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An algebraic procedure for obtaining oscillator realizations of quantum
(g-) oscillators is described for both bosonic and fermionic g-oscillators.
The existence of canonical g-transformations is demonstrated and some
interesting aspects of such transformations are discussed.

PACS numbers: 03.65. Fd

1. Introduction

Quantum Lie algebras first emerged in the sphere of quantum inverse
scattering problems and Yang-Baxter equations [1]. It is known that the
‘Jacobi identity is an associativity condition for a Lie algebra. The quantum
Yang-Baxter equation plays a similar role for a new algebraic structure
which in a certain sense is a generalization of a Lie algebra. This new
structure is often referred to as a ¢-deformation of a Lie algebra, with the
deformation parameter ¢ = e®, such that the usual Lie algebra is repro-
duced in the limit s — 0, i.e., ¢ — 1. Drinfeld showed [2] that these
deformed structures are essentially connected with quasi-triangular Hopf
algebras. Extensive developments regarding the nature, structure and rep-
resentations of these deformed algebras have also been made by Jimbo and
Woronowicz [2] while Manin has given an appealing geometrical approach
[2]. There are versions of deformed Kac-Moody and Virasoro algebras (3],
the realization of quantum SU(2), algebra in terms of g-oscillators has been
extensively studied [4] and there exist g-oscillator realizations of many other
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quantum algebras [5]. Here we shall discuss the harmonic oscillator realiza-
tions of both bosonic [6] and fermionic g-oscillators and show how canonical
g-transformations [7] can naturally exist. The aim is to show how all this
can be cast into one theoretical framework which is purely algebraic. The
essence of this framework is to set up functional equations resembling finite
difference equations and then try to solve them exactly. Accordingly, the
plan of the paper is as follows. In Section 2 we discuss the basic elements
of our methodology in the context of the harmonic oscillator realization of
bosonic [6] and fermionic g-oscillators. In particular, we shall show how the
usual harmonic oscillator realizations of fermionic g-oscillators occur quite
naturally in this approach. In Section 3 we demonstrate how canonical g¢-
transformations fit into this scheme, underlining the power of this algebraic
procedure. Section 4 comprises of our conclusions.

2. The methodology for harmonic oscillator realizations

We shall now describe the harmonic oscillator realizations for g-oscilla-
tors. First let us recall the case for bosonic g-oscillators [6]. The equations
characterizing the ¢g-deformed bosonic oscillator system are (g real)

aat — gata=¢7%, Nt=N, (1)
[N, a] = —a, aN = (N + 1)a, (2)

[N, al] = of, alN = (N -1)at, 3)
ata = [N], aal = [N +1], (4)

where a,al and N are the annihilation, creation and number operators,
respectively, and [z] = (a® — a~*)/(g — ¢~). One can verify that Eq. (4)
is a solution of (1) for both real and complex g. We shall confine ourselves
to real ¢ [6].

Ordinary bosonic oscillators @, @t are described by

@ &l =1, N=3ata=daat-1 (5a)
[N, 3 = -3, [N, ah) =3at, (5b)

where N is the usual number operator. We want to find the solutions for
a, al and N satisfying Eqs (1)-(3) together with

[N,N]=0, [N,a]=-a, [N,al]=al. (6)
From (6) one has

N=%&q,N), a=df(s, N), af=f(g N)at, (1)
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where & and f are some arbitrary functions and f is real. Substituting (7)
into (1) we get

(N+1)f (g, N +1)-aNf (g, M) = g2 @M =g, (8)
Further from (2) and (3) one concludes

q_Na = aq"N'H , (9a)

g Nat =atg~ N1, (9b)
Putting Eq. (8) into (9) one obtains the functional equation
1 o -~ ~
(- +9)F(g, N) - F(q, N -1) - F(g, N +1) =0, (10)
where F(qﬁ ) = N 2(q, N ). The same equation is also obtainable from
Eq. (9b).
To solve Eq. (10) for F(g, N) note that
F(g, N) =5 W (11)

Thus one has the following system of equations to solve:

1 - ~~ ~
(‘;+9)F(q,N)—F(q’N"l)_F(q’N'i"l):Oa (12a)
Flg, N +1)— gF(g, N) = %@ ®) - =N (12b)
F(1,N)=N, #Q1,N)=N. (12¢)

The functional equations (12a), (12b) are analogous to finite difference
equations and there will appear initial values in their solutions. Also it is
easily seen that the conditions (12c) satisfy the Eqs (12a) and (12b). The
solution to Eq. (12a) has been elaborately described in Ref. [6] and is

F(q, N) = 4" F(g, 0) + [N])g~#(@0) (13)

for arbitrary F(g, 0) and #(q, 0). Moreover, note that if F = F(q, ﬁ) is
a solution of (12a), then F = F(g, —N) is also a solution. So the general
solution is [6]:

gV 1(q) — ¢V P2(q)

F(q’ ﬁ): (q_q_]) ? (14)
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where &;, are arbitrary functions with the restriction that one has
$1,2(1) = 1. For reasons stated in Ref. [6] #; may be taken to be func-

tions of ¢ only. Then using F = N (g, N ) we have [6]

Ng, _ o—N Ng, _ o—N
=z, |21 4‘2, ot =4/ %1 Q_l $2 .t
N(g-q71) (g-¢71)
N=N-(})lng,. (15)

Solutions (15) satisfy all the fundamental relations. Choosing $; = #; =1
gives known realizations [9].

Let us now consider the harmonic oscillator realization of fermionic
g-oscillators. We shall explicitly show that the application of the above
formalism leads to the known realizations [9]. Here there are no arbitrary
fux;ctions as these are fixed by the constraint on the number operator, viz
M‘=M.

The ¢-deformed fermionic oscillator is described by the relations:

bbt + gt = ¢M, M=M=M?, (16)
M, b] = b, bM = (M + 1)b, (17)
M, bt = bt bIM = (M - 1)bt, (18)
bty = [M], bt = [1 - M], (19)

where b, bt and M are the annihilation, creation and number operators,
respectively. As before ¢ is real. The standard fermionic oscillator is defined
through the relations:

(4,8 =1, M=5%=1-5=M?, (20a)
[M,3)=-5, [M,5')="0t. (20b)

The analogous of Eq. (6) are:
[M,M]=0, [M,b=-b, [M,d]=0t. (21)
This means that
M=9(q, M), b=06(q, M), bt =0(q, M), (22)

where ¥ and 6 are some functions to be subsequently determined and we
take 6 to be real. Putting (22) into (16) one obtains

(1= M)02(M + 1) + (M6 (M) = ¢¥(@ 3D, (23)
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From (17) and (18) we have further

gMb = bgM—1, (24a)
Mot = ptgM 1, (24b)

Now proceeding exactly as before, viz. substituting (23) in (24a) we have
24¢¢(y, ﬁ) - qu(q’ M- 1) — (g, KI+ 1)=0, (25)
where

&g, M) = 6%(q, M),
(LM =M, ¢1,M)=M. (26)

Note that (23) can be written as
(1 - M)¢(g, M + 1) + ¢ME(q, M) = ¢¥ (@ M) = M (21)

Here a short digression is necessary. Owing to the fact that M = M? and
M = M?2, the eigenvalues of these operators are 0 and 1. The solution for
£(g, M) can be obtained as:

£1(q, M) = —(M — 1)g™¢(q, 0) + MgM—1g%2:0) (28)

for arbitrary £(q, 0) and ¥(g, 0). It can be readily checked that if £1(g, ﬁ)
is a solution of (25) then (g, —M) is also a solution.
We rewrite (28) in the form

€1(a, M) = Mq™ A(q) + ¢ B(g), (292)
where
A(Q) = q~lq!p(q'o) - E(Qa 0) ) B(Q) = f(q, 0) . (29b)
Similarly _ e
&1(¢, ~M) = Mg~ ™M 4(q) + ¢ MB(g) (30a)
with
A(q) = £(q, 0) - ¢ 1¢¥ @O B(q) = g, 0). (30Db)

Therefore, the general solution of Eq. (25) is

£(a, M) = &1, M) + (s, -M)
= gM(MA+ B)+ ¢ M(MA + B). (31)
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From (26) the condition £(1, M ) = M implies
A-}-,‘i:l, B+§=0. (32)

Hence the solution (31) takes the form
£(a, M) = Mg~ + (¢™ - ¢ M) (M4 + B). (33)

We now demonstrate that the restriction on the number operator (ﬁ =
M %) will determine £(g, M ) uniquely t.e., there will be no dependence on
the arbitrary functions A(q) and B(q). Substituting the solution (33) into
(27) and using the identities

——— ——

M=1-M+qM, ¢M=1-M+q'M, (34)
we find .
M=q™[g + (44 B)(g-q7)] (35)
so that . .
M=M+(3)lnF(qg), (36)
where _
F(g)=q¢ '+ {A(g) + B(9)}g—-¢7%)- (37)

Now imposing the condition M2 = M and remembering that Fisa
function of ¢ only, the restriction on F becomes

InF(q)=10 ie. F(g)=1 (38a)

which in turn leads to

A@+B(a) = =), (38b)
We thus have .
M=M. (39)

Using (34) and (38b) the general solution (33) simplifies to
&(q, M) = M = M? ie. 0(q, M)=M. (40)
Thus the harmonic oscillator realization of fermionic ¢-oscillators is obtained

as
b="16(g, M)=0b10=0; bt =73t. (41)
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Thus we have arrived at the usual realization for fermionic g-oscillators [9].

In this section we have seen that in the usual oscillator realization for
bosonic g-oscillators there are present arbitrary functions of the deforma-
tion parameter ¢g. However, for fermionic g-oscillators such dependence on
arbitrary functions is absent owing to the fact that the number operator M
satisfies M2 = M. In the next section we show that there are harmonic
oscillator realizations of g-oscillators where arbitrary functions of ¢ play a
nontrivial role.

3. Canonical ¢-transformations

The power and utility of the formalism just described will now be
demonstrated in the context of canonical ¢-transformations [7, 8].
For bosonic g-oscillators these transformations can be written in the

form {7): ~ R
(:"') B (;(thLll)) ;*((Nﬁ))) (*) ! (42)

where (a, at), (a', a't) satisfy
aat - g%ata=1. (43)

The fundamental relation (43) is equivalent to (1) under the identification
a — ¢¥/%2a, al - atgN/? and the functions @(N) and #(N) can be de-
termined exactly. The transformations (42) act on the two dimensional
quantum space of vectors (a, al) satisfying (43) and preserve this property
for (a', a't). Thus we can interpret the transformations (42) as an element
of the g-deformed SL(2,R) group. However, this ¢g-deformed group is not re-
lated to the quantum group SL(2,R), as the quantities 4, §, @*, 7* in (42)
are commuting operators while the elements of the SL(2,R), matrix has
nontrivial commutation relations. It can be shown that [7]

] [ N -1) 17

(2 _ 1/2
WN) = _ _M] :
142N - &,

u(R), a(ﬁ)=v(ﬁ)[¢ e
R

where #1(q), $2(q) are the same arbitrary functions as in (14) and the
equations to be solved to determine u(N), u«*(N) and v(N), v*(N) are

UN+1)-QPUN)+V(N)-@PV(N+1) =1, (44)

uw(N)o* (N +1) = ¢?v*(N)u(N + 1), (44a)

u*(N)o(N +1) = qzv(ﬁ)u(ﬁ +1), (44b)
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with
U(N) = Nu*(N)yu(N),  V(N)= Nv*(N)v(N). (44c)
Thus here also we arrive at functional equations resembling finite dif-
ference equations. The solutions to these equations have been elaborately

given in Ref. [7] and the canonical transformations (42) can be written as
(for f] = fg = 1)

d = a{|a(W)e*} + {?NW1/2|a()[e?}at
a't = {[a(W)le=*}at + a{PFW/2|5(N)]e=F} (45)
with
=~ 1/2
1-¢*Nw /

ja(N)| = = =
{1 _ q4N—2w}{1 _ q4N+2w}

(46)

Here W(4q) is an arbitrary function of ¢ and a(g), B(q) are arbitrary phase
factors. It can be easily shown that (for a and 8 independent of N ) the
limit ¢ = 1 gives the usual SL(2,R) canonical transformations of the ordi-
nary harmonic oscillator where a(1), §(1) and W(1) are parameters of the
SL(2,R) transformations [7].

The next natural question to ask is whether canonical ¢-transformations
can be set up with two bosonic g-oscillators. The answer is yes and certain
interesting aspects of such transformations have come to light [8]. We briefly
discuss this below.

Consider two bosonic g-oscillators a;, ap satisfying (no sum over 1)

a;al — qzagai =1. 47

i

One then carries out the following linear transformations on a;, a:-‘

a'l = al.X](ﬁ], ﬁz) + Yl(ﬁl, ﬁz)d}; a'11 = X;GI + (1.;,>Yl'.K ,
a'2 = ang(ﬁl, ﬁz) + Yg(ﬁ], ﬁz)ai; ag = X;a; + GIY; . (48)

Certain points are worth mentioning regarding the philosophy of the ap-
proach in this case. Initially, except for the fundamental relation (47), noth-

ing else is specified, i.e., relations between the operators (a;, a;), (a;‘, a;-)
and (a;, a;‘-), i # j, are not given. They are determined later.

Substituting (48) into (47) again leads to slightly more complicated
functional equations resembling finite difference equations and these can be
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solved exactly [8]. The answers are:

) (

Ny . —~ N .
a =a g—r N)et®1 y 4 2NW1/2 ‘g,\— N e"al at,
S R aiand 1q A VT

’

-~

ﬁl - - . 25 e Nz - - .
a) = a \97 Fa(N)eio2 § 4 qu;/’\ L7, (W)eb2 § ol (49)

[N2] (V1]
J \
where
() = =TT,
{1 - ¢AN-2w;} {1 — 2N +2 W} ’
N = ﬁl + ﬁ2 ’

and W;(q) are arbitrary functions of ¢ while a;, §; are phase factors. The
relations for ¢ # j are (for #; = 3 = 1 and all phase factors a, § = 2rm):

(a1, a2] = [a}, al] = 0,
1-N
R e W ALGE
ql-ﬁ

We therefore see that canonical g-transformations with two g-oscillators
can be set up, but these oscillators cannot be strictly independent. This
indicates that relations between different g-oscillators are not a priori fun-
damental.

4, Conclusions

An algebraic procedure has been described which gives oscillator real-
izations for quantum oscillators in a systematic way. The procedure entails
setting up equations similar to finite difference equations and then solv-
ing them. In this way harmonic oscillator realizations for both bosonic and
fermionic quantum oscillators can be obtained. Canonical ¢-transformations
can also be set up in this formalism in a rather elegant way for the single g¢-
oscillator. as well as for two bosonic g-oscillators. For the single g-oscillator,
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the picture obtained is consistent with Manin’s geometrical approach. For
two g-oscillators there are indications that relations between different ¢-
oscillators are not fundamental. Using this algebraic procedure an exact
prescription for g-bosonization has also been recently obtained [10].

The author would like to thank the organizers of the XXXI Cracow
School of Theoretical Physics for their hospitality.
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