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The gauge structure, both abelian and nonabelian, induced in strong
interaction processes is discussed in this lecture. First a simple quantum
mechanical system is analyzed, followed by an extension, via chiral bag
model, to a more realistic hadronic system. The resulting induced gauge
potential, widely known as Berry potential, is then shown to describe
excited states of nonstrange baryons and ground states of strange and
charmed baryons. Geometric phases that emerge in such processes are
relevant for spin-isospin transmutation, hyperfine splittings in the spec-
trum and render the skyrmion description also applicable to massive-
quark baryons, exhibiting in the massive-quark limit the “Wisgur” sym-
metry that arises from QCD. It is proposed that the induced gauge struc-
ture underlies all low-energy properties of QCD in the nonperturbative
regime.

PACS numbers: 12.40.Aa

Purpose and Acknowledgments

In this lecture, I would like to develop the concept of geometric or Berry
phases [1] in the strong interaction physics. Such concepts have been playing
since some time a powerful role in condensed matter physics as well as in el-
ementary particle physics [2], but surprisingly little attention has been paid
to the issue in nuclear/low-energy hadron physics community in connection
with unravelling QCD structure of strong interactions in the nonperturba-
tive regime. I would like to propose in this note that a connection between
the fundamental theory, QCD, and the effective Lagrangian description of
nuclear/hadron physics can be made by exploiting the emergence of a hi-
erarchy of induced (or hidden) gauge structures associated with multiple
length scales of the strong interactions.

* Presented at the XXXI Cracow School of Theoretical Physics, Zakopane,
Poland, June 4-14, 1991.
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The lecture is planned as follows. In the first Section, I will develop the
concept of abelian and nonabelian Berry potentials, starting with a (0+1)
dimensional field theory, i.e., quantum mechanics and generalizing the no-
tion to four dimensions through the help of a simple but nontrivial hadronic
model called “chiral bag”. This concept is then applied in the second Section
to the description of massive-quark baryons — such as strange and charmed
baryons —which exhibit an interesting layers of degrees of freedom.

Much of what I discuss here is based on works done or in progress in col-
laboration with H.K. Lee, D.P. Min, M.A. Nowak, B.-Y. Park, D.O. Riska,
N.N. Scoccola and 1. Zahed. I am grateful to them for helpful discussions.

1. Induced gauge flelds and geometric phases

In this Section, I will develop the concept of induced gauge fields — found
to be extremely powerful in condensed matter as well as particle physics —
in low-energy strong interaction physics. I will start with a simple quantum
mechanical system studied by Stone [3]. I will essentially follow Stone’s
presentation combined with the method of Rabinovici et al. [4].

1.1. Quantum Mechanics: (0+1) Dimensional Field Theory

Consider a system of slowly rotating solenoid coupled to a fast spinning
object (call it “electron™) described by the (Euclidean) action

Sg = / dt (g{z’ + (8, — p - a')¢) , (1)

where n®(t), a=1,2,3, is the rotator with #i? = 1, T its moment of inertia,
1 the spinning object (“electron”) and u a constant. We will assume that
4 is large so that we can make an adiabatic approximation in treating the
slow-fast degrees of freedom. We wish to calculate the partition function

z= [lamapate( - e 2

by integrating out the fast degrees of freedom % and ¥!. Formally this yields
‘the familiar fermion determinant, the evaluation of which is the physics of
the system. In the adiabatic approximation, this can be done as follows
which brings out the essence of the method useful for handling complicated
situations which will interest us later.

Imagine that #(t) rotates slowly. At each instant ¢ = 7, we have an
instantaneous Hamiltonian H(7) which in our case is just —u& - #(7) and
the “snap-shot” electron state (7)) satisfying

H(r)[¥"(7)) = e(7)|$°(7))- (3)



Induced Gauge Potentials in Strong Interactions 1003

In terms of these “snap-shot” wave functions, the solution of the time-
dependent Schréodinger equation

iBw(e)) = H()I¥() ()
$(0) = exp (1() - [ e(e)at) 1w (0 (5)
0

Note that this has, in addition to the usual dynamical phase involving the
energy ¢(t), a nontrivial phase 9(t) — known as Berry phase — which
substituted into (4) is seen to satisfy

id1 +(v ldt"’°>“° (6)

This allows us to do the fermion path integrals to the leading order in
adiabaticity and to obtain (dropping the trivial dynamical phase involving €)

Z = const /[dr'i]x?(if2 - l)e"ses,

sy = [ oo = [ (34" - it 4] (7
where 8
A(7) = ~(#°(8)| 59 (7)) (®)
in terms of which v is
= / A. dii. (9)

A so defined is known as Berry potential or connection and v is known as
Berry phase. A is a gauge field with coordinates defined by 7i. That it is a
gauge field can be seen as follows. Under the transformation

Y0 — efal()y0, (10)

A transforms as a gauge field, i.e.,
A- A- ——a(n) (11)
The theory is gauge-invariant in the sense that under the transformation

(11), the theory (7) remains unchanged. (I am assuming that the surface
term can be dropped.)
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It should be made clear that the gauge field we have here is first of
all defined in “order parameter space”, not real space like electroweak field
or gluon field and secondly it is induced when fast degrees of freedom are
integrated out. This is a highly generic feature we will encounter time and
again. Later on we will see that the space on which the gauge structure
emerges is usually the flavor space like isospin or hypercharge space in var-
ious dimensions.

We shall now calculate the explicit form of the potential A. For this let
us use the polar coordinate and parametrize the solenoid as

i = (sin 0 cos ¢, sin  sin @, cos §) (12)

with the Euler angles 6(t) and ¢(t) assumed to be slowly changing (slow
compared with the scale defined by the fermion mass u) as a function of
time. Then the relevant Hamiltonian can be written as

§H = —ud - i(t) = S(t)6HoS1(2),
§Hy = —pos (13)

with
S(A(t) = ( cosd —sin g:—uﬁ) ' (14)

in et é
sm2e¢ cos 3

Since the eigenstates of §Hy are ( ‘1,) with eigenvalue —p and (0 with

1
eigenvalue +u, we can write the “snap-shot” eigenstate of H(t) as

]
[¥31) =$ ((1)) = (s;o§:i¢) ) (15)

where the arrow in the subscript denotes the “spin-up” eigenstate of §Hp
and + denotes the upper hemisphere to be specified below. The eigenstate
le,bg_ l) is similarly defined with the “down spin”. Now note that for § = =,
(15) depends on ¢ which is undefined. This means that (15) is ill-defined
in the lower hemisphere with string singularity along § = x. On the other
hand, (15) is well-defined for # = 0 and hence in the upper hemisphere.
The meaning of the + in (15) is that it has meaning only in the upper
hemisphere, thus the name “wave section” rather than wave function.

Given (15), we can use the definition (8) for the Berry potential to
obtain

—iAy(R) - dii = (1 |S71dS| 1) = $(1 - cos 6)d¢ (16)
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given here in one-form. The explicit form of the potential is ?

1/2
" (1 + cosf)

which is singular at § = v as mentioned above. This is the well-known Dirac
string singularity. Since we have the gauge freedom, we are allowed to do a

gauge transformation
¥§ e ?yl =yl (18)

which corresponds to defining a gauge potential regular in the lower hemi-
sphere (denoted with the subscript —)

A_.dit = Ay - dit + do (19)

A = (— sin @ sin ¢, sin @ cos ¢, 0) (17)

giving

A_ . dit = 1(1 4 cos8)d. (20)
This potential has a singularity at § = 0. Thus we have gauge-transformed
the Dirac string from the lower hemisphere to the upper hemisphere. This
clearly shows that the string is an artifact and is unphysical. In other words,
physics should not be dependent on the string. Indeed the field strength
tensor, given in terms of the wedge symbol and forms,

F =dA=1d0 Ad¢ = 1d(Area) (21)

is perfectly well-defined in both hemispheres and unique. A remarkable
fact here is that the gauge potential or more properly the field tensor is
completely independent of the fermion “mass” u. This means that the po-
tential does not depend upon how fast the fast object is once it is decoupled
adiabatically. We will come back later to this matter in connection with
applications to real systems.

Let us consider a cyclic path. We will imagine that the solenoid is
rotated from ¢t = 0 to ¢t = T with large T such that the parameter 7 satisfies
7(0) = 7i(T). We are thus dealing with an evolution, with the trajectory of
il defining a circle C. The parameter space manifold is two-sphere §2 since
fi2 = 1. Call the upper hemisphere D and the lower hemisphere D whose
boundary is the circle C, i.e., 8D = C. Then using Stoke’s theorem, we
have from (9) for cyclic evolution I’

¥(I) = / A.dii = / A=—/dA=—I[.7-'. (22)

C=8D 8D=C D

! If the Hamiltonian commutes for different times, then the gauge field can be
made to vanish. We are considering the case where the Hamiltonians do not
commute.
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Since the gauge field in D is related to that in D by a gauge transform, we
could equally well write 7 in terms of the former. Thus we deduce that

exp(ic[A)zexp(i/f'):exp(—i/}") (23)

D D

exp(i/}')zl. (24)

D+D=s3

which implies

Thus we get the quantization condition

S[ F=2mn (25)

with n an integer. This just means that the total magnetic flux going
through the surface is quantized. Since in our case the field strength is given
by (21), our system corresponds to n = 1 corresponding to a “monopole
charge” g = 1/ located at the center of the sphere. In general, as we will
see later in real systems in (3+1) dimensions, the “monopole charge” need
not be precisely 1/2; it could be some quantity, say, g. What we learn from
the above exercise is that consistency with quantum mechanics demands
that it be a multiple of 1/,. Otherwise, the theory makes no sense. It will
turn out later that real systems in the strong interactions involve nonabelian
gauge fields which do not require such “charge” quantization, making the
consideration somewhat more delicate.

1.1.1. Level crossing

Continuing with our quantum mechanical system, we note that the
singularity here is associated with the level crossing of the spin-up level
with the spin-down level. The two levels become degenerate at u = 0.
This degeneracy, which is not in the space we are considering since we are
excluding that trivial point, is the cause of the presence of the monopole
structure [1]. Since we are focusing on what happens in one level, either
upper or lower (it does not matter which as mentioned above), the gauge
field is abelian. But imagine that a level crossing occurs between an n-fold
degenerate level and an m-fold degenerate level in some configuration space.
In that case, if one looks at what happens in the subspace of either of the
degenerate levels, one encounters an induced gauge structure which spans
the degenerate subspace and hence is nonabelian. This is the situation
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that we shall meet in strongly interacting systems endowed with a flavor
symmetry as I will indicate later.

1.1.2. The Wess—-Zumino term

The key point which we will find useful later is that when the fast
degree of freedom (the “electron”) is integrated out, we wind up with a
gauge field as a relic of the fast degree of freedom integrated out. The
effective Lagrangian that results has the form (in Minkowski space)

L = 177" 4 A() - . (26)

There is another way of writing the effective Lagrangian that exhibits the
relic of the integrated-out degrees of freedom, so-called Wess—Zumino term.
The gauge field in (26) is, as noted above, an induced one, conducted out
of the solenoid 7i. Therefore one should be able to rewrite the second term
of (26) in terms of i alone. It turns out that this cannot be done locally
(because of the Dirac singularity) but the corresponding action can be writ-
ten locally in terms of i by extending to one dimension higher. This is the
Wess—Zumino term. When written in this way, we no longer have the gauge
structure. It is “hidden” in some sense.
Let us look at the action

Swz = / A(#) - idt. (27)

There is a standard way of expressing this in a local form. The procedure is
quite general and goes as follows. First extend the space from the physical
dimension d whichds 1 in our case to d + 1 dimension. This extension is
possible (“no obstruction”) if

xg(M) =0, =x441(M)#0, (28)

where 7 is the homotopy group and M is the parameter space manifold. In
our case

1r1(52) = 0, 12(52) = Z. (29)
So it is fine. We extend the space to #(s), 0 < s < 1 such that

A(s=0)=1, A(s=1)=r. (30)

Now the next step is to construct a winding number density Q for Td+1
which is then to be integrated over a region of M (=~ 52 here) bounded by
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d-dimensional fields n*. The winding number density Q(z) (say z; = ¢ and
z2 = 8)is

~ 1 5 cbeman oba
g= E;e"e“bcn 9;7b8;nc (31)
and the winding number n (which is 1 for x < 0 < 0, 27 < ¢ < 0)2
n= /dzzé(z). (32)
S3
Comparing with (25), we deduce
Swz = 4xg / 223 (2). (33)
D=tx[0,1)

This is the familiar form of the Wess—~Zumino term defined in two dimen-
sions. As we saw before this has a “monopole charge” g =1/;. Below we
will carry g as an integral multiple of /5.

1.1.3. Quantization

There are numerous ways of quantizing the effective action (hereon we
will work in Minkowski space)

5f = Sy + Swaz, (34)
where the Wess—-Zumino action is given by (33) and

So = }( dt%é’. (35)
Here we will consider the time compactified as defined above, so the time in-

tegral is written as a loop integral. We will choose one way which illustrates
other interesting properties.

2 This can be calculated as follows. The surface element is

: an on
' — ——— — =
dr ( 2 ds x 5 dt)

/ ii-dS = 4r.
sl

1 ek I dn’ on*
Oz 8::"

and hence
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The manifold has SO(3) invariance corresponding to Y3_, n? = 1.
Consider now the complex doublet z € SU(2)

z
2(t) = (z;) ) (36)
=z + 2> =1. (37)
Then we can write
n; = zto;z, (38)

with o; the Pauli matrices. There is a redundant (gauge) degree of freedom
since under the U(1) transformation z — e*®z, n; remains invariant. This is
as it should be since the manifold is topologically S and hence corresponds
to the coset SU(2)/U(1). We are going to exploit this U(1) gauge symmetry
to quantize our effective theory.

Define a 2-by-2 matrix h

_(n -3
= (5 ) (59)
and
2 ;o
a(t) = E E(z: Ok zi). (40)
k=1
Then it is easy to obtain (setting 7 = 1) that
—1 —
So = %fdm[p, Ath D, ], (41)
where -
.Dt= at —‘iad3. (42)
Let .
~ LT
a = S(2 B 20), (43)

where the index p runs over the extended coordinate (s,t). As noted before,
there is no topological obstruction to this extension. This is defined in such

i and #(s = 1) = z. Then the Wess—Zumino

action can be written in a Chern—Simons form

a way that %(s = 0) =

Swz = 2g/d2:ze”’"6,,&,, =29 fdta(t). (44)
D
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Introducing an auxiliary function A, we can write the partition function

Z = / [dz][dzt][dA]exp i f dt (-21- Tr ( ) +idos)hin( ER ~iAos)
+2g9A + 1(29)%). (45)

The U(1) gauge invariance is manifest in this action. Indeed if we make the
(local) transformation h — exp ia(t)(o3/2)h and A — A — 1/8;a(t) with
the boundary condition a(T) — a(0) = 4x N where N is an integer, then the
action remains invariant. This means that we have to gauge-fix the “gauge
field” A in the path integral. The natural gauge choice is the “temporal
gauge” A = 0. The resulting gauge-fixed action is § Lz with

Lot = Tr(0:h10,1) + ¢°. (46)

Since there is no time derivative of A in (45), there is a Gauss’ law constraint
which is obtained by taking §5/§A4] 4—o from the action (45) before gauge
fixing:

%‘I‘r (ashfath _ athfhas) +29=0

which is

; th23) =

iTr (9h'h : ) =g (47)
The left-hand side is identified as the right rotation around third axis Jf,

so the constraint is that
JR =g (48)

Since (46) is invariant under SU(2),  multiplication, we have that
J?=J.?=Jr% (49)
The Hamiltonian is (restoring the moment of inertia T)
1 />
== (72-¢) (50)

which has the spectrum of a tilted symmetric top. Now adding the energy
of N “electrons”, the total energy is

1
E=Net— (J(J +1) - g%) (51)
with the allowed values for J

J =lgllgl +1,---. (52)
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The rotational spectrum is the well-known Dirac monopole spectrum. Later
we will derive an analogous formula for real systems in four dimensions.

1.1.4. Summary

When a fast spinning object coupled to slowly rotating object is inte-
grated out, a Berry potential arises gauge coupled to the rotor. The effect
of this gauge coupling is to “tilt” the angular momentum of the rotor which
is still a symmetric top. It supplies an extra component to the angular mo-
mentum, along the third direction. The gauge field is abelian and has an
abelian (Dirac) monopole structure. The abelian nature is inherited from
one nondegenerate level crossing another nondegenerate level. When degen-
erate levels cross, the gauge field can be nonabelian and this is the generic
feature we encounter in strong interaction physics.

1.2. Nonabelian gauge fields

In this Section, we describe the simplest possible model that is relevant
to the strong interaction physics in (341) dimensions. We will derive —
following closely Refs [5] — a generic action that catches the essence of the
problem.

1.2.1. The chiral bag

Consider the two-phase picture which describes a baryon with up (u)
and down (d) quarks whose masses are neglected, confined in a three-volume
denoted by V' coupled at the surface to (Goldstone) pions. The consistency
between the two phases is assured by a boundary condition. Assuming that
the quarks are the fast degree of freedom and the pion the slow degree of
freedom, we wish to integrate out the quarks in the manner analogous to
the integrating-out of the “electron” discussed in the previous Section.

It suffices to focus on the action of the quark sector. To do this, we
simplify the boundary condition as much as possible. The nontrivial pion
configuration that affects the motion of the quark in V is the hedgehog form
which is time-independent

Uo(7) = exp (ﬁ'. fo(r')), (53)

where 6(r) is the chiral angle. Thus at classical level, the quark couples to
the pion on the surface in the form

in*y,¢ = Us, (54)
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where n* is the outward normal unit four-vector and
U§ = exp (17 #150(8) ). (55)

Here r = 8 is a point at the surface. It is how well understood that due to
an anomaly induced by the surface, the baryon charge leaks from the space
V into the meson sector. Now let us imagine that the hedgehog is slowly
rotating such that

US(B,1) = SY()Us S (1), (56)
with §(t) € SU(2). Now the boundary condition becomes time-dependent
infy,9 = US(t)y. (57)

This time dependence on the boundary condition is undesirable, so we wish
to eliminate it. This can be done by the local “chiral rotation”

¥ = 5(t)¢. (58)

With this change of the quark field, the action inside the volume V becomes
(suppressing primes)3

Sa= / diryt (iat + stig,s - Hs:x) ¥, (59)
VxR

where Hg—; is the Hamiltonian for the quark sector in V that determines
the “snap-shot” spectrum. Now the quark field obeys the “trivial” time-
independent boundary condition. The four dimensional integral in this ex-
pression goes over the volume V' and the time € R. Thus we have reduced
the chiral bag problem entirely to the problem involving quarks under the
influence of an induced potential §ti9;§ arising from the rotating hedge-
hog. We wish to look at the fermion degrees of freedom coupled to this
rotation. In general the induced potential can couple to a hierarchy of
quark excitations. The longest wavelength excitation is already subsumed
in the Goldstone bosons that give rise to the hedgehog configuration. We
need not worry about it anymore. The next energy scale is the excitation
that involves a quark making a jump from an occupied state to an unoccu-
pied state, i.e., a “particle-hole” type excitation on top of the ground state
baryon. This leads to excited baryons. Thus the physics we wish to obtain
is then the effect of integrating out this “vibrational” degree of freedom,

3 There is no anomaly with the SU(2) group, so this axial rotation does not
affect the fermion measure involved in the fermion path integral.
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whose frequency is supposed to be much larger than that of the rotation
that makes up the slow degree of freedom. (We will see in the next Section
a beautiful application of this idea to the Callan-Klebanov skyrmion.) The
collective rotation if unaffected by the vibration will describe the ground
state band, namely the N and the A. The effect of the vibration is lodged
in the Berry potential that we will obtain. This gauge field will tilt the ro-
tational spectrum in such a way that states other than the rotator spectrum
with J = T will arise. Thus it remains for us to derive the coupling of the
vibration and rotation modes as in the quantum mechanics example.

To do this, we expand the quark field in the basis of the hedgehog quark
solution which is characterized by the grand spin K

KE=J+T. (60)
We write the quark field as
=Y axmékM; (61)
KM

where ax pr is a Grassmannian c-number, @i rr is the hedgehog-quark
solution and M is the projection of K on z. Both positive and negative
energy solutions are understood in the sum. Substituting this into (59) and

assuming that the hedgehog-quark wave function is properly normalized, we
find

Sa= Z /R dt (a}{M (80, — ex)oprn + gx(gK)MN)axN): (62)
KM
where

(Gx)MmN = /d3’¢}{Mg¢KN’
v

¢ = §19,5. (63)

Here gy is the “induced” charge associated with the “tilting” of the sym-
metry analogous to what we had for the abelian case. It depends on details
of the quark orbits considered. I will not need it for this lecture. As defined,
Ay is really a nonabelian object projected onto a particular K space with
no off-diagonal matrix elements. Without the projection, G can be made
to vanish. The G turns out to be related to nonabelian Berry potential.
Indeed if we parametrize

S =a4+i7-d, (64)
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with a2 + @ 2 = 1, then the nonabelian Berry potential one-form Ak is
Ak = Gxcdt = ~ijp,, 8,4, dtTE, (65)

where T} is an SU(2) generator in the (2K + 1) X (2K + 1) dimensional
K -representation and 7 is the antisymmetric ’t Hooft symbol. This has an
instanton structure. Now Ag is an “invariant” gauge 1-form in the following
sense. Under a local unitary rotation DX () of the fermionic wavefunctions
in a given K band, the action (62) becomes

KMp

t
+gKD}I§IM' (gK)MINI-DIISNI) "‘KN)- (66)

This transformation can be compensated by the gauge transformation
1
Gx — DK (gK + ig—at) DK, (67)
K

Thus we have a gauge invariance in the action (62). This seems to be in
a sense closely connected with the hidden gauge symmetry in the strong
interaction sector emphasized by Bando, Kugo and Yamawaki [6].

The integration over the quark field is now expressed in terms of an
integral over the Grassmannian a. We will now perform the fermion integral
over all occupied quark states (i.e., sea quarks) and leave the valence-quark
states still active. In an SU(2) chiral bag, the K = 0 level is occupied for
the ground state baryons N and A. In order to describe excitations, we
have to consider one or more quarks in the K = 0 state being excited to
the next orbital which is K = 1 and even-parity. Now the K = 1 level
is triply degenerate. We will label this state by v, standing generically for
“valence.” In the case of hyperons, the additional flavor quantum number
plays a particular role. How this works out is discussed in the next Section.

One can simplify the calculations by usmg the vielbein formulation
which for our purpose goes as follows. This is purely a convenient tech-
nique and no new physics is involved other than what we already know
from the standard treatment.

Let the vielbeins on S3 be denoted as %, where we use a,b,¢,- - as the
internal (or, in our case, K) space index and m,n, - as the index for the
coordinates on S parametrized by X,,. The vielbein one-form is defined
by

=€l dX™. (68)
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We can think of the internal space to be the “inertial” frame with a flat
metric 8,3 and the §3 the “curved space” with a metric gmn. The two are
related by

Imn = aabe:;e:,,
bab = g™ emen. (69)
The nonabelian gauge connection induced in the way described in (65)
(known as nonabelian Berry connection) can be given a simple form in
vielbeins. The gauge 1-form (65) takes the simple form

A= AndX™ = StidS = —iT%e%,dX™. (70)

As before the T is the generator of the K space. Projected onto a K
subspace, we have
Ax = —iTgen,dX™,. (71)
Since (62) is gauge invariant, one can think of this as gauge transformed
form of (65). 4
The projected gauge field (i.e., the Berry potential) has a nontrivial
field strength, namely,

F2 = dAD — ig(Ax A Ax)™ = —(1 — g /2) ™t Al (72)

Note that for g = 2, the field tensor vanishes and the Berry potential
becomes a pure gauge.

Now we are ready to write down the effective action that results when
the sea quark states are integrated out. Before the sea-quark integration,
we had from (62)

Sa= /dt(a}{M((iat-eK)ciMN
KMp

+x((GKImX ™) ) oxen ). (73)

When one integrates out the occupied quark states, one obtains a term
quadratic in X involving no v state. (The term linear in X is absent as it
vanishes in K = 0 orbit.) Ignoring higher order derivatives (in conjunction
with the adiabatic approximation), we obtain

T. . e .t
S; =/dt (EX“X“ - 1gX}‘(A“)MNa}WaN+l.aRIaM)

—/dte(t) a}waM, (74)
R
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where u = 1,2,3,4 and understanding that we are explicitly dealing with
quarks in the “valence” orbit, we have suppressed the index v on the Grass-
mannian variables. The last term is a “dynamical phase” as defined earlier
and plays no role in the quantization, so we will drop it for the moment. The

first term is the analog to 7 ? in the quantum mechanics of the solenoid-spin
system. 7 is the moment of inertia which in specific dynamical models can
be calculated explicitly. The second term is the most interesting quantity
describing coupling between the rotator degree of freedom with the quark
excitation through a nonabelian gauge field .A. There are two ways of treat-
ing this term. One is to treat it in terms of ezplicit fermion variables which
we can do for excited states of nonstrange baryons. Another possible usage
of this term is to bosonize and apply it to the massive flavors such as strange
hyperons. This leads to the Callan-Klebanov skyrmion structure which we
will discuss later. (See Eq. (98).)

1.2.2. Canonical quantization

Let us now quantize the theory (74) canonically. To do so, we first
obtain the Hamiltonian which takes the form

B* = o (T — ig ARyyalgay) (7)™ (Mo — igAfsakas) s (75)
where IT,,, = —i8/8X™ is the momentum conjugate to X™ and (¢~1)™" =
e"e? is the inverse metric on § 3. The dynamical energy term is dropped as
mentioned above. The left (L) and right (R) generators of SU(2),, x SU(2) 5
are given by

Li=e"lI,n, R;=¢&"lly, (76)

which satisfy the commutation rules

[Li, L;]) = —2ie ik L,, (77)
[Ri, R;] = —2ie'* R, (78)

On §3, L 2 =R 2. Since
el Am = Tielel, = Tf, (79)

where we have put the subscript v to indicate the projection on v, the
Hamiltonian then becomes

1 ) _
B =5 (Lj - g(Tg)MN"}wC‘N) (Li - Q(T{})Rsa}t“s) - (80)
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If we ignore interactions between the fermions, then this Hamiltonian takes
the form

=\ 2 =
1 L L 2,
H'~et oo (5) —gg-i‘.,+"’zT,,’) : (81)

This form has also been obtained by a standard cranking technique familiar
in nuclear physics [7]. It reduces for ¢ = 0 to the “tilted” spherical top
corresponding to an abelian monopole obtained above. This Hamiltonian
can be interpreted as follows. L/2 is the angular momentum stored in the
soliton cloud, T, the angular momentum carried by the “particle-hole” mode
and the isospin stored in the soliton cloud R is identical to L. Now the total
angular momentum is the vector sum of 1_';/ 2 and T, which is conserved.
Another conserved quantity is the total isospin which is given by I = R/2.
This is a rather general form which rends itself to a variety of applications.
I discuss a most intriguing case in the following Section.

2.Application to massive-quark baryons

The massive-quark baryons (by massive quark, I mean s, ¢, b flavor
quarks) present an interesting and fascinating case of a hierarchy of length
scales leading to a hierarchy of induced gauge fields. I will apply the con-
cept developed above to this system. The discussion given here essentially
rephrases Ref. [8] in terms of induced gauge fields. We will arrive at an
analog of the expression (81). :

The idea developed in [8] is a simple generalization of the picture pro-
posed by Callan and Klebanov [9] for strange baryons. I shall present this
in a way [10] to bring out the essence of induced gauge structure developed
above. It should be noted, however, that one can proceed without explicitly
showing gauge structure as was done by others [9,8].

Before going into detail, let me sketch the qualitative feature first. For
definiteness, consider the simplest baryon with, say, a charmed quark c,
namely A, which has the valence quark structure udec. In the simple quark-
model picture, the u and d quarks couple to J = I = 0, so it is the charm
flavor ¢ quark that carries the spin 2. The baryonic charge is 1/; for each
quark, three quarks making up the required baryon charge 1.

2.1. Analogy to magnetic monopole

In modelling this in the skyrmion description, it turns out to be fruitful
to exploit a close analogy to nonabelian monopole-scalar doublet system
[11]: When a scalar doublet is “trapped” in an SU(2) magnetic monopole
field, the isospin of the scalar is transmuted to spin ! with a resulting
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system of two bosons becoming a fermion. It is now well-known [12] that
such a transmutation can also occur when a scalar doublet is trapped in
an induced gauge field generated in a parameter space rather than in real
space. In our case, we start with a skyrmion made up of the u and d
quarks (e.g., the flavor SU(2)) which provides a soliton background. As is
well-known, the skyrmion carries the entire baryon charge 1 but it carries
no massive flavor. In order to bring in, say, the charm quantum number,
we thus need a charm-flavored boson field playing an analogous role of the
scalar in the monopole system. Since the skyrmion is like a monopole in
flavor space, a doublet of a charmed boson field bound to the skyrmion can
acquire spin ! from its isospin 1/;. Now since the skyrmion is quantized
with J =TI = 0,1,---, to describe A, for instance, we will need to couple
J =TI =0toJ =1/, of the doublet boson to give total spin !/, and isospin 0.
It was recently shown by Scoccola and Wirzba [13] that all the low-lying
baryons with one or more s, ¢ and b quarks can be correctly labelled in this
way. I will make frequent use of their analysis bélow without elaborating
on details.

Much of the essential dynamics lie then in the structure of the flavored
scalar bosons. If one calls the massive quark Q and the light quark ¢, then
the massive scalar that we need is of the form ¢ = §Q. From now on @
will also label the massive flavor quantum number, i.e., Q=5, C, B, eic.
The doublet structure is in g7 = (u d) which forms the isospin. Doublets
can be coupled independently with their coupling differentiated only by
the decay constants f and the masses mg. In the limit that the massive
scalars have an infinite mass, we expect that the massive baryon structure
will be independent of the massive quark flavors and acquire the symmetry
associated with the spin of the massive quark. This leads naturally to the
“Wisgur” spin symmetry, recently discovered for massive quarks on the basis
of QCD [14]. I will show how this symmetry arises in the present theory.

2.1.1. Generic structure

Let me now be more specific by taking a simplified but generic La-
grangian that illustrates the above structure. (The numerical values quoted
later will be based on a more realistic Lagrangian.) Denoting the scalar
doublet generically by &, I write the Lagrangian in the form

L = Lsy(z)+ Ls + Lwz. (82)

Here Lgy(z) is the chiral Lagrangian for the (u,d) sector that supports a
skyrmion

2
Lsug) = -ff— T[8,U8* UM + a TX(MU + huc.) + -+ (83)
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with the chiral field valued in SU(2)

U(z) = exp (- #(z)/ fx), (84)

where M is the quark mass matrix and the ellipsis stands for higher deriva-
tive terms and low-energy spin-1 fields (such as p, w,...) etc. L describes
the dynamics of the doublet scalar in the background of the skyrmion field

[,{, == (D”Q)fD“Q —_ m?}itﬁ + V(Qté, Ua' * ')9 (85)

where D, is the covariant derivative D, & = (3, + v,.)® with the induced
vector field

v, = H(VT'0,VT + VU8,VT') (86)

transforming as an SU(2)-valued gauge field, i.e., v, — g~ (v, + 8,)g for
a gauge function g.* V stands for other (potential) terms, including the

induced “axial vector” a, = 1/2(\/[7 ’a,‘\/ﬁ U 3“\/ﬁ T) which transforms
covariantly, i.e., a, — g~ 1a,g and strong vector (e.g., p, w,---) and axial-
vector (e.g., A1, ) mesons. The induced vector field v, i.e., (86) will turn
out to have a “monopole” (or more precisely an “inside-out monopole™)
structure of the skyrmion. The Lwgz is a piece that comes from the Wess-
Zumino term [15] that is of the from

iN,

-5 (Bul(D*3)ta - &' DPa] + ), (87)
&

Lwz

where the ellipsis stands for terms involving strong vector mesons etc. and
B, is the topological baryon current. The coefficient of the Wess—Zumino
term is constrained by the topological five-pseudoscalar coupling $$xx~
and, in the limit mg — 0, by the symmetry of the massless flavors that
follows from the fact that the Wess~Zumino term is independent of the
mass scales involved.

4 This can be associated with the hidden SU(2) gauge symmetry of Bando and
collaborators [6]. In fact, one can couple in the strong vector mesons p and
have them propagate (through quantum loop effects) so as to describe short-
distance physics. In the long-wavelength limit (i.e., for “magnetic monopole”
structure), however, one may ignore the kinetic energy term of the vector
mesons in which case the p field can be integrated out leaving the effective
field v, acting as an external field felt by the massive scalars.
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2.2. The Model

To obtain the generic structure of Lagrangian (82) from an effective
chiral Lagrangian, arrange the pseudoscalar doublets that we are interested
in into Us as

1o, K D B
_ . Kt
Us = exp {i2V2 Dt 0s , (88)
Bt

with & = &/fs, where & = K, D and B are the flavor doublets and 0, is
an n-dimensional null matrix. Now embed the soliton field of SU(2) flavor

_(Us ©
U‘x—(o 13)5’ (89)

where 13 is a 3 dimensional unit matrix and U the usual SU(2) hedgehog
field

Us = exp (i?-r‘-F(r)). (90)

Here F(r) is the chiral angle of the SU(2) soliton. This enables us to write
a generalized Callan-Klebanov form

U=+/UxUs VUr. (91)

With this pseudoscalar field, one can then write down effective Lagrangians
in the usual manner which, when expanded in the quadratic approximation
in the doublet fields (hence no coupling between different flavors), leads to
the form of (82) [8,16]. Of course there will be other terms than exhibited
in (82) but they are subsumed in the ellipsis.

It is instructive to compare (82) with the monopole system of [11]. The
Lsy(z) and L are analogous to the monopole-scalar Lagrangian. However
while the monopole is a boson and the scalar field coupled to it is trans-
muted to a fermion, the skyrmion field of (83) is quantized as a fermion and
the scalar field ® as a boson. Thus the two systems seem to be basically dif-
ferent. This is not really so. The point is that in the skyrmion system there
are additional velocity-dependent interactions in the potential V' as well as
in the Wess—Zumino term which can transmute the statistics. It should be
possible to transform, by a gauge transformation, the velocity-dependent
interactions to phases attached to the skyrmion and to the & such that the
former behaves as a boson and the latter as a fermion. That the statistics
can be either assigned to a phase in the field or equivalently delegated to a
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velocity-dependent long-range interaction is a well-known fact in dyon [17]
and anyon physics [18].

The Wess—Zumino term has the dynamical role of binding the scalar
mesons to the soliton in a way analogous to the magnetic field (in z direc-
tion) that binds charged particles in Landau levels in (x,y) plane. As I will
show later, it plays a key role in generating a truly nonabelian Berry po-
tential. It also lifts the degeneracy between the state with & and the state
with its charge conjugate ¢ = &*. It has the sign such that the scalar with
the quantum number of @§ is bound and the one with the quantum num-
ber of Qg is unbound. The approximation that reduces the Wess—Zumino
term defined on a five-dimensional disk to a two-dimensional plane with a
“magnetic field” in z direction gets better, the larger the scalar mass which
plays the role of the strength of the “magnetic field”.5

When considering the skyrmions of light-quark flavors, it has proven to
be essential to order the Lagrangian in the descending power of N, or more
properly in the ascending power of a,; = 1/N,

L=L_ 3+ Lo+ Ly1+--+, (92)

where the subscript stands for the power in a,,. Here one is thinking of
a weak-coupling expansion, with a,; being considered in some sense small.
Thus one could say that the term of O(1/a,y) which corresponds to the
soliton component dominates, with the other terms contributing as “fluctu-
ations”. This is in conformity with the notion that solitons such as magnetic
monopole make sense in the weak-coupling limit. When heavy quarks are
involved, the situation is quite different: the O(1) term in the mass which
describes the bound ® meson dominates over the O(1/a,y) term from the
skyrmion. So the literal “large-N.” expansion is meaningless at least for
the first two orders. Even so, it turns out to be convenient to arrange the
Lagrangian as (92) even in the massive-® case.

As defined, the skyrmion lives in the flavor SU(2) sector and is given
by the classical solution of (83). The structure of the skyrmion so defined is
by now thoroughly studied and I have nothing new to say. We can simply
assume that it is given by the most realistic SU(2) Lagrangian possible,
including strong vector mesons and other degrees of freedom up to the chiral
symmetry scale A ~ 1 GeV. The size of this skyrmion is then determined
by SU(2) properties®, and is typically of the order of 0.5-0.6 fm. Let us

5 This was pointed out by several authors. See, for instance, Ref. [19).

 The assumption that the soliton property is entirely determined by the SU(2)
sector with no back-reaction from the motion of the scalar meson may be a
poor approximation for such quantities as the baryon size (more generally, form
factors) of massive-quark baryons. This matter requires further attention.
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now look at the O(1) (2) sector. The skyrmion provides the background
potential felt by the & field. In particular, it defines the induced “gauge
potential” v, and the axial-vector potential a,. The dynamics of the &
field in this background field is given by (85). The gauge field playing the
role of “magnetic” monopole field is gotten from (86) with the chiral field
in the hedgehog form (90) satisfying the boundary conditions F(0) = » and
F(00) = 0 appropriate to baryon number B = 1 and has the form

vi(U = Up) = ~ir® A2 (93)

with
a3 = 520w, (94)
W(r) = cos? ( ) (95)

Note that W = 0 for r = 0 and W = 1 for r = co. In contrast, the non-
abelian (BPS) monopole [20] has the structure (93) with W(r) = 1 when
r = 0 and W(r) = 0 when » = oo. Thus the skyrmion has an “inside-out”
monopole structure as alluded above.” The transmutation of the “isospin”
of the doublet & to spin is completely analogous to the monopole-scalar dou-
blet system. To see this one has to quantize both & field and the skyrmion
field. One can assume that the $ has no classical component, its fluctuating
field carrying the dynamical time dependence while the time dependence of
the skyrmion arises through its collective coordinates associated with zero
modes. To O(af, ), the equation of motion for the & field in the skyrmion
background field as given by (85) has bound-state solutions due mainly to
an attraction generated by the Wess-Zumino term plus a small contribution
from the potential V. In some sense, this is a vibrational mode and I will
refer to it as such in what follows. In the case of the strangeness flavor
Q = S, it is well established [9,21,22] that only one even-parity bound state
exists for the p-wave kaon accounting for the octet and decuplet baryons
of three flavors (u,d,s) and an odd-parity bound state describing the odd-
parity hyperons like A(1405) . In the case of massive quarks, there may be

7 It is perhaps instructive to comment on further “inside-out” relations between
the magnetic monopole and the skyrmion. When fermions are present, chiral
boundary conditions are needed. In the case of the monopole, the boundary
condition is imposed at the origin » = 0 where the monopole sits inside, with
the fermions lodged outside, whereas in the case of the baryon, the bound-
ary condition is imposed at the boundary with the fermions inside and the
skyrmion outside. Thus the chiral bag structure of the baryon can be viewed
as an inside-out monopole with however completely different length scales.
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more bound states. Let me denote by wg the eigenenergy (or vibrational
frequency) of the bound . To O(al, ), the contribution to the mass of
the baryon with n, massive flavor quanta is then njws,. As noted above,
for a very massive ®, this contribution, though formally subdominant to
the soliton mass in N counting, dominates over the O(1/a,) term. The
quantum number @ is defined at this order.

2.2.1. Spin-isospin transmutation

Spin and isospin are defined at O(a,y). Thus to “see” the transmuta-
tion, we have to quantize the zero modes associated with the SU(2) isoro-
tation

U — A(t)UsAt(2), (96)
3 — A(t)®(t) (97)

with A(t) € SU(2). As usual, one makes the adiabatic assumption that the
rotation is much slower than the vibration of the & field and obtains what
corresponds to Eq. (74)

6L = 1T(&a)? + GaAa, (98)
where 7 is the moment of inertia for the SU(2) rotation,
AlA =ir%a, (99)

and A is the induced nonabelian gauge potential which is a space integral
of complicated functions involving ® and its time derivative, Uy etc. whose
explicit forms can be found in the literature but are not important for
our purpose. Note that Equation (98) is an exact analog to the quantum
mechanical case Eq. (26). The only difference is that the gauge field is
nonabelian here. What is significant is that .4 is essentially an induced
(Berry) potential [1] quite analogous to the Berry potential seen in diatomic
molecules [23]. In fact, this generic form arises also in strong interaction
physics whenever fast degrees of freedom are integrated out in favor of slower
degrees of freedom [5]. The Berry potential here is truly nonabelian because
of the following asymmetry due to the Wess—Zumino term. In the absence
of the Wess—Zumino term, there would be a degeneracy with respect to
rotation in ¢ “isospin” space. The Wess—Zumino term breaks the rotational
symmetry. If there were no symmetry breaking, then the induced gauge
field would be in a Maurer-Cartan form in the SU(2) space (i.e., a pure
gauge) and hence would have zero field strength. We will see later on
that this means the massive & spin becomes a good quantum number and
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the hyperfine structure splitting will disappear in the Q flavor direction.
Thus the Wess—Zumino term plays a role quite analogous to the (rotation)
symmetry breaking that lifts the A-x degeneracy in diatomic molecules [23].

Given the Lagrangian (92) to O(a,;), it is a straightforward matter
to obtain a corresponding Hamiltonian and all Noether currents associated
with the symmetries of the Lagrangian. The conserved quantum numbers
of the (soliton-&) system are: the total angular momentum

J*=Jot + 7% (100)

where j;ot is the angular momentum of the soliton rotor and fq, is the spin
of the & transmuted from its isospin which we might call “induced angular
momentum”, none of which is a good quantum number separately; the
total isospin which is also the rotor angular momentum, since the isospin is
entirely lodged in the skyrmion

=g, (101)
and of course the massive flavor quantum number Q (e.g., S, C, B etc.)

which is, as stated above, determined at O(a?, ). In terms of these quantum
number operators, the rotational Hamiltonian reads

Hpoy = % (j;ot + (1 - K);@)z + e, (102)
where -
c=1-k=2 / r2drA(r)¢*(r)d(r) + -+, (103)
0

with ¢ a suitably normalized bound massive scalar wave function and A
the Wess—Zumino term [A(r) o< iNcp(r)/f3 where p is the baryon density].
The ellipsis stands for other terms that can contribute depending upon the
detail of the model Lagrangian®. They are not important for the main

8 As a footnote, let me mention one thing which is not fully verified but of which
Ifeel certain. As stated, there is a gauge invariance associated with the induced
gauge field v,. If one chooses the temporal gauge vo = 0 before quantizing the
theory, then one can show that the hyperfine coefficient is entirely given by the
Wess-Zumino term. The works published up to now, including the one whose
results I will quote below, have not used the gauge-fixing in a proper way,
introducing possibly small errors in the hyperfine splitting, while unaffecting,
however, other properties of the spectra or magnetic moments. A correct
treatment of the induced gauge degrees of freedom is given in [7].
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characteristic of the physics that we are focusing on. I should mention
also that the x here is analogous to Zygelman’s £ in diatomic molecules
[23]. If one denotes the bound-$ eigenenergy as wg as before, then the
normalization condition for ¢ allows us to express x in a more transparent

form
[+ =)

K= 2wp /rzdr¢*(r)¢(r) e (104)

In this form one can see immediately what is going on if one ignores the
additional terms denoted by the ellipsis. If the Wess—Zumino term were
absent, £ = 1 by normalization and hence ¢ = 0. In addition, it is clear that
as wg — 00, Kk tends to unity again making ¢ go to zero. In other words,
in the massive limit, we recover the SU(2) symmetry. This is precisely the
“Wisgur” spin symmetry [14]. This can be seen explicitly in the spectrum
that follows from (102)

AM = Elf(cJ(J+1)+(1 —)I(IT+1)+--) (105)

which shows that ¢ represents hyperfine splitting within a Q sector. Now
in the limit ¢ = 0, the spectrum does not depend upon the massive-quark
spin jg. Another important observation is that the coefficient ¢ or x does
not appear in the total (conserved) angular momentum although it figures
explicitly in the gauge field or more properly in the field tensor which gen-
erates (via transmutation) the induced angular momentum from the scalar
field. This is typical of the structure of the induced gauge field that belongs
to the class of “invariant potential” in the sense of Jackiw [24].

2.2.2. Mass formula

To sum up to this point, we have the soliton quantized as a fermion
with Jyot = I = 0,1,2,--- and the bound & as a boson with Ay = /2 and
zero isospin when only one massive flavor is bound. Scoccola and Wirzba
[13] show that with two &’s in a baryon, the soliton should be quantized as
a fermion with Jpot = I = 1/2,34,--- and the angular momentum of &’s as
a sum of two bosons. Furthermore no spurious low-lying states are allowed
within the scheme. The mass formula one obtains for a hyperon with n;
mesons of species 1 (representing orbital state and flavor) with energy w;
and angular momentum j; and n; mesons of species 2 with energy w2 and
angular momentum j; is [8]
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M(I,J,n1,n2,J1,J2, Im) = Myo1 + miws + nawy
1
+§I— (I(I+ 1) + (C1 - 02)[6111(.]1 + 1) - Csz(Jz + 1)]

aatez  a-—c2 Ji(J1+1)-J2(J2 +1)
x| 2 T2 Im(Im + 1) )

Here I is the (iso)spin, M, the mass and T the moment of inertia of the
soliton. The angular momentum quantum numbers J; and J; are defined as
n1j1 and naj2 respectively and J,,, takes one of the values |J; —J2|, ...J1+J2.
In the case of a single heavy flavor, the mass formula (106) reduces to that
form derived for strange hyperons [21]. The appearance of the quantum
number J,,, which represents the total angular momentum of the meson
system, is due to the following fact. Bose statistics of the ®’s requires
that when more than one of a certain kind are put on a given orbital the
total mesoric wave function should be completely symmetric and hence
only the maximum value of the spin is allowed. However, when different
orbitals are populated and/or different kinds of mesons are considered this
argument does not hold, and all different values of J,, are possible. A very
good illustrative case is the cascade particles. Consider first the case of
the § = —2 cascades. In the present approach these particles are formed
by two kaons bound in the energetically lowest orbital. This orbital has
j = 2. Due to the symmetry argument given above the total spin of the
meson field has to be J,, = 1. Since for cascades the rotor (iso)spin is I =
Jrot = 12, we find that two § = —2 states are predicted in the model: One
with (I,J) = (Y2, }/2) and the other with (12,3/). These are exactly the
quantum numbers of the = and =* hyperons respectively. Consider next the
case of the charmed cascades. These particles are composed of a K-meson
and a D-meson wrapped by the soliton. Since the flavor quantum numbers
in this case are different, both J,, = 0,1 are allowed. Once again we have
I = Jyot = Y, but now three physical states are possible. Indeed, we
predict two particles with (I,J) = (/2,!/2) and one with ('/2,%}). Although
only one of these states has been observed experimentally (Z;(2470)) our
prediction agrees with those of the quark model whlch also predicts three
charmed cascades that are usua.lly denoted as E, E! and E?.

The mass formula (106) is generic of the bound soliton-scalar meson
model and follows from the presence of three scales — quark, vibrational
and rotational modes — inherent in the model. Therefore we could simply
determine the quantities M,,), w;, 7 and c; from experiments and make pre-
dictions for other masses. In the charmed (and bottom) sector, we do not
yet have experimental data. But we expect the quark models to work well

(106)
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in heavy-baryon sectors, so the quark-model results could be used for de-
termining those parameters. As an illustration, consider determining those
parameters by fitting six experimental data, say, N, A, A, I, A; and X.
The last two are not well determined experimentally, so the parameters so
determined in the charm sector may not be reliable. Be that as it may, the
parameters determined as prescribed are

M,y = 866 MeV, T =1.01fm, wg = 223 MeV,
wp = 1418 MeV, cx = 0.60, cp = 0.14. (107)

This set of parameters is found to reproduce quite well the strange baryons
(compared with experiments) and reasonably well the charmed hyperons
(compared with quark-model results) [8]. The burden of a particular model
would then be to predict those parameters and compare with the “empirical
ones”.

2.2.3. Model Lagrangian

The simplest effective chiral Lagrangian model that does surprisingly
well is the original Skyrme model that consists of the usual two-derivative
and four-derivative terms supplemented by certain symmetry breaking
terms. I will show the results of a variant of this model recently studied by
Riska and Scoccola [16], which I will call Riska-Scoccola (RS) model. Imple-
menting with vector mesons would improve the prediction, so the RS model
would serve our purpose adequately. What distinguishes the RS model from
the usual Skyrme model (say, for three flavors) is the additional symmetry
breaking term of the type

2 2
§C5B = f"—mf—fi Tr ((1 - v3xe) (VO U0V + U9, U8*UY))  (108)
and similarly for other flavors. What this does effectively is to give a correct
normalization as in (85) and then scale the massive scalar field with its
appropriate decay constant. In other words, this procedure implements the
standard skyrmion model with terms to mimic roughly the monopole-scalar
field analogy sketched at the beginning of this review.

Now if one takes the empirical ratios of the decay constants fx/fr and
fp/ fx and experimental kaon and D masses, there are only two parameters
in the RS model, namely, the pion decay constant f, and the coefficient of
the quartic Skyrme term e, both of which can be determined in the light-
quark sector,i.e., by the nucleon and A masses: fr = 64.5 MeV and e = 5.45
which correspond to

M,, = 866 MeV, T =1.01fm (109)
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as in (107). The w’s and c’s are calculable without any additional parame-
ters. The results are

wi = 223 MeV, cx =0.50, wp = 1301 MeV, cp=0.20.  (110)

TABLE I

Low-lying strange and charmed hyperon masses calculated by Riska and Scoccola
[16] in the Skyrme model implemented by an additional symmetry breaking term.
Comparison is made with experiments when available and with the quark model
result (QM) of [25] when experiments are not available. The masses are given in
MeV.

I J S o Prediction Experiment QM
N 1/2 1/3 0 0 Fitted 939
A % 3 0 0 Fitted 1232
A 0 Y, -1 0 1107 1116
= 1 A -1 0 1205 1193
* 1 3 -1 0 1352 1385
= A h -2 0 1337 1318
= Y | 3% -2 0 1483 1530
Y} 0 3 -3 0 1627 1672
A 0 s 0 1 2170 (2285) 2200
e 1 Y 0 1 2326 (2453) 2360
T* 1 3y 0 1 2385 ? 2420
2. o | Ya -1 1 2421 ? 2420
=l Yo | s -1 1 2470 (2460) 2510
=2 Y | % -1 1 2524 ? 2560
Q. 0 A -2 1 2645 (2740) 2680
a: 0 % -2 1 2675 ? 2720
Zee Yo | Ya 0 2 3510 ? 3550
=l e | 3 i} 2 3569 ? 3610
Qe 0 4 -1 2 3698 ? 3730
Q:. 0 3 -1 2 3727 ? 3770
Qece 0 3, 0 3 4784 ? 4810

The predicted spectrum is listed in Table I, compared, whenever avail-
able, with experiments and, if otherwise, with the quark-model results of
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De Riijula, Georgi and Glashow [25]. The agreement is quite pleasing and
surprising.®

2.2.4. The b-quark baryons

Riska and Scoccola have also made predictions in the b-quark sec-
tor. Due to the almost total lack of empirical information in this sec-
tor, it is perhaps not yet possible to assess how well it really fares in
this sector. Nonetheless, the results are quite encouraging. Their pre-
diction for fg/fx ~ 1.8 is wp ~ 3729 MeV, which puts Ap at 4595
MeV, to be compared with the empirical value 5425 GeV. The hyper-
fine splitting seems to come out even better, with the predicted split-
ting my, — mp, ~ 175 MeV, to be compared with the empirical value
~ 200 MeV. If one takes fp/fx = 2.5 suggested by lattice QCD calcu-
lations, one gets mp, = 5342 MeV very close to the empirical value. As
noted in [8], the vector mesons — both light and massive — would improve
both fine and hyperfine structure splittings. The calculations that include
these vector degrees of freedom are underway and results will be available
soon [26].

2.2.5. Magnetic momenis

The predictive nature of this model has been further strengthened by
magnetic moments of the massive baryons. The magnetic moments of both
strange and charmed baryons have been calculated in the RS model by
Oh, Min, Rho and Scoccola [27]. The moments of the strange baryons ob-
tained in the RS model are close to those previously reported [28] (which
are actually in satisfactory agreement with experiments). Those of the
charmed baryons given (in units of the proton moment) in Table II, cal-
culated parameter-free, are in quite good agreement with the quark-model
predictions available in the literature. As a whole, compared with the re-
sults of quark models, the prediction for the massive baryons is just as good
or perhaps even better than that for the strange hyperons. Measurement of
the magnetic moments of the charmed baryons is planned at the Fermilab

® The centroid of the charmed (and bottom) baryons is predicted to be slightly
lower in the RS model than the empirical (and quark-model) value, but much
better than what was found in [8] where the universal decay constant f3 = fr
was used. I am not worried about this remaining small discrepancy since the
incorporation of massive vector mesons in addition to the usual light vector
mesons would certainly decrease the binding of the soliton-® complex, thus
raising the centroid of the massive flavor and decreasing somewhat the hyper-
fine coefficient c.
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and it would be most interesting to see whether experiments continue to
support the model. It would also be desirable to have spectra and moments

M. Rro

calculated in a quark model with a modern sophisticated quark potential.

Magnetic moments relative to the proton moment of the charmed baryons predicted
parameter free in the RS model of Table I, compared with the quark model results
of D.B. Lichetenberg (Phys. Rev. D185, 345 (1977)) and the bag model results
of S.K. Bose and L.P. Singh (Phys. Rev. D22, 773 (1980)). The prediction A

corresponds to taking m,, = 0 and B to m, = 138 MeV.

TABLE I

Particle PRED A PRED B Quark Model Bag Model
A} 0.1 0.10 0.13 0.18
TH 0.98 0.99 0.85 0.70
o} 0.16 0.22 0.18 0.13
0 —0.65 — 0.56 ~0.49 —0.44
oyt 1.63 1.64 1.47 1.40
oyt 0.40 0.48 0.47 0.48
Pl —-0.82 —0.69 —0.53 —-0.43
=t —-0.17 —-0.17 —0.04 0.06
EL 0.35 0.32 0.29 0.31
Entt 1.14 1.13 0.93 0.91
Ent —-0.42 —-0.35 -0.07 0.07
Qi 0.32 0.30 0.40 0.52
=t 0.44 0.40 0.26 0.17
=9 —0.59 - 0.57 —0.41 —0.39
=it 0.11 0.10 0.13 0.18
=0 0.11 0.10 0.13 0.18
=ot 0.82 0.75 0.59 0.55
=30 —-0.72 —0.70 —0.41 —0.36
? —-0.31 —-0.39 -0.32 —-0.35
o -0.31 —0.43 —0.28 —-0.28
ot 0.21 0.22 0.25 0.30
Q:t 0.01 —0.06 0.06 0.14
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2.3. Summary

To summarize: The bound skyrmion-® model is seen to work (perhaps
surprisingly) well for massive-quark baryons (e.g., charmed baryons) as well
as not-so-massive-quark baryons such as strange hyperons. The essential
ingredient is the Wess—Zumino term which controls both the fine-structure
(O(1)) and hyperfine (O(a,y)) splittings: It binds the scalar  to the soliton
in the correct channel, lifting the degeneracy of the +Q states and further
provides just the requisite “tilting” of the rotational symmetry to induce
the hyperfine splitting. Pleasingly, as the mass of the heavy-flavor quark
(or the mass of &) increases, the binding weakens and the spin of the heavy
quark decouples. As a consequence, the Wisgur spin symmetry is seen to
emerge in the massive limit. A fascinating feature of this model is that even
for a baryon that has no light-flavor valence quarks such as 2., the soliton
is essential as a “soul,” carrying the entire baryon charge; in a sense, the
light-quark flavor in the soliton is “cancelled” by the light antiquarks in &,
but that this happens in just the right way to give the physical baryon is
a remarkable phenomenon. Equally remarkable is that despite its intricate
mechanism and apparent complexity, the structure is really very simple.
It closely resembles, through nonabelian Berry phases, those atomic and
molecular systems exhibiting geometric phases. Thus one can say that the
model works because it has the generic feature that is shared by all other
systems in condensed matter and particle physics that are described in terms
of Berry phases.

I should mention that no matter how accurate it may turn out to be, this
model cannot possibly compete in quantitative predictivity with the quark
models based on QCD: There are still some difficult problems to resolve in
the model. For instance, although, as shown in [8], there are no center-
of-mass corrections at the level of approximation we are working with, the
soliton-$ complex has yet to be quantized to restore translational invariance
as well as to account for other soft fluctuations (e.g., pionic excitations).
These are hard technical problems that plague all extended-structure mod-
els and remain to be resolved for this model to confront experimental data
in a quantitative way. We will also need, for quantitative accuracy, to intro-
duce massive vector meson degrees of freedom for short-distance physics. At
present, it is not clear how to do this without guidance from experiments.
In any event, the moral of the story is this: That hadronic interactions,
even in massive-quark baryons, are mostly governed by the symmetries of
QCD, which in terms of effective degrees of freedom manifest themselves in
topologically nontrivial configurations. The understanding of these meta-
morphoses in degrees of freedom from QCD variables to effective variables
is the ultimate challenge in hadron physics in nonperturbative regime.
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