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We briefly review the parton model and give reasons why an accurate
determination of the parton distributions is important. We summarize
the recent determinations of the parton distributions of the proton and
describe the role played by deep inelastic lepton-nucleon scattering and
related data. We compare the determination of a,(Mz) from deep inelas-
tic scattering with the average of the LEP measurements. We use a simple
model to illustrate why the Lipatov equation predicts a small z behaviour
of the gluon distribution of the form g ~ z~* with A ~ 0.5. We describe
how shadowing contributions suppress this singular behaviour and we dis-
cuss a structure function analysis which incorporates these effects at small
z. We introduce the GLR equation and outline how an explicit numerical
solution has been obtained for the behaviour of the gluon distribution at
small z. We mention various future experimental probes of the small
region.

PACS numbers: 12.40.-y

1. Partons

The classic way to investigate the structure of the proton is to scatter
electrons off it; indeed the technique has just claimed its second Nobel Prize
[1]. According to quantum mechanics an electron beam of momentum p has
a possible spatial resolution A ~ 1/p, and so the higher the energy of the
beam the more detailed is the structure probed. We use units with A =1
(and ¢ = 1). '

First consider the scattering of a beam of electrons of energy F from a
stationary nuclear target of mass My. The kinematic variables are shown in
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pl' ={M WV E)
Fig. 1. Kinematic variables for electron-nucleus scattering in the laboratory frame.

Fig. 1, where, in particular, the outgoing 4-momentum is pjy = (MN +7, 7).
Thus for elastic scattering we have

PN = M = (My +v)? -

and so the electron energy loss, v = E — E', is given by

Q2
= 2My’

where —Q2 = ¢% = v? — §* is the 4-momentum transfer squared carried by
the photon probe. The larger the value of Q2 the more deeply we probe
the structure of the nucleus, as shown by the succession of sketches shown
in Fig. 2. We notice the reduction of the electron-nucleus elastic scatter-
ing peak with increasing Q2, indicating that the nucleus possesses a struc-
ture; the harder the nucleus is probed the less likely it is to remain intact.
(If the nucleus were structureless we would simply see the elastic peak at
N = Q%/2Myv = 1). At high Q2, namely Q2 > 1/R?, we see that the
scattering takes place from individual nucleons within the nucleus, and that
the electron-nucleon elastic scattering peak occurs at v = Q2/2M (where
M is the nucleon mass), but with the peak smeared out due to the Fermi
momentum of the nucleons confined in the nucleus.

High energy electron-proton scattering can be regarded as a replay of
electron-nucleus scattering, where now the constituents are the (three va-
lence) quarks confined within the proton (see Fig. 3). The continuous curve
shows the electron-quark elastic scattering peak, plotted in terms of the
Bjorken scaling variable

1 4

_ 9
2= oMy’ (1)
where now the peak is smeared out by the Fermi momentum of the quarks
bound in the proton. However the proton is not simply composed of three
point-like quarks, and at higher Q2 we see violations of the “scaling” curve
arising, for example, from the photon probing one of a pair of “sea” quarks
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Fig. 2. Schematic illustration of the cross section for electron-nucleus scattering
as a function of E' at three different values of Q2. The distance, v = E — E', from
the right-hand axis is the energy loss in the laboratory frame. R is the radius of
the nucleus,

which originate from a gluon (g — Qsealsea) itself radiated from one of
the valence quarks, see the sketch at the bottom of Fig. 3. That is, the
resolution increases with increasing Q2 so that the apparent number of
partons which share the proton’s momentum increases, and hence there is
an increased chance of finding a quark at small z and a decreased chance of
finding one at high 2. Thus these QCD effects modify the scaling curve to
the dashed curve, which gradually “skews” more and more towards small z
as Q2 increases.

The constituents or “partons” of the proton are the valence and sea
quarks and the gluons. In the naive parton model we ignore the fact that a
quark may radiate gluons, before and/or after being probed by the photon,
but for detailed studies we must include these QCD effects.

The distribution of partons within the proton is primarily determined
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Fig. 3. Schematic illustration of electron-proton scattering as a function of the
scaling variable z. The scaling violations, arising from QCD effects, lead to the
dashed curve which skews more towards small z as Q2 increases.

Fig. 4. Deep inelastic lepton-proton scattering, £ p — £X. The processes ep — eX
and v p — pX, for example, proceed via v (or Z) and W exchange respectively.

by deep inelastic lepton-nucleon scattering. The generic process is sketched
in Fig. 4. The lower or hadronic vertex is described by two kinematic
variables: Q2 = —g? and the Bjorken scaling variable z = Q%/2p - ¢. The
general expression for the photon exchange contribution to ep — eX, for
example, is, for £ > M,

8207  8ra’ME (1 +(1-y)?
52002 = 04 )

2z Fy + (1 - y)(Fz — 2z Fy )) s (2)
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where y = v/E in the laboratory frame, and so deep inelastic scattering
experiments determine the structure functions Fj(z, Q?).
In the naive parton model the lower vertex of Fig. 4 can be expressed

in terms of scattering from individual quarks, as shown in Fig. 5, and we
find

Fy(2,Q%) = Z e:zfq(z), (3)
q

Fi(2,Q%) = 5-Fi(z,@"), )

where f;(z) is the probability that the struck parton i carries a fraction z
of the momentum of the proton. Equality (4), which is only true in the
naive model, is a direct consequence of the spin 1/ character of the quarks.
Also we see that in this model the structure functions are predicted to be
functions of a single variable z, which can be identified with that given in
(1) since from Fig. 5 we have

(zp+ q)? = ml. (5)

If we go to a frame in which the proton is moving with infinite momentum
we may neglect masses and so (5) gives

— [= Q’] .
2p.q 2Mv |4,

In the infinite momentum frame, relativistic time dilation slows down the
rate at which the partons interact with one another, and so the photon
probes an essentially free particle. We implicitly used this incoherence as-
sumption in writing the summation in Fig. 5, which represents an addition
of probabilities (not amplitudes) of scattering from single free partons.

' q
%@ —~ 3 «%D
Xp+q

Fig. 5. The naive parton model approximation of the hadronic vertex of Fig. 4.
The sum is over all the quarks in the proton; p is the 4-momentum of the proton.
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Fig. 6. The measurements of the structure function F3(z,Q?) of deep inelastic
p#p — pX scattering obtained by the BCDMS collaboration [2]. The curves show
the fit by the KMRS [3] partons.

In the QCD-improved parton model we expect that there will be viola-
tions of the scaling properties of the structure functions, with F; increasing
(decreasing) logarithmically as Q? increases at small (large) values of z,
as implied by Fig. 3. These QCD scaling violations are clearly visible in
the data, as can be seen, for example, from Fig. 6. Similarly the parton
distributions themselves, f;(z,@Q?) are functions of Q2, as well as of z.

2. Why parton distributions are important

Twenty or so years after the pioneering experiments on deep inelastic
scattering and their description in terms of partons, it is relevant to ask
why we should continue to devote so much time to the study of the distri-
butions of partons within hadrons, and within the proton in particular. So
first, we present some of the reasons why they continue to attract so much
attention [4)].

A knowledge of parton distributions is an essential ingredient in all
“hard” hadron interactions. As the introductory discussion implies, they
are determined primarily from deep inelastic lepton-nucleon scattering data.
In the QCD parton model the cross section has the factorizable form
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0‘N= z f‘IV®a.li’ (6)
i=q,3,8

where the parton distribution, fiN (z,Q?), represents the probability that
parton i of the nucleon N is found to carry fraction z of its momentum when
probed with 4 momentum-transfer-squared ¢> = —Q2. Here we use ® to
imply integration over the allowed range of z. The partonic or subprocess
cross sections & can be calculated using QCD perturbation theory. The
next-to-leading order QCD contributions are known and this, together with
the considerable improvement in the precision of the deep inelastic 4N and
vN scattering data, has enabled the parton distributions to be determined
with a reasonable degree of confidence, at least in the range 0.03 S z < 0.8.
The parton distributions are universal provided, of course, they are defined
consistently. That is, when due account is taken of the renormalization
scheme, they can be used to predict the cross section for any hard hadronic

process, for example the production of a state A at the high energy pp
colliders

PPAX =N o T4 (7)
' 4,J
a 9
t
{a) >---_W {b) ---=H
3
9

Fig. 7. Lowest order contributions to W, H and t hadroproduction.

We:show the leading order QCD subprocess for three topical processes
in Fig. 7, namely for W and Higgs boson, and top quark production. For
each process accurate knowledge of the parton distributions is important. In
the first example the error associated with the measurement of the W boson -
mass, My, at the pp colliders has a sizeable contribution arising from the
uncertainties in the parton distributions. (Now that Mz is so accurately
determined, M is a key and limiting parameter in the electroweak tests of
the standard model). Fig. 7(b) shows that an estimate of the cross section
for the production of a Higgs boson of mass My = 100 GeV, say, at the
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SSC (/s = 40 TeV) would require knowledge of the gluon distribution in
a proton at z values in the region z ~ My//s ~ few x1073. The final
example, Fig. 7(c), shows that if the mass of the top quark, my, is to be
measured from the rate of tt production then again the accuracy will depend
on the precision with which the parton distributions are known.

Indeed the universal character of the parton distributions, together with
a knowledge of the higher order QCD contributions, allows a wide range of
processes to be inter-related with considerable precision. In fact the high
statistics data which now exist for many of these processes enable detailed
QCD consistency tests to be performed. An example is shown in Fig. 8,
which compares the jet cross section measured by the CDF collaboration
with a zero-parameter QCD prediction [5].

inclusive Jet Cross Section
Vs = 1800 GeV, 0.1<7€0.7, R =07

o Prel. COF gato
HMRSB, order (as)3 3

0 50 100 150- 200 250 S00 350 400 450 500
[y {Cev)

Fig. 8. Measurements of the jet cross section do/dndEr at /s = 1.8 TeV by the

CDF collaboration, compared with an O(a) QCD prediction [5] averaged over the

CDF fiducial region 0.1 < |7 | < 0.7.

A related reason for the current interest in parton distributions is that
the next-to-leading order QCD analyses of deep inelastic data allow a pre-
cision measurement of Agcp, and hence of a,(Mz), which is competitive
with the recent independent determination of the strong coupling from the
LEP experiments.

The final reason why parton distributions are of topical interest concerns
their behaviour at very small values of z, by which we mean z ~ 103, As
we have seen, knowledge of this behaviour is needed to estimate the rates of
the various hard processes at LHC and SSC energies. However the partonic
behaviour at small z is particularly interesting in its own right, as new
theoretical effects occur. Indeed it is said [6] that, apart from confinement,
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small z is the most interesting problem in QCD.

3. Present knowledge of parton distributions

The distributions of the quarks and gluons within the proton are primar-
ily determined by analyses of the structure functions F;(z, Q%) measured in
muon (or electron)-nucleon (or nucleus) and neutrino-nucleus deep inelastic
scattering. Each of the structure functions can be expressed as a linear sum
of the parton distributions '

Fi(2,Q%) =) «cijfi(z, Q%) (8)
j

and the basic procedure is to parametrize the f; at a sufficiently large Q3,
say 4 or 5 GeV?2, so that fi(z, @?) can be calculated perturbatively at higher
Q? using either evolution equations typically of the form

1
—-——agf;’g?:g;;- Y (Peg(2)o(:0 + X Pea(S) @) ©)

or a Mellin transform analysis. The parton splitting functions in (9), which
specify the probabilities that the processes shown in Fig. 9 occur, are given
by

z 1-—

41+ (1 - z2)?
P38(2)=6(1__z+ z )

z + z(1 - z)) ’ qu(z) = 37— 2z (10)

where we have omitted the virtual gluon corrections which tame the z = 1
singularity of Pgg. Similar expressions determine the Q? evolution of the
gi(z, Q?). It is usually assumed that Q3 is sufficiently large for higher twist
contributions to be ignored.

yp xp=zlyp} z
{1-z)}{yp) 1-2

Fig. 9. Parton splitting processes with momentum fractions relevant for Eq. (9),
with z = z/y. Note from (10) that the probability of emitting a soft gluon is given
by Pgg(z) ~ 6/z and Pgq ~ (8/3)/z respectively.
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A typical parametrization at Q2 = Q2 of the valence, sea and gluon
distributions of the proton is of the form

zuy = Niz™(1 - 2)M(1 + n32), (11)
zd, = Naz™(1 — 2)™(1 + nez), (12)
2z(@+d + 3) = Agz~ (1 — 2)™, (13)

zg = Agz (1 - 2z)Ts, (14)

where u, = fi — f5 etc. There are thus ten or so free parameters (eight
i, As (or Ag) and Aqcp) to be determined by fitting to a wide range
of deep inelastic scattering and related data for Q% > Q2. The coefficients
Ny, N; are fixed by the flavour sum rules, and Ag (or 4;) by the momentum
sum rule. Generally it is assumed that the sea quarks satisfy % = d = 25,
where the relative weakness of the strange sea is indicated by v induced
dimuon production data [7], although the flavour content of the sea remains
an open question and, prompted by recent NMC data [8], has recently been
the subject of much theoretical speculation. The contribution of the charm
and bottom sea is also usually included via g — QQ. Naive quark parton
model and Regge arguments (with unit Pomgron intercept) imply that A = 0
in (13) and (14). However, as we shall discuss below, there are theoretical
reasons why A\ may be as large as 0.5 and some of the recent analyses have
presented sets of partons obtained using this value.

Such determinations of the parton distributions from deep inelastic data
have a long history starting from the original work by Feynman-Field and
Buras-Gaemers, and followed by the parametrizations of Gliick-Hoffmann-
-Reya [9], Duke-Owens [10] and Eichten-Hinchliffe-Lane-Quigg [11] which
subsequently have been widely used. These are all leading order QCD anal-
yses of the deep inelastic data that were available up to about 1983. Over
the last three or so years there has been considerable improvement in the
precision of both muon [2,8,12] and neutrino [13,14] deep inelastic data,
which has stimulated more detailed structure function analyses [3,15-21]
which include the next-to-leading order (NLO) QCD contributions. To bet-
ter determine the parton distributions these analyses supplement the deep
inelastic data with recent high precision data for prompt photon production
and/or the production of Drell-Yan pairs.

We sketch below the constraints imposed by the various data. The deep
inelastic data pin down the quark distributions (cf. Eq. (3)),
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.:;F;P = %u + %d+ ves (15)
%F{‘” = %u + %d-{- ey (16)
% N = B(g+3) + e (7)

FN=S(q- ) +..., (18)

but hardly constrain the gluon distribution, which only enters directly at
NLO; essentially the only constraint is the momentum sum rule which shows
that the gluon carries just less than 50% of the proton’s momentum at Q3.
On the other hand the gluon enters at leading order in prompt photon
production. Indeed for “large” pr photons produced by pp — 4X, the
dominant QCD subprocess is gg — vq, in contrast to pp — yX where
the annihilation process qG — 7g is much more important. The most rel-
evant pp — 7X data are due to the WA70 collaboration [22] with pr in
the range 4 to 6 GeV/c, which measure the gluon in the region of z ~ 0.4.
Combined with the momentum sum rule constraint this is sufficient to de-
termine that ng ~ 5, the value of the gluon exponent anticipated by the
naive spectator quark counting rules. Finally data for the Drell-Yan pro-
cess, pN — ptu~X, which is mediated by qy§, — 7*, primarily constrain
the exponent 7, of the sea quark distributions.

TABLE 1

NLO determinations of parton distributions, and the deep inelastic scattering and
related data [2,8,12-14,22-24] that were used in the various global analyses. In ad-
dition deep inelastic CCFRR v data [14] and SLAC e data [25] have been used. The
discrepancy between the EMC and BCDMS muon data has been largely resolved,
at least for z < 0.3, by renormalizing the former up by 8% and the latter down by
2%, see, for example, Ref. [26].

u-DIS v-DIS Prompt v D-Y A # 0 Scheme
MRS [15] EMC + .. CDHSW  AFS(+J/y) - - Yes MS
DFLM [16] | (EMC + ..) CHARM + .. - (E288 +.) | No DIS
ABFOW [17] | BCDMS - WAT0 - No MS
HMRS [18] | EMC,

BCDMS,

NMC CDHSW WAT0 E605 No MS
MT [19) EMC,

BCDMS CDHSW - E288,E605 | Yes DIS,MS
KMRS [3] BCDMS,

NMC CDHSW WAT70 E605 Yes MS
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The recent NLO analyses are listed in Table I, together with the data
fitted. We also list in this table the renormalisation scheme used in the
various analyses, and whether or not non-zero values of A of Eq. (14) have
been considered. This latter point is clearly important when we come to
consider extrapolations into the region of very small z.

T L] T T LA S

1.0F . :
F' /qup

0.9
08
0.7
0.6

0.5
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0.3f b EMC ‘ -
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0.01 005 0.1 05 10

Fig. 10. The measurements of F}"/F§P by NMC [8], BCDMS [2] and EMC [12]
as fitted by KMRS [3] partons.

Typical fits, which also indicate the quality of the data, are shown in
Figs 6 and 10. The n/p data of Fig. 10 are particularly important for sepa-
rating the u and d quark distributions, and for making reliable predictions
for W production at hadron colliders. These data play an influential role
in reducing the error on the determination of My which arises from un-
certainties in the parton distributions [27]. With the exception of the first
NMC data point shown on Fig. 10 all the experimental measurements, with
Q? > 5 GeV?Z, relevant to the determination of partons, lie in the region

0.03 5z 5 0.8. (19)

However the precision of these data, together with the theoretical knowledge
of the NLO contributions, mean that we now have well-constrained sets of
parton distributions in this kinematic region.
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4. Determination of a; from deep inelastic data

A recent study by Amaldi et al. [28] of the possible unification of the
standard model couplings at some large GUT scale, Mgy, has attracted
a lot of interest. Using the LEP measurements of Mz and sin?fvy, together
with the DELPHI determination of a,

as(Mz) = 0.108 + 0.005, (20)

Amaldi et al. find that the couplings are more than seven standard de-
viations away from meeting at a point, see Fig. 11(a). However if (min-
imal) supersymmetric particles (of degenerate mass Msysy = 10° GeV)
are added they claim the evolution of the couplings is modified in such a
way that unification is achieved at Mgyt ~ 101® GeV, see Fig. 11(b). The
crucial parameter is as. If instead of (20), we use the average of the LEP
determinations [29],

60
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0 ,
102 10* 10° 10° 0™ 10" 10 0% 10

p (Gev)
Fig. 11.  The evolution of the standard model couplings (a) without SUSY,

and (b) including minimal SUSY with the supersymmetric particles all of mass
Msusy = 103 GeV.
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ag(Mz) = 0.120 + 0.007, (21)

then, in this simple model, it turns out that Mgysy is predicted to be so low
that experiments should already have seen some evidence of SUSY particles.

An independent precision determination of a, is clearly of great value.
The scaling violations evident in deep inelastic data offer such an opportu-
nity. In the NLO global analyses of deep inelastic and related data, Aqcp,
or equivalently a,(Mz), is a parameter determined by the fit. A NLO
parton analysis [30], which includes the scale dependence uncertainty, gives

as(Mz) = 0.10919:9%4 + 0.003, (22)

where the latter error is associated with the scale dependence. Usually
scale u = Q is chosen in analyses of deep inelastic data. Interestingly it
is found [30] that the scale which gives the optimum fit is quite close to
this choice and indeed acceptable values of u are found to lie in a region
0.3Q < p < 3Q about = Q. A related analysis [31], which directly
uses the BCDMS structure function data (together with the earlier SLAC
measurements), gives

as(Mz) = 0.112 £ 0.003 + 0.004.

Results (22) and (23), which partly incorporate the same data, are quite
compatible with each other and show that the deep inelastic data give a
determination of as(Mz) which is very competitive with the LEP measure-
ment given in (21).

5. Small z behaviour of the parton distributions

Essentially there are no experimental measurements in the z < 102
(and Q% 2 5 GeV?) region. Does theory have anything to say? Yes, and
more interestingly, it predicts the emergence of two new effects as z dimin-
ishes: Lipatov ‘singular’ behaviour and shadowing.

So far we have assumed

Zg,Zqsea ~ const. as z—0, (24)

based on Regge behaviour applied to the naive parton model. When evolved
to higher Q2 these distributions rapidly develop a steeper shape. It is suffi-
cient to discuss the behaviour of the gluon distribution, since the sea quarks
are driven by the gluon and rapidly acquire its small z behaviour. The
small z region is dominated by multiple soft gluon emission (arising from
the dz/z bremsstrahlung distribution of (10)) and to predict the behaviour
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of the gluon we have to sum the contributions arising from a series of dia-
grams of the type shown in Fig. 12, and possibly also diagrams with virtual
corrections. To perform the sum and find the small z behaviour it is useful
to relate the contribution, Tn(z, k%), of the ladder diagram with n rungs
to that with n — 1 rungs. Here z and kg are the longitudinal and trans-
verse momentum of the probed gluon. In the leading In(1/z), LL(1/z),
approximation the recursion relation has the general form

1
d I
Tn(z, k%) = / ;f_ / dkFE K (k1 K1) Tn—1(2', k7), (25)

where the kernel K, which contains a factor of ag, describes the emission
of real gluons as well as allowing for the possibility of including virtual

corrections.
q 2’%_‘

xp tk

Xn P knT

X, P Eky
%, p Ek
1P gt
p:&/:

Fig. 12. Diagrammatic representation for probing the gluon content of the proton
at small z.

5.1. Double leading logarithm approzimation

An estimate of the gluon behaviour at small z and large Q% may be
obtained using the double leading logarithm approximation, DLLA, in which
we keep the leading power of In(1/z) InQ? at each order in o,. In axial
gauges, the dominant contributions then come from the diagrams like that
of Fig. 12 but with both the transverse and longitudinal momenta of the
gluons strongly ordered along the chain, that is,

P>k >k > ..k, zLzp.. <2< (26)
In the DLLA the kernel of (25) is particularly simple



1110 A.D. MARTIN

3a,
kl2

where the 0 function reflects the ordering in transverse momenta along the
chain. If we insert this kernel into (25) we find

K(kr, k) = =7 0(kF — (27)

Tn 3a‘ ln(llz) ln(k ) n—l, (28)

x n n

and on summing over n we obtain
r9(2,0) = 3 o (P22 1/ 2m@?))

~ exp (2 (3:' )) %) ) (29)

where we neglect slowly varying functions of the argument of the exponen-
tial. Here we have assumed that a4 is constant; if we allow for the running
of a, then a4 In(Q?) becomes proportional to In(In(Q?)). From (29) we see
that zg(z,Q?) increases, as z — 0, faster than any power of In(1/z), but
slower than any power of z.

Can we believe the DLLA prediction for the small z behaviour of the
gluon? Certainly not at low or medium Q2. Moreover we have mentioned
that the traditional input assumption, 2zg — constant as z — 0, is not
stable to evolution in Q2%; upwards evolution rapidly generates a sharp peak
at very small z and downwards evolution results in a distribution which
becomes negative. This assumption is thus suspect.

5.2. Lipatov ‘singular’ behaviour

To find the form of the small z behaviour of the starting gluon distri-
bution we need to sum the leading log(1/z) terms, but retain the full Q2
dependence, not just the leading In(Q?) terms. Clearly we must relax the
strong ordering (26) of the k7’s, which generate the In™(Q?)/n! behaviour,
and integrate over the full k7 phase space. The kernel of (25) is then [32,33]

Ja 1
K(kp, k) = — kT (;;le—z—m - B(kT)8(kT — kF ) , (30)
T T

where
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2y _ [ Ak 1 1
i [ (e ) @

The first term in (30) corresponds to diagrams with only real gluon emis-
sion, whereas the second allows for diagrams with virtual corrections. The
apparent singularity cancels between the real and virtual contributions to
the kernel. Insertion of this kernel into (25) gives rise to the so-called Lipa-
tov equation [32,33]. Unlike the DLLA, it is no longer simple to predict the
small z behaviour of the gluon. The result turns out to be

zg~z > (32)

as £ — 0, where A is the maximum eigenvalue of the kernel, (30).
Insight into the derivation of (32) is obtained from a toy model [3] in
which it is assumed that the kernel has a factorized form

K(kr, kr) = u(kr)v(kr) (33)

although of course, we see the Llpatov kernel (30) has a more complicated
structure. Substitution into the recursion formula (25) gives

1.
1
To(e, M) = ulkr) [ T [o(iTans( 6D (30
which itself is of factorizable form

Tn(z, k%) = u(kp)ta(2). (35)

Rewriting the recursion relation (34) in terms of ¢, we obtain

ta(z) = A / e ), (36)
where
A= / dk2u(kr)v(kr). (37)
0

The nested integrations of (36) give

tn(2) ~ %;ln"(l/z). (38)
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Summing the t, over n we thus generate the small z behaviour

zg(z, Q%) ~ h(Q?) exp (Aln(1/2z)) = h(Q?)z~?, (39)

where the exponent A, defined by (37), can be seen to be the eigenvalue of
the kernel, viz.,

KQu= /u(kT)v(kgr)u(kfr)dkg = Au. (40)

For the actual Lipatov kernel, (30), it can be shown [34], for a running
a,, that the leading eigenvalue X lies in the range

3.6

ok < r < 22

as(kg)s (41)

where k2 is the infrared cutoff applied to the integrals over the transverse
momenta. Taking as ~ 0.25 we have A ~ 0.5, so

z9(2,Q%) ~ h(@%)z 1. (42)

This “singular” behaviour differs appreciably from the traditional “con-
stant” behaviour assumed in (24), and moreover we shall see that it mani-
fests a stability to evolution in Q? that was lacking in (24). Table I shows
which analyses have allowed for a A # 0 type of behaviour. However be-
fore we consider the phenomenological implications of this behaviour we
first discuss the second “new” effect which emerges at very small z, namely
“shadowing”.

5.8 Shadowing contributions

The increase in zg(z,Q?), as z decreases, given by (42) (or even (29)),
cannot go on indefinitely. If the density of gluons within the proton be-
comes too large they can no longer be treated as free partons. The growth,
as z — 0, must eventually be suppressed by gluon recombination [33,35].
The sketches of Fig. 13 show the gluons found in the proton, first by probing
at medium z and secondly at very small z when gluon recombination can
no longer be neglected. As z decreases, when do we expect the “shadow-
ing” contributions to start to become appreciable? A back-of-the-envelope
estimate can be obtained by viewing the proton from a frame in which its
momentum p is large, but in which zp » Q. A measurement of g(z,Q?)
probes a gluon of transverse size ~ 1/Q, but much smaller longitudinal size
~ 1/pz, so that the proton appears as a thin disc. The number of glu-
ons, ng, per unit of rapidity is 2g(z,Q?) and the gluon-gluon cross-section
7 ~ a5(Q?%)/Q?, so the crucial parameter is
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ngo as(Q%) 2

~R? ~ xR2Q? z9(z,Q%), (43)
where R is the radius of the proton. In regions of z and Q2 where W < 1
the interaction of gluons should therefore be negligible and we may continue
to evolve in Q2 as in (9). However, at sufficiently small z, when W ~ a,, the
QCD evolution equation must include an additional term [33,35], quadratic
in zg,

W =

2
02?(2_93(2@ =Psx®9+PscI®q
2 2 2
S;gR§32 8(zo — 2) / (#9(=,0%)".  (49)

o

X<< X,

Fig. 13. The gluon content of the proton in the transverse plane

This is frequently called the GLR equation. For convenience this “shadow-
ing” term has only been introduced into the evolution equation for small z,
that is z < zg = 1072 say. The effect of the negative contribution of the
shadowing term is to tame the indefinite increase of the gluon distribution
leading instead to gluon saturation for sufficiently small values of z and/or

Q2

Q2 R2
as(Q2)’
Before this limit is reached one should take into account higher order shad-
owing contributions in the evolution equations, which themselves will even-

tually cease to be valid as we enter the non-perturbative domain with de-
creasing z.

2g"(2,Q%) (45)

5.4. Phenomenological Analysis

The last analysis listed in Table I, KMRS [3], incorporates both the
singular z—1/2 type behaviour and also its suppression by shadowing ef-
fects. Predictions obtained from the resulting partons, which are relevant
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for HERA, are shown in Fig. 14. It shows F,? and the longitudinal structure
function, F;?, which reflect the small z behaviour of the sea and gluon dis-
tributions respectively. In each case 4 predictions are shown, corresponding
to the 4 sets of partons obtained by KMRS [3]. The top curve is predicted
from set B_ in which the z—1/2 behaviour is incorporated but shadowing is
omitted. The effect of the inclusion of the shadowing term in (44) is shown
for two choices of R, the radius parameter which describes how the gluons
are concentrated within the proton. The conventional choice R = 5 GeV !
assumes that they are uniformly spread across the proton, whereas the ex-
treme choice R = 2 GeV~! assumes that they are concentrated in small
“hot-spots” [35,36] within the proton. For comparison Fig. 14 also shows
the predictions of a traditional set of partons, By, for which A is taken to
be 0 in (13) and (14). We see that the Lipatov 2~1/2 behaviour really
only emerges below z ~ few x10~3 and that (conventional) shadowing only
gives a noticeable suppression below z ~ few x10™4. The available data
are equally well fitted by all 4 sets of partons. For example the continuous
and dashed curves in Figs 6 and 10 show the descriptions, obtained by the
B_ and By sets of partons respectively, to some of the data used in the
analysis. Where the dashed curve is not shown it is indistinguishable from
the continuous curve. In summary the present data do not confirm one way
or the other whether the gluon has the singular z~1/2 behaviour, but this
is not surprising as it is only expected to become manifest in the region
where, as yet, no measurements have been made.

As far as future experiments are concerned we note that the Q2 evo-
lution, at small 2, will be probed over a rather limited range of ln Q2.
This will be particularly true at HERA where information at very small
2(10~% < 2 $1073) is only accessible for relatively low @2, typically Q% ~
10 GeV2. Thus the interest focusses on the extrapolation of the input dis-
tribution g(z,Q32) into the small z region. In other words it is crucial in
the KMRS [3] (or any similar analysis) to choose the appropriate func-
tional behaviour for g(z,Q2) at small z. As mentioned above the KMRS
analysis includes both the Lipatov and shadowing effects; a factor 2~1/2 s
inserted in the “starting” gluon and sea distributions (cf. (14) and (13))
and then shadowing is incorporated by modifying the distributions at small
z so that they approximate a semiclassical solution to the Lipatov equation
with quadratic shadowing terms included. Although this procedure is an
improvement on previous phenomenological analyses there is clearly quite a
bit of ambiguity in the very small z region. It is true that the 2> behaviour
is stable to changes of Q2, but we still have the uncertainty in the choice
of the value of A, which is proportional to a,(k2), see (41). Also we may
question the reliability of the input shadowing form. KMRS used a form
which Collins and Kwiecisiski [37] had obtained by numerically solving the
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Fig. 14. Predictions for the structure functions F; and Fy for deep inelastic

ep — ¢X scattering at Q2 = 20 GeV? using the 4 different sets of KMRS partons

[3]-

semiclassical approximation to the DLLA of the Lipatov equation with the
shadowing term included. To be precise they used the differential form of

(44),

10 10

9%(zg(z,Q? 5(Q2 2770, (Q2
am((l/i()alg(g?)'z) == ,E,Q )29(3,02) (1 - "175‘11’2(3_2)"’(”’ Qz)) , (46)

and retained only the first-order derivatives of In(2g(z,Q?)). The semiclas-
sical approximation has the advantage that the boundary conditions can
be imposed at fixed zg, in a region where shadowing is negligible, and the
equation, with the shadowing term included, can then be solved numeri-
cally for z < zg (using the method of characteristics). The disadvantage
is that g(zo,Q@2) has to be supplied over a range of Q? right down to the
non-perturbative region Q2 2 A2. Clearly it is important to investigate the
validity of this approach.
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5.5. Numerical solution of the Lipatov and GLR equations

The Lipatov equation with shadowing contributions included is fre-
quently called the GLR [33] equation. It is clearly desirable to directly
solve the GLR equation to see if the z—*-type behaviour emerges and to
quantify the suppression due to shadowing. Now the GLR equation may be
written in the differential form (cf. the DLLA of (46))

(zg(z,k}))%, (47)

o0
2Lk / dkF K (kr, ¥r)f (oK) — oo
k

where K is the Lipatov kernel, (30), and f is the gluon distribution before
the integration over the transverse momentum has been performed

d(zg(z, k%))
—?‘iﬁk;L' (48)

While the linear term on the right hand side of (47) generates contributions
which go beyond the LL(Q?) approximation, the quadratic shadowing term
is still within this approximation. Also only the leading order shadowing
contribution is included. As we proceed to ultra-small z, first higher order
shadowing corrections and then non-perturbative effects will become im-
portant. The GLR equation, (47), is based on the perturbative form of the
gluon propagator and so, as it stands, it is not valid at low values of k2,
and kf'zz.; an explicit lower limit k2 is therefore imposed on the transverse
momenta of the exchanged gluons, i.e., k%, k%2 > k3. Moreover since (47)
arises from LL(1/z) approximation it is only valid in the small z region.

Recently the non-linear integro-differential GLR equation, (47), for the
gluon distribution has been solved [38] in the z < zo = 102 region, taking
the boundary conditions, g(z9,Q?), from KMRS [3]. The gluon distribu-
tions so obtained are compared in Fig. 15 with the KMRS gluons extrapo-
lated to small z at four different values of Q?; in each case the three curves
correspond, in descending order, to the gluon with shadowing neglected and
with shadowing included with R = 5 and 2 GeV~1.

Several features of Fig. 15 are worth mentioning. First we notice that
the explicit unshadowed solution (the upper continuous curve) exhibits the
advertised z—* behaviour with a value of A\, A = 0.47, which is similar to
that used in the phenomenological analyses [3,19] and which is remarkably
stable to evolution in Q2. On the other hand A depends on the infrared
cutoff, k2, on the integration over the gluon transverse momentum; for
example, we find A = 0.47 or 0.42 or 0.37 depending on whether the cutoff

f(=, k%‘) =
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Fig. 16. The continuous curves, in descending order, are the values of zg(z, Q?)
determined by solving the Lipatov equation without and with the shadowing term
included (with R = 5 and 2 GeV~! respectively). The dashed curves correspond
to the gluons from KMRS [3] (set B_, without and with shadowing). The different
curvatures of the continuous and dashed curves near z = 2o = 102 are an artefact
of using (KMRS) boundary conditions which evolve in Q? slower than the solution
of the equation. The figure is taken from Ref. [38].

is chosen to be 1 or 2 or 4 GeV2. Secondly we see from Fig. 15 that the
explicit solutions (the continuous curves) have similar z dependence and
shadowing contributions to that found by KMRS [3] (the dashed curves),
but that they evolve faster in Q2 than the KMRS gluons. Indeed it is found
that the Lipatov equation generates gluons which evolve in Q? at essentially
the same rate as the double leading logarithm (DLLA) evolution [39,38].
The differing rates of evolution seen in Fig. 15 can therefore be traced to
the difference between DLLA evolution and the complete Altarelli-Parisi
leading (and next-to-leading) In Q? evolution used by KMRS. Keeping just
the leading behaviour of the gluon splitting function, Pgg(2) ~ 6/2, as in
DLLA, is known to lead to a too rapid an evolution in Q2. This suggests
that the Lipatov equation should be extended to incorporate terms that are
non-leading in In(1/z) but yet which are important for the Q2 evolution.
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Until this is done we conclude that the most reliable procedure is to use the
GLR equation to generate the shape of the very small z behaviour of the
gluon and then to evolve in Q2 using the complete Altarelli-Parisi equations.

Finally we note the explicit solutions of the GLR equation have been
used [38] to delineate the (z,Q?) domain of validity of the leading order
shadowing approximation.

5.6. Ezperimental probes of very small z

HERA will soon probe F;® (and eventually Fy¥) down to z ~ 1073 and
as the luminosity increases it may be possible to extend the measurements
toz ~ 107* at @2 = 10 GeV2. This should reveal the behaviour of the
sea (and the gluon [40] ) distribution at small z. Also the measurement of
inelastic J/4 production at HERA can probe the gluon at small z [41].

As we have mentioned before, the existing experimental data (which do
not extend into the region z < 10~2) do not show any evidence of a Lipatov
z~2-type growth of the gluon (and sea) as z decreases. We see from Fig. 14
that the identification of this behaviour, even from measurements at HERA,
will not be easy. It is therefore desirable to look for processes specifically
designed to expose the Lipatov behaviour. One such novel method has been
proposed by Mueller [6] ; that is to see if there is a possible z—* type growth,
with decreasing z, of the cross section for a deep inelastic event containing an
associated jet as a function of 2y /z, where z; is the longitudinal momentum
fraction carried by the measured jet (z; is kept fixed).

Finally we note that the LHC and SSC offer the opportunity of de-
termining the sea quark distribution at surprising small z by studying Z
production at large rapidity [42,3]. At large rapidity a sizeable contribu-
tion to the cross section arises from q,§, annihilation and since the va-
lence distribution peaks at z,,) ~ 0.1 it means we are probing the sea at
Zsea ~ M2 /82, ~ 1074, Even smaller z could be probed if Drell-Yan
pairs [43,42] could be isolated from the leptons arising from heavy quark
decays.

8. Conclusions

There has been a considerable improvement in the precision of the deep
inelastic scattering data and also of the data for prompt photon production
and the Drell-Yan process. This, combined with the knowledge of the next-
to-leading order QCD contributions, has enabled well-constrained sets of
parton distributions of the proton to be determined, at least in the region
0.03 S z 5 0.8 where the data exist. These data also allow a,(Mz) to be
determined; the two recent analyses [30,31] of deep inelastic data give an
average value
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as(Mz) = 0.110 £ 0.007,

with an accuracy comparable to the independent determination from the
LEP experiments.

The situation is much less clear in the small z region, that is z < 1072,
We discussed two new theoretical effects which are expected to occur at
small z. First by summing the leading In(1/z) terms, according to the Li-
patov equation [32], it is predicted that the gluon and sea distributions (or,
to be precise, 2g and 2gsea) will show a ‘singular’ 2~ behaviour, as z — 0,
with A ~ 0.5. The present data do not determine, or indeed show any ev-
idence-of, this singular behaviour, but this is not surprising as it is only
expected to become manifest below z ~ 10~3. The second effect is shad-
owing; the z~> growth cannot continue indefinitely but will be suppressed
by gluon recombination or shadowing contributions.

We showed results from a recent parton analysis of deep inelastic and
related data (KMRS [3] ) which incorporated both the z—1/2 behaviour
and its suppression by shadowing. If we assume that the gluons are spread
uniformly across the proton, and that they are not concentrated in hot-
spots, it is found that the shadowing corrections are small; even at z ~ 104
they lead to only about a 20% suppression in the predicted values of F;°
and F{P (see Fig. 14).

We also briefly discussed an explicit solution of the Lipatov equation
with shadowing (or, as it is known, the GLR [33] equation). In this way we
were able to explicitly see the emergence of the zg ~ 7" behaviour, and
found, as anticipated, that it was stable to evolution in Q2 (see Fig. 15).
The actual value of A was dependent on the infrared cutoff; for example,
it is found that the numerical solution has A = 0.47 or 0.42 according to
whether the cutoff is chosen to be 1 or 2 GeV?2. The effect of the shadowing
correction on the numerical solution was seen to be similar to that in the
phenomenological KMRS analysis. However the Q2 evolution of the gluon
was faster than theoretical expectations and indicated that leading In Q2
terms, which are non-leading in In(1/2z), should be included in the GLR
framework.

In conclusion it is clear that much theoretical work has yet to be done
to obtain unambiguous perturbative QCD predictions at small 2, and it is
hoped that the interplay between theory and the results of the forthcom-
ing experiments (at HERA and elsewhere) will illuminate this interesting
problem.
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studies of parton distributions.
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