0, where we made use of (10). From the requirement

d*v =10
and the independence of the variables 4, v, F, 7, Q anddv follows the relation
dv = o(Fv - vF — Adv + dv A - ivA* + iA%0).
(6=0,=—03=04, 0=0).
Because of (6) we have
dv = 0(dAv — vdA — Adv + dv A) = od(Av + vA).
Hence we may replace ¢ by a new variable, say,
v =7 - og(Av + vA).
Dropping the prime sign, (16) reduces to
dv = 0. (18)
In a similar fashion the requirement d2Q = 0 yields
dQ = ¢(dvv — vdv) = ¢d(vi — ) (p=¢y, ¢; =05 =2,...,8).
We introduce a new variable say,
Q' = Q — ¢(vo — Bv).
Dropping again the prime we get
dQ = 0. (19)

Now we are ready to investigate the most general variants of the B.R.S.T.
transformations. We recapitulate once more the standard formulation which
reads (v° = v)

sA = —dv +i(vA + Av),

sv = v,

sé = B,

sF = i(vF — Fv),

sB = 0.
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Here d¢ is linked to our ¥ and ( — dB) to our Q. With this identification
(18) and(19) are trivially satisfied.
Our conjecture is as follows. We are going to explore the action of

s = s, dt

upon the fields A, v, 9, F and @Q given as the most general forms with respect
to the before mentioned fields and dv, confined to the Lie algebra. We have
the ansatz

SA = aydv + ax(vA + Av) + a7, (20)

sv = fv?, (21)

sU = 7,(v8 — vv) + 72Q + y3(vdv — dvv) + 74(4v® — v?A), (22)

8F = €,(VA — AD) + &;(Fv — vF) + e3(Adv — dv A) + e,(vA* — A%v), (23)

3Q = £(Qv + vQ) + £(dvv® — vidv)
+ Ea(Dv? — v?0) + £4(AV® — v A — v Av + vA?). (24)

The coeflicients a, 3,7,¢ and £ are numerical coefficients to be evaluated
using the consistency relations (10).

Some comments are in order. To make it plain why in Eqs (20)-(24)
vA + Av instead of ¥4 — A% has to be used let us look closer to their
structure. We have

vA+ Av = v, A, dt"dz" + A v, detdt” = (v, A, — A, v, )dt" dz*

and
VA — AV = v,, A, dz¥dt dz¥ — A, 0, dz¥dz"dl”

= (0,, A, — 4,0, )dz"dt dz” .

Thus the proper sign guarantees that these expressions belong to Lie algebra
of the gauge group.

To explain our method, used to evaluate the numerical coefficients, let
us look first to a trivial case which,as a matter of fact, does not lead to any
definite conclusion but is simple enough to illustrate clearly the idea behind
the procedure used by us. Let us consider

sv = Buvt.

On the one hand we have

sfv=0.
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On the other hand
s*v=PB(svv—vsv) = G(fvv—vPv)=10.

Hence in this case we do not gain any information on §. The method
becomes more efficient as soon as applied to

dsv =0,
5 =0,
ds@Q =0,
$Q =0, (25)

where we made usc of (18) and (19}, as well as of
dsA= —~sdA and s*A=0.

Other relations, like d’4 = s?v = d*F = $*F = (ds + sd)F = 0 dc nct
provide us with any new information.

So let us look more closely to the case (25) as another exemplification
of our method. We get

v1(dv ¥ — T dv) + 74(dAv? - Advv + Avdv — dvvA + vdv A — v?dA)
= 1 {dv? — Ddv) + 74(Fv? + iA%* — Aduv
+ Avdv — dvvA + vdn A —~ v*F — iv?A*) = {
or
Nn=7=0.

Proceeding in this way (tedium!) we arrive at the final result which reads
as follows.

If we discard the uninteresting case a; = a, = az = 0, we have to
distinguish between two options

(i) as = 0jau* + laa? # 0),
(ii) as £ 0.

The case (i) corresponds to
$A = adv + B(vA + Av),
sv = Bv?,
st =vQ + ¥'(vdv — dvv),
sF = (Adv—-dvA— Fv+vF)+ia(Adv—dvA),
sQ =0.
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For 3 # 0 we may redefine v to

__ -7
v1=0- —dv
B
which yields (we drop the prime sign)
sT = Q.
In case (ii) we have (a3 = a # 0)
$A = a; dv + at,
sv = fv?,
— oy Qg
= - = v o d = - — d
5T aﬂ(udv vv) as( v),
sF = a(tA — AT) — a;(Adv — dv A),
sQ = 0.
After redefining 9 to
=,
vV=0+ —dv
a
we get (dropping the prime)
sA = ab,
sv =0,

sF = a(vA - Av).

In case (i) for B # 0 and v # 0 we may introduce the notaticn

%-oa Bv—iv Q- Q.
Then
sA = adv+i(vA+ Av),
sv = iv?,
=@,
sF = i(Adv—dvA— Fv+vF) + ia(Adv — dv A),
sQ =0.
Only one parameter a remains free. For a = — 1 this coincides with the

standard relaticn, provided @ = — dB and ¢ = dc.
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In case (ii) for a # 0 and 3 # 0 with

at — v, fv—iv

we get
sA=17v,
sv = 1v?,
st =0,
sF =24~ Ab,
sQ=0.

In this case no free parameter is left.

If we ascribe to the “physical” fields A4,Q,F the zero value of the
Faddeev-Popov charge and assume that the d-operation leaves this charge
unchanged, we get in case (i) that v has a charge opposite to 7 and the
s-operation changes the charge from zero to that of v. In case (ii) the fields
v and ¥ acquire the same charge as that carried by s.

The task to construct Lagrangians invariant under the transformations
(i) and (ii) seems to be not so difficult; we did not yet, however, try to find
them. It seems that the case (ii) is of limited physical interest.

The discussions with Dr D. Maison are gratefully acknowledged.
I am thankful to the organizers of this School for invitating me, in
particular to Dr Slominski, Director of this School.
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