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The effective Hamiltonian governing the decays K — 2x depends on
the Wilson coefficients zy,...,2¢,41,..., ys. We express these coefficients
as convergent series in the parameter z = 1/N, where N is the number of
colours. Analytic formulae for the (N-dependent) coefficients of these se-
ries are given. The first approximation reproduces the results of Bardeen,
Buras and Gérard. Two more expansion terms are calculated and the
corresponding approximations to 21,...,ys are compared with the exact
results.

PACS numbers: 13.20.Eb

The effective Hamiltonian used to describe the decay K — xx depends
on the Wilson coefficients z3 (u), ..., 26(#), y1(#),...,ys(#) [1]. Since in the
following many statements apply to both z; and y;, we shall use the notation
¢i(p) to denote z;(p) or y;(p). In the formulae describing the K — xx decay
the coefficients y; occur multiplied by

ViaVis
= TVl ®

where V;; are the elements of the Cabibbo-Kobayashi-Maskawa matrix.
Since the absolute value || is of the order of 0.001 [2], the coefficients
yi contribute littlé. The purpose of the present paper is to study the nature
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of the 1/iy expansion, where N is the number of colours, in order to under-

stand why the simple high N approximation used by Bardeen, Buras and

Gérard (3] (further quoted BBG) gives a good approximation to the Wilson

coefficients. Therefore, we will use the BBG formalism suitable for the case

my € Mw, in spite of the fact that now it is known that m; > 89 GeV [4].
The coefficients {; are assumed to satisfy the initial conditions [1]

Gi(Mw) = 6ia (2)

and the renormalization group evolution equations
a N
p d,ﬂ 3¢ = 1T, (3)

where ( denotes the vector ((1,...,(s)T. The anomalous dimension matri-
ces are
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where the second term is due to the penguin diagrams. The factor N in
Eq. (3) is extracted, because together with a, it gives a factor a; N, which
tends to a finite limit for N — oco. The factors F(u*) distinguish between
the z and the y coefficients. In the simplest approximation assuming exact
GIM cancellation [5] we have for the 2z coefficients

F(1?) = 6(md - p?) (5)

and for the y coefficients.

Fy(1?) = 6(mi — p) — O2 x Fz(p?). (6)
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In the formulae O, is a projective operator acting on the matrix before him.
It is equal identity on the second row of the matrix on which it acts and
zero on all the remaining rows, 6(z) is the step function equal one for z > 0
and zero otherwise.

Equation (3) can be solved by diagonalizing the 4 matrices [5]. This,
however, is a cumbersome procedure. BBG noticed that replacing matrices
(4) by their large N approximations

(-7 & 0000y (000 0 0 0)

¥ -7 0000 000 5% 0 5%

0 0 0000 000 0 0 0 .
T=1 o o ooooft[ooo o o o |F)

0 0 000 0 000 0 0 0

\ 0 o 0003/ \ooo o 0o o)

(7)

one very simply obtains results, which almost coincide with the results of
the full calculation. Note that the rules for going from (4) to (7) are not
simple power counting. The 2 x 2 submatrix in the upper right corner is
kept exact, because it governs the evolution of the large coefficients over
the large interval from M, to MZ2. In the penguin matrix only the terms
O(N?®) coupling the large coefficients (2 to the penguins are kept. From the
4 X 4 submatrix in the lower right corner only the term O(N) is left.

In the present note we substitute in the matrix (4) z for every !/n
everywhere except in the 2 X 2 submatrix in the upper left corner. We find
the coeflicients (; as convergent power series in z. The first two terms of
our expansion reproduce the results of BBG. We calculate two more terms
and discuss the rapidity of convergence.

Let us note first that the equations for {; and {2 decouple and do not
contain z:

d¢; 3a
2 —
7’ _d;t—z = —FCI + 3oz (8)
d<2 3a
2 —
i = 3aly — G2 (9)
where i 1IN — 2
a=g~"=—g; bfz——nf‘ (10)
ir bth%’ 3

The solution of (8,9) satisfying the initial conditions (2) is

4y —cC— _Cypte_
Cl = 2 ’ C2 = 2 (11)
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with

o(M3)] Ve b
B [ a(p?) } (12)

In the following the coefficients (;, (2 are considered known functions of u?
and of order O(z°). The BBG approximation, therefore, is an approxima-
tion only for the coeflicients (3,..., (s.

Let us introduce the matrix o obtained from matrix 4 by replacing all
its elements in the first two rows by zeros. We also introduce a vector f
consisting of the elements of the second row of the penguin part of 4. Then
the equations for (3,...,({¢ are contained in

u2§§ = aN(oT¢ + £7¢2). (13)

Substituting the expansions

0T = 0(® 4 6z 4 ¢(D)z2, (14)
fT = f(1)2 + f(z)zz, (15)
G=3 e, (16)

into (13) and equating to zero the coefficients of the subsequent powers of
z, we obtain equations of the form

(n)
2%:2_ =aNeO(W L K™, n=y0,1,... (17)
where
R = oMW1 4 oe(n=2) 4 (M, n=0,1,... (18)
with
(D =c-D=9g O _ _o (19)

The BBG approximation consists in putting ¢{1) = 0{(2) = 0 and f; =
0. Since Cg)a = 0, this leaves the first two equations (17) unchanged, while

the higher n equations with initial conditions (2) have the solution (gs.zz) =

0. Thus, the BBG approximation coincides with the first approximation.
Here and.in the following the n-th approximation means the approximation
up to and including the terms of order O(z™). Actually BBG make one
more approximation by replacing ag N by its N — co limit, which happens
to improve the approximation for (g.
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Starting with the n = 0 equation (17) and working upward in n, we
find at each step that h, is a known function. Substituting

d(‘;j = —3d¢;j06i, (20)
one finds
(n)
(M) =-N / 25 (Qz i @)igr  i=3,45 (21)
¢ ah(”’(Q’ a(p?) W

In order to prove the convergence of the series (16) let us note that a(u?)
is a decreasing function of u2. Moreover the largest absolute value of an
element of o(1), 0(2) is (11/3)N. Therefore

M2

)] < 4 / [c=D@n)| +]cD(@Y)| d@%  (29)

where |¢(™)(u?)| is the absolute value of the largest component of ('(;g The
coefficient -

A=

11Na(M?) [a(Mz)] N’ (24)

3M? a(MZ)
where M? < u? is arbitrary, depends neither on g nor on n. Using inequality

(23) to eliminate from its right hand side all the components of ({(*>2) we
obtain finally

My My My
]C(")(#2)|<ZA’°|C|/dp§/dpg... / dy?
“2 ”_2
1

2
Pi-1

2 __2\V1k

where |¢| = max(|¢(V)},|¢(?)]). In the sum

En

(26)
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where E(z) denotes the biggest integer not exceeding z. In general there is
more than one term for each k. The total number of terms, however, does
not exceed 2" and for E((n — 1)/2) > A(ME — p?) the terms with the
smallest k are the biggest. Thus we get the estimate

2n[A(ME, ~ )P
(ECF)

which implies the convergence of series (16) for ¢ = 3,4,5,6 and all z.

K™ () <

(27)

TABLE 1
z3 z3 'z 23
n=1 0.0000 —0.0500 0.0000 -0.0596
n=2 0.0586 0.0081 0.0500 0.0090
n=3 —0.0090 -0.0210 -0.0081 0.0159
first 0.0000 -0.0167 0.0000 ~0.0197
second 0.0065 -0.0157 0.0055 -0.0189
third 0.0062 —~0.0165 0.0053 ~0.0183
exact 0.0064 —0.0165 0.0052 -0.0183

In Table I we list the coefficients z; for ¢ = 3,4,5,6 and n = 1,2,3.
As mentioned zgg):s = 0. We also compare the first, second and third ap-
proximation to ;>3 with the exact results obtained by solving numerically
equation (13). In the calculations we have used the following parameters:
My = 80.6 GeV, m, = 1.35 GeV, A = 200 MeV, u = 0.8 MeV and ng = 4.
The choice of BBG for the number of flavours: ny = 4 deserves a com-
ment. The z penguins evolve only in the mass range u? < Q% < m2, where
ng = 3, but this evolution is strongly influenced by the initial (at m2) value
of z3, which evolves all the way from M%,, where ny = 6. Thus n; = 4
is some reasonable average. In the present approximation the values of z;
do not depend on m;. Note, however that for my > Mw the whole theory
changes, because then W exchange cannot be considered a point interac-
tion and the initial conditions (2) are no longer plausible [6]. Then ¢(°) £ 0
and the simple relation with the BBG approximation is lost. Therefore,
strictly speaking, these results for the z; coefficients are valid for models
with my € Mw. We find that the third approximation is good for all the
coefficients, while the first (BBG) approximation is good within 10 per cent
for the bigger coefficients z4 and zg, while it introduces an error of the order
of 30 per cent of the bigger coeflicients for the smaller coefficients z3 and z5,
which it puts equal zero. The coefficients 23 and 25 are well reproduced by
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the second approximation while z4 in the second approximation is actually
much worse than in the first one. We see no hint of an effective expansion
parameter (sN)~! with s constant.

In the Table II we list the coefficients y;>3 and the corresponding ap-
proximations as in Table 1. The parameters have been chosen as before,
except that ny = 5 corresponding to the evolution from MZ, to m2. The
additional parameter is my = 40 GeV as in BBG. For the y; coefficients
the convergence of our expansion is poorer, as was to be expected, since
the evolution of the penguins is over a larger mass interval. The third ap-
proximation is good within about 10 per cent except for y3, where the error
is almost 25 per cent. The BBG approximation is particularly bad for yg,
where the error exceeds 50 per cent. In order to get some idea about the
effects of changing the t-quark mass, we recalculated the coefficients y;>3
with m; = 80 GeV. The result shown in Table III. are qualitatively similar

to those from Table II.

TABLE II
my = 40 GeV
va 2 s Yo
n= 0.0000 -0.1361 0.0000 -0.3348
n=2 0.2518 0.1747 0.1361 0.2872
n=3 —0.2520 —-0.4311 —0.1747 0.1840
first 0.0000 ~0.0453 0.0000 -0.1116
second 0.0280 —0.0260 0.0151 —0.0800
third 0.0186 -0.0419 0.0087 —0.0729
exact 0.0242 ~0.0405 0.0091 -0.0718
TABLE II1
mg == 800 GeV
Vs s vs Yo
n=1 0.0000 —-0.1514 0.0000 —0.4030
n=2 0.2900 0.2167 0.1515 0.3728
n= -0.3200 —0.5413 -0.2167 0.2084
first 0.0000 —0.0505 0.0000 —0.1343
second 0.0322 -0.0264 0.0168 —0.0930
third 0.0204 —0.0464 0.0088 —0.0852
exact 0.0276 -~0.0446 0.0095 —0.0835
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