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In this lecture recent results obtained from radiative corrections to
the Drell-Yan process and heavy flavour production are presented. The
K-factors in both processes are large and in the case of heavy flavour
production depend very heavily on the choice of the renormalization and
factorization scale. The contribution of the gluon-gluon subprocess to
both reactions will be discussed.

PACS numbers: 12.38.Bx

Introduction

In the past decade many calculations have been performed on higher or-
der QCD correctios to inclusive and semi-inclusive processes [1]. At present
it seems that most of the order a, corrections to n — m parton reactions
with n 4+ m < 4 have been computed.

Higher order corrections are necessary for practical as well as theoretical
reasons. The practical reason is that the statistics in the ongoing and future
experiments will improve, so that higher order corrections will be noticeable.
This is expected, as the size of the various K-factors can become rather
big. An example is the Drell-Yan (DY) K-factor [2-4] which has been
measured in fixed target as well as in proton-antiproton collider experiments.
‘Furthermore it will be interesting to see how these K-factors will behave at
very large energies, which are characteristic of future accelarators like LHC
and SSC. Here we expect that processes with gluons in the initial state
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will play a very important role. From the theoretical point of view higher
order corrections are interesting because we can learn something about the
behaviour of the perturbation series. In particular one wants to understand
the various mechanisms which dominate the K-factor. An example is soft
gluon radiation which in some regions of phase space constitute the bulk
of the radiative corrections. Finally we expect that cross sections,corrected
to higher orders in the running coupling constant a,, are less sensitive to
variations in the factorization and renormalization scales than the lowest
order ones.

In this lecture I would like to present the results obtained from recent
calculations of QCD corrections to the following two processes i.e. inclusive
vector boson production [5] (DY) and heavy flavour production [6]. In the
first case we have calculated a part of the O(a?) corrections to the DY K-
factor whereas in the second one we finished the complete O(q,) correction
to the semi inclusive cross section for heavy (anti) quark production. Notice
that the latter process has been also calculated by an other group [7] and
to a large extent we agree with their results.

In this lecture we apply the methods of perturbative QCD [8] to so-
called “hard cross sections”. They are denoted by do(s;,s;...s,) where
s; are the invariants involved which get asymptotic (i.e. s; — oo) with
s;/s; = fixed. Notice that s;/s; will neither become zero nor infinite. If
one integrates over a subset {s;} then collinear (mass) singularities will
show up in the initial or final state. These singularities are removed from
the cross section via splitting functions which in their turn renormalize the
ifput parton distribution and final state fragmentation functions. In this
way these functions become scale dependent. Perturbative QCD is based
on the parton model. The succes of this model is the main justification to
compute higher order radiative corrections in QCD.

1. Drell-Yan process

Massive vector boson productions is an important process to study the
properties of the electroweak bosons W and Z. Moreover it is an important
background process in large hadron colliders LHC or SSC in the search for
the Higgs or supersymmetric particles. Massive vector boson production or
dilepton pair production is given by the reaction

H1+H3—>V+X—+l1+lg, (1.1)
where V is ome of the vector bosons of the standard model (W, Z or ) which

subsequently decays into a lepton pair (£, £;). The symbol X denotes any
final hadronic state which momenta are completely integrated over. The
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colour averaged cross section is given by

do

a7 = Tov(Q?, M3)W(r,Q*), r=@Q?%/§, (1.2)
where oy indicates the pointlike DY cross section. Further § represents the
C.M. energy of the incoming hadrons H;, H, and Q? stands for the dilepton
pair mass. From the DY mechanism it follows that the hadronic structure
function W(r, Q?) can be written as

1 1 1

wW(r,Q?%) = Z dz, [ dz, [ dzd(r - zlz,z)f,-n‘(zhp’)fg’(z,,p’)
> ’
X A,-J-(Z», Qz’l‘z’Mg), (1.3)

where f* denotes the parton (gluon, quark) distribution function of hadron
H, which depends on the mass factorization scale u?. The QCD correction
term denoted by 4;; depends in addition to the mass factorization scale u?
also on the renormalization scale M2, The DY correction term A4;; can be

inferred from the DY parton structure function W via mass factorization

1 1 1
W.i(2, Q% M2 ¢) =Z/d‘°1/d‘°=/d’5(z—ztzaz)—"h(”hl‘z’e)
ko o )

X Dij(22, %, €)Au(2, @, p*, M?), (1.4)
where W;,- corresponds to the parton subprocess
i+j—-V+X, (1.5)

and I represents the splitting function. Like Wit depends on the renormal-
ized coupling constant o,( M) which has been determined in the MS scheme.
The collinear divergences showing up in W and I" have been regularized by
n-dimensional regularization (¢ = n — 4). The splitting functions as well as
the correction term are mass factorization dependent. In the current liter-
ature two schemes have become popular i.e. the MS and the DIS scheme.
In the first case I" takes the following form

Lii(z) = & + (4 ) P(°)(z)
+(2) |5 (470 0 PO + 80P(2)

+ 2P (1.6)
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Here ® denotes the convolution symbol and the PS') stand for the Altarelli-
Parisi splitting functions [8] which are calculated up to n = 1. The lowest
order coefficient appearing in the series expansion for the beta function is
represented by fBo. In the DIS scheme the splitting functions become

Tyq(z) = Fag(2, Q% M2 ¢), Toglz) = Fag(z,Q*, M%e),  (L.7)

where fgq, f-’zg denote the deep inelastic lepton-hadron parton distribution
functions corresponding to the parton subprocesses with a quark or a gluon
in the initial state respectively. The disadvantage of this scheme is that
I'yq and Iy, can be arbitrarily chosen. However the second moment can be
determined in such a way by requiring that the momentum sum rule will
be satisfied. In this lecture all our results have been calculated in the DIS
scheme. Up to order a? the DY structure function W Eq. (1.4) receives
contributions from the following parton subprocesses

O(a) qQ +§ -V (1.8)
O(a,) qQ +§ -V (1 loop) (1.9a)
g9 +9 —-V+g (1.9b)
g +a(@— V+q(q) (1.10)
0(a}) qQ +3 -V (2 loop) (1.11a)
q +§ —-V+g (1 loop) (1.11b)
9 +§ —>V+ig+tg (1.11c)
qQ +3 —-V+q+3 (NS+S) (1.12)
g +g@—-V+aq@ (1 loop) (1.13a)
g +a@—-V+aq@a+sg (1.13b)
q(@) +aq(@ — V+4q(@) +q(@  (NI+I) (1.14)
g +t8 —V+aq+3 (1.15)

The symbols NS (S) in Eq. (1.12) denote the nonsinglet (singlet) part re-

spectively. They refer to the splitting functions needed to render W finite.
In Eq. (1.14) we have computed the cross sections for identical (I) as well
as nonidentical quarks (NI) in the final state. Till this moment we have
not computed the hard gluon contribution in Eq. (1.11¢) and the qg sub-
process in Eqs. (1.13a) and (1.13b). Since the DY correction term has been
calculated in the DIS scheme we need the parton distribution functions in
the same scheme in order to determine the hadronic structure function in
Eq. (1.3). For that purpose we have chosen the DFLM set 4 [9]. For the
running coupling constants we adopt the expression in Eq. (10) of Ref. [10]
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which is corrected up to two loops with heavy flavour thresholds included
(4 = 0.2 GeV). Unless stated otherwise the mass factorization scale u is
chosen to be equal to the renormalization scale M.

In what follows below we will only show results for the total inclusive
cross section

orn(S) = / dQ*BW(Q*, My )W (r,Q?), (1.16)

where BW(Q?, My®) denotes the Breit-Wigner form. In the discussion of
the results we will try to answer the following questions.
a. How large is the O(a,?) contribution to the K-factor compared with
the O(a,) one?
b. What is the relative contrlbutlon of the four different subprocesses: qg,
qg, 99, gg to the O(a,?) part of the DY cross section?
c. How does the cross section depend on the different choices made for the
factorization scale u? and the renormalization scale M??

TABLE I

The total cross section for Z-production (in nb) in three approximations at SppS,
Tevratron, LHC and SSC. The value between brackets is the sum of the contribu-
tions from Aqd and Aqg (both in O(a,)).

VS [TeV] | 0.63 1.8 16 40

Born 1.36 4.93 39.9 76.1

O(a,) 1.79 (-0.07) | 6.16 (—0.52) | 46.7(-7.4) | 86.2(-17.0)
O(a?) 1.96 6.78 52.5 98.3

In Table I we have presented the total cross section for Z production
for four different collider energies i.e. v/§ = 0.63 TeV, VS = 1.8 TeV,
V'S = 16 TeV and v/§ = 40 TeV. From this Table we infer that for increasing
energies the K-factor gets smaller (see also Fig. 1). This is wholly due to
the O(a,) contribution. On the other hand the O(a,?) contribution slowly
increases and becomes even larger than the O(a,) one at SSC energies. This
effect can be wholly attributed to the O(a,) qg subprocess, which is always
negative over the whole energy range. Since vector boson production at
large energies is dominated by the small z, , z, region in Eq. (1.3) this effect
is not unexpected in view of the steep rise of the gliuon distribution function
at small z values. However one has to bear in mind that the extrapolation
of the existing parametrizations of the gluon structure function to small 2
values cannot be trusted. Moreover we do not know the O(a,?) contribution
of the qg subprocess to the K-factor yet. It is not impossible that the latter
can compensate the effect of the O(a,) part. Finally notice the size of the
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K -factor at large hadron collider energies. It varies from 1.4 to 1.3 between
V'S = 0.63 TeV and /S = 40 TeV. This has to be compared with what
happens at fixed target experiments (v/S = 20 GeV) where K even can go
up to about 2.4 [2]!

2-0 T T 11} T T 7 I 1T 1T T T T
2
““““““““““““““““““ B It T
1.0 .
0.8 ]
5 0.6 n
-z—o)l - —
“,'0.4— n
X

Fig. 1. The K-factor for Z-production at a pp collider. (1) K3, (2) K3, (3) K1),
(4) K®.

In order to study the different contributions of the various subprocesses
we introduce the following notations. The order ajcorrection to the theo-
retical K-factor is defined by

(1.17)

Here o(®) denotes the Born cross section and o{*) is the O(a) contribution
to the DY cross section. The O(a?) corrected K-factor is given by

4
K, =) K. (1.18)
s

In Fig. 2 we have shown the contributions of the various subprocesses to
the K-factor for Z-production. From this figure we infer that the qg sub-
process (Egs. (1.9) and (1.11)) dominates the K-factor followed by the qg
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Fig. 2. The various contributions to the K-factor for Z-production at a pp collider.

(1) k@, @) -kS, 3) K2, (4) K, (5) K, (6) K&2;.

subprocess (Eq. (1.10)). The latter becomes only larger than the O(a?)
contributions to the qg process (Eq. (1.11)) in the case of SSC energies.

The dominance of the qd process can be attributed to the soft + virtual
gluon terms appearing in Aqq provided the latter is calculated in the DIS
scheme. On the other hand the gg subprocess never exceeds the 1% level.
The same holds for qg|s and the qq subprocess. At first sight it is unexpected
that the gg subprocess is so small in view of the steep rise of the gluon
distribution function at small 2. In the case of heavy flavour production (see
next Section) this property is one of the main reasons for the importance
of this reaction. However the cross section is not only determined by the
parton structure functions but also by the Wilson coefficient (correction
term) as we will show below. Let us rewrite W (7, @?) in the following form

1
W(Ta Qz) = Z / %iéij(zs ﬂz)Aij(T/z’ Qza ”2, Mz) . (1‘19)

r
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where &;; stands for the parton flux

1 1
82, p) = /dh/dfcz é(z - 21-’02).1?11(21,I‘z)fjnz(zz,IB)- (1.20)
0o 0

The parton flux is characterized by the general property that is steeply rises
as £ — 0 whereas it goes to zero when ¢ — 1 . At very large S values we
have 1 = M%/S < 1 which implies that W(r,Q?) is dominated by small
z-region of the integrand in Eq. (1.19). Therefore the behaviour of 4;;(7/z)
at z = 7 is very important. The general behaviour of A;;(z) near z = 1 for
the various subprocesses is given by

Aqd ~ a; (‘" 1(1_ )) +58(1 - 2), (1.21a)
+

Aqg ~ aifn*(1 —z) + b;, (1.21b)

Agqg~(1—-2)* (a>0), (1.21¢)

Agg~(1-2z)° (b>0), (1.21d)

Aq§, S~ (1—-2) (c>0). (1.21e)

The vanishing of three last correction terms near 2 = 1 is caused by the
two to three body phase space integrals which become zero at the boundary
of phase space. This is the reason why these reactions gg, qq and ¢g|s are
suppressed with respect to the other ones.

TABLE II

B -0y (in pb) for SppS and Tevatron. We have used B(Z — ete™) = 3.35 x 1072,
Mz = 91GeV, sin? 6w = 0.227.

V5 [TeV] 0.63 1.8
Born 45.7 165
O(as) 60.0 206
O(af) 65.6 227
exp. 70.4+ 5.5+ 4.0 (UA2) 197 + 12 + 32 (CDF)

Finally we would like to investigate the scale dependence of W(r,Q?) .
In principle the latter should be scale independent since it is a physi-
cal quantity. However since the leading and the next to leading logs in
A;;(z,Q? p?, M?) are only calculated up to a finite order in a,, W(T,Q?)
will become scale dependent. There are many discussions in the litera-
ture concerning the choice of the right scale. Some groups prefer PMS (11}



Recent Results on Higher Order QCD (...) 91

11+

1.0

09+

] | i |
05 1.0 15 20

Fig. 3. Dependence of the mass factorization scale p represented by the quan-
tity R = o(u, u)/o(My, My) for Z-production at v'S = 0.63 TeV (SppS). u is
expressed in units of My.

TABLE 111

B - ow+,w- (in pb) for SppS and Tevatron. We have used B(W — ev) =
0.109 :Mw = 80 GeV, sin® ¢ = 0.05.

Vs [TeV] 0.63 1.8

Born 479 1770

Ofa,) 628 2210

O(a?) 690 2440

exp. 660415+ 37 2060 + 40 + 340 (CDF)

whereas other people advocate FAC {12]. Other groups vary the scale be-
tween some canonical values [7]. The best solution to the problem is to show
that the resulting expressions exhibit a very small variation under a wide
range of scale choices. To my opinion semi leptonic processes like DY are a
good candidate to satisfy this requirement since the lowest order contribu-
tion (Born) is independent of a,(M) . To simplify the discussion we choose
in this lecture y = M. Independent variations of u and M can be found in
Ref. [5]. In Fig. 3 we have plotted the ratio R = o(u, M)/o(My, My)|,=m
for Z production at V'S = 0.63 TeV. We observe an improvement in the
dependence of R on p if higher order corrections are included. However
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at higher energies (see Ref. [5]) the O(a?) corrected R is not better than
the O(a,) corrected one. On the contrary if we go to LHC or SSC energies
the O(a?) corrections lead to a larger deviation from 1 than the O(a?) cor-
rected R. This phenomenon has to be investigated. Probably this is due
to the missing O(a?) qg contribution or it can be attributed to the wrong
scale dependence of the existing parton distribution functions at too small
z—values. The same features as has been described above are also discov-
ered for W-production (see Ref. [5]). Therefore there is no need to discuss
this reaction. In Tables IT and ITI we have compared our predictions for the
processes pp — Z — £{ and pp — W — (v, with the most recent results
from the UA2 [3] and CDF [4] groups. From this table one concludes that
the O(a,) and O(a?) predictions are in agreement with the data (UA2)
whereas the Born approximation is not. This clearly indicates that QCD
corrections are necessary to bring the DY cross section into agreement with
experiment. However at this moment one cannot discriminate between the
O(a,) and O(a?) corrected cross sections.

2. Heavy Flavour Production

During the last few years heavy flavour production called the atten-
tion of many experimentalists and phenomenologically oriented theoretical
physicists. The reason for this interest can be summarized as follows [13]:

(a) The search of new quarks in particular the still evasive top quark.

(b) Bottom-anti-bottom production. Study of bb mixing, CP’ violation,
determination of the Kobayashi-Maskawa matrix elements.

(c¢) Interpretation of single and double charged lepton signals.

(d) Background estimates in search of new physics.

On the Born level we have the following reactions [6,7]
0(a7) a+3 —Q+Q, (2.1)

g+g —Q+Q, (2:2)
where Q stands for the heavy quark (heavy flavour) and Q = ¢, b, t. In the
next to leading order we encounter the processes

0(a}) q+a —-Q+Q (1 loop), (2.3a)
q+3 —Q+Q+y, (2.3b)
g+g —Q+Q (1 loop), (2-3¢)
g+g —Q+Q+g, (2.3d)
g+4(@ - Q+Q+4q(q). (2.3¢)

The calculation of the single particle inclusive parton cross section is
straightforward and for the details we refer to the literature [6,7]. Integrat-
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ing over the whole phase space we obtain the total parton cross section

2 2
outorm?) = S L 10(0) + amau) [0+ B ]}
s
1= 43 1. (2.4)

Here p represents the factorization scale which has been put equal to the
renormalization scale. The centre of mass energy squared of the incoming
partons i and j is denoted by s and m stands for the heavy quark mass. The
total cross section in Eq. (2.4) can only be expressed into scaling functions
if the renormalization of the strong coupling constants a, is chosen in such
a way that the heavy flavours appearing in the internal loops are decoupled
in the limit when the momenta entering the fermion loop contribution go
to zero. Studying the shape of the various parton cross sections (see Refs
[6,7]) we distinguish the following dominant production mechanisms.

2.1 Near threshold s ~ 4m?

The Coulomb singularity originating from graphs where a massless vec-
tor boson (here the gluon) is exchanged between two heavy quark lines in
the final state (Fig. 4a) leads to the following behaviour of the cross section

x2

dP(s) ~ —, s~ am’. (2.5)

Initial state gluon bremsstrahlung (ISGB) given by the momentum config-
uration of the out going gluon in Fig. 4b (with ; — 0 and k; — 0) yields
the following behaviour.

ag )~ aln?87-0, s> 4m’. (2.6)

t]’

Notice that ISGB gives a large enhancement to the cross section near thresh-
old (Fig. 5).

2.2 Asymplotic region s > m?

Here we have two dominant production mechanisms i.e. flavour exci-
tation (FE) (Fig. 4c) and gluon splitting (GS) (Fig.4 d); In this case the
cross sections behave like

1

P ~ — s> mk. (2.7

This effect can be explained by the exchange of the massless vector boson
(here gluon) in the ¢ channel of the subprocesses Q* +g — Q + g (EF) and
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Fig. 4. Production mechanisms in heavy flavour production.

(a) Coulomb singularity, (b) Initial state gluon bremsstrahlung (ISGB), (c) Flavour
excitation (FE), (d) Gluon splitting (GS), (e) Final state quark fragmentation
(FSQF).
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Fig. 5. The gluon—gluon contributions to the parton cross section plotted versus
n = s/4m? — 1. The functions fég), f&) and f&) are defined in Eq.(2.4). Solid
(dashed) lines correspond to the exact (approximate) O(a?) results. The contribu-
tions from initial state gluon bremsstrahlung (ISGB) flavour excitation (FE) and

gluon splitting (GS) to the approximate fé;) are shown separately.

g+8 — g* +8g (GS) where the superscript * indicates that the particle is
virtual. The main contribution to the total parton cross section at large s
comes from the region t ~ m? (see Figs 4 ¢,d). Both mechanisms in the large
plateau present in the total parton cross section at large s in the reactions

gg (Figs 5,6) and gq(q).
2.8 Final state quark fragmentation (FSQF)

This process is indicated in Fig. 4e. Due to the KLN theorem [14] its
contribution is negligible for the total cross section. Even in the case of the
differential cross section where it gives rise to terms of the type Ins/m? its
contribution is unimportant in the whole s-region. Therefore we have not
included this mechanism in the approximations outlined below.

The above “dominant” mechanisms inspired us to construct some ap-
proximations for the O(ay) corrected parton cross section by using renormal-
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Fig. 6. Same as Fig. 5. The approximate contributions to f(1) gg 8¢ multiplied by
the dumping (fudge) factors mentioned in Ref. [15]

ization group (mass factorization) methods (see Ref. [15]). Approximations
based on physical principles are useful to understand the structure of the
formulae obtained vie an exact calculation. Moreover they lead to short
expressions which can, provided the approximation is good enough, replace
the very lengthy exact cross sections. In this way one gains much computer
time.
In Fig. 5 we have plotted the exact as well as the approximate expres-
sions for the function f{}) (MS scheme). For small and large s we find goed
agreement. However the approximation expression is not able to describe
the dip in the exact fg) which appears at moderate s values. Unfortu-
nately that is just the region which gives an important contribution to the
hadronic cross section when f;; is convoluted with the gluon—gluon flux &,
(see Eq. (1.20) and Table III). In order to improve the expressions we in-
troduce a fudge factor [15]. The result of this operation is shown in Fig. 6
where the dip is now better reproduced by the new approximation. The
effect on the total hadronic cross section for the process

P+P—Q+Q+X (2.8)
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which is given by

o(85,m?) =Y / de &,;(z, 1)ois (25, m?, ?) (2.9)

hi 4m3/S

has been shown in Tables I and II for top production at v/§ = 0.63 TeV
and V'S = 1.8 TeV respectively. The first striking result is that the main
part of the O(a,) correction can be attributed to the gg reaction. This is
in contrast to what has been observed in the DY process. Further we see
that the exact and the approximate corrections differ by about 25 to 30
%. The situation improves if the fudge factor is included except for the
qg subprocess which is fortunately unimportant anyhow. The discrepancy
between the exact and approximate hadron cross section is mainly due to
the dip present in the gg and q exact parton cross section. Unfortunately
it is just the s region where the dip appears (2 < s/4m? < 20) which gives
an important contribution to the integral in Eq.(2.9). As can be observed
in Fig. 6 and Tables IV and V the introduction of the fudge factor improves
the approximation for the total cross section. However this does not imply
that also the differential distributions like d’c/dydp, (y = rapidity, p, =
transverse momentum of the heavy flavour) will become better.

TABLE 1V

Total cross section in (pb) for top quark production m, = 40 GeV) in pp collisions
at v/S = 630 GeV. The results of the exact O(a?) calculations and the approximate
formulae with and without the fudge factors are compared. The contributions
from the gluon-gluon, quark-antiquark, and gluon—quark subprocesses are given
separately. Also given are the respective Born contributions. The factorization

scale g = my, and the DFLM structure function parametrization set 3 is used with
A = 250 MeV.

88 93 ga(d) Sum
Bomn 164.6 332.9 0 497.5
exact O(a?) 147.1 61.9 -10.6 198.4
approx O(a?) 195.8 99.6 22.2 317.6
approx O(a?) 154.0 87.8 5.1 246.9
fudged

For that purpose we studied top production at v/S = 0.63 TeV by
looking at the three subprocesses gg, q@ and gq(gq) independently. For
Y 2 1.0 or p; > 20 GeV the curves of the exact and approximate differential
cross section do/dp, come very close to each other. This is certainly the
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case for gg (Fig. 7) and qg (Fig. 8) but not for gq (Fig. 9). The latter
is not unexpected since in Tables IV and V we already observed that the
introduction of the fudge factor did not improve the approximation for the
gq subprocess.

Finally we want to make some comments on the K-factor of heavy
flavour production. Starting with the rapidity (y) distribution (see Fig. 10)
for bottom production we observe that in the central region the lowest
order cross section is much flatter than the O(a,) corrected one. The p,
spectrum (see Fig. 11) shows no difference in shape between the Born and
O(a,) corrected cross section. The same holds for top production (Fig. 12).
Notice the large K-factor, 2.5 for bottom and 1.4 top both at v/§ = 1.8
TeV, which is almost constant except near p, ~ 0. This K-factor is larger
than the one obtained for the DY process.

TABLE V

Same as Table I but for top production (m; = 120 GeV) at Fermilab collider
c.m. energy VS = 1.8 TeV. The DFLM structure function parametrization set 2
with A5 = 173 MeV is used.

g8 qq £1(3) Sum
Born 6.50 19.33 0 25.83
exact O(a?) 4.96 2.98 —-0.45 7.49
approx O(ad) 6.40 4.66 0.79 11.85
approx O(ad) 5.16 4.12 0.19 9.47
fudged

Before finishing this lecture I would like to make some additional com-
ments.’

(a) For pp colliders the gg subprocess is the dominant production mecha-
nism in particular for ¢- and b-production. In the case of top production
the Born contribution from the qg subprocess becomes important too.

(b) The subprocess qg and gq(g) cause an asymmetry in the rapidity (y)
distribution between the heavy quark and anti-quark [6,7]. Maybe this
will be observable at fixed target experiments.

(c) The contribution due to the gq(g) subprocess is small in all regions of
phase space.

(d) The figures show large radiative corrections at the centre of the rapidity
plot. The shape of the p, spectrum is unaffected by the O(a,) correc-
tions. There is a large K-factor which is very sensitive to changes in the
mass factorization and renormalization scales [7]. This is not surprising
since the Born cross section is already of O(a?). Therefore perturbative
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QCD gives a much less reliable prediction for heavy flavour production
than it does for the DY process.

[pbGev?]
o
o

2
t

de/dy/dp
o

o

1
0 ‘ 20 40 60 80
plGeV]

I
o

Fig. 7. The contributions from the gluon-gluon subprocess to the differential cross
section for p+p — Q+Q+X at two different rapidity valuesy =0 and y = 1.1. Our
exact results are shown for v/S = 630 GeV with mq = 40 GeV/c? and 45 = 173

MeV. The factorization scale p = 1/"% + pZ. We also show the results of our

approximate calculations.
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Fig. 8. The same as in Fig. 7 but the quark—-antiquark subprocess.
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Fig. 9. The same as in Fig. 7, but for the gluon—(anti)quark subprocess. Here the
lower curves refer to our exact calculations and the upper ones to our approxima-
tions.
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Fig. 10. The rapidity distribution for p+ p — b+ X with my, = 4.75GeV/c?, u =
\/m? +p? at v/S = 630 GeV and v/S = 1.8 TeV. The upper curves refer to the
higher energy.
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Fig. 11. The differential cross section for p + p — b+ X with my = 4.76 GeV/c?
and g = \/mb5 +p? at V'S = 1.8 TeV. The cross section is shown at different values
of rapidity for (1) dashed lines: lowest order contribution scaled by an arbitrary
factor (here 2.5); (2) solid lines: full order a2 calculation.
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Fig. 12. The differential cross section p+p — t+ X with m, = 120GeV/c? and u =
/m? 4+ p? at v/S = 1.8 TeV. The cross section is shown at different values of

rapidity for (1) dashed lines: lowest order contributions scaled by an arbitrary
factor (here 1.4); (2) solid lines: full order a? calculation.
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