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We discuss the possibility that the Nolen—Schiffer anomaly, an old
problem in nuclear physics, might be a signal that the neutron-proton
mass difference is smaller in nuclei than in vacuum.

PACS numbers: 12.38. Lg

The Nolen-Schiffer anomaly [1], (first remarked by Okamoto [2]), is
an almost thirty year old problem in nuclear physics. Opinions are still
divided when it comes to offering explanations of it. For a particle physicist
the anomaly might be very interesting as it opens up possibility of solving
this problem invoking the elusive quark degrees of freedom in nuclei.

The anomaly is seen in analogue states or mirror nuclei, the simplest of
which are made up of a common core where in one case a neutron, in the
other case a proton is added. Examples of these are 3He and 3H, 170 and
17F and the pair 4!Sc and 4!Ca.

The mass M(n) of the nucleus with a neutron outside the core is of
course not the same as the mass M(p) of the nucleus with a proton outside
the same core. The different Coulomb energies, electromagnetic spin-orbit
interactions and the neutron-proton mass difference § M = 1.3 MeV ensures
that. In addition comes possible effects of charge symmetry breaking of
nuclear forces.

Nuclear physicists think that they have the calculations of electromag-
netic effects well in hand: they have realistic wavefunctions for the nucleons
that reproduce electron scattering very well.
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With these wavefunctions, however, one calculates a theoretical value
Apnp(th) = M(n) — M(p) which is bigger than the observed App(exp). This
is the Nolen~Schiffer anomaly: It runs through the whole periodic table and
increases with nucleon number to something like 9001200 keV in the lead
region. The difference doNs = Anp(th) — Anp(exp) is the Nolen-Schiffer
anomaly.

It is obvious that the nuclear theorists first turned to charge symmetry
breaking (CSB) of nuclear forces to explain the anomaly. A long list of
effects of CSB can be found in the review article by Shlomo [3]. He states
there that if CSB is made to work for 3He-3H it will give too small effects
higher up in the periodic system to explain the anomaly. On the other hand
there has been a recent proposal invoking mixing effects between p and w
exchanges that is claimed to explain about 75% of the anomaly [4].

Personally, I would have liked the conventional nuclear physics to have
been better under control, but I will in the following assume that the Nolen-
Shiffer anomaly is a real problem. Many respectable nuclear physicists have
told me so.

There is one explanation of the anomaly that I, for one, find particularly
elegant, which highlights the anomaly as a striking signal of chiral restora-
tion in nuclei. In a way you could take this explanation to be orthogonal
to CSB, as it asserts that nucleons bound in nuclei are more similar than
when they are free.

Its essence is that the neutron-proton mass difference decreases from
the value of 1.3 MeV when nucleons are put into a nuclear medium. This is
brought about because the covariant condensates (the vacuum expectation
values of the normal ordered produsts) of fundamental fields decrease in
absolute magnitude in the medium relative to what they are in vacuum.

The first to exploit this possibility were Henley and Krein [5]. By choos-
ing a specific model for chiral symmetry breaking which is much used in
nuclear theory these days, namely the Nambu Jona-Lasinio (NJL) model
for quark—quark interactions and combining it with a non-relativistic quark
model for the nucleons, they showed inside this model that the neutron-
proton mass difference 4,p indeed decreased sufficiently much in a nuclear
medium to account qualitatively for a phenomenon like the Nolen-Schiffer
anomaly.

A closer study shows however that relativistic corrections strongly de-
crease the variations of App in the medium [7]. It would clearly be desirable
to link Ayp in the medium with vacuum parameters in a better way.

The QCD sum rules approach is a relativistic formulation of fundamen-
tal origin that can be used to analyze how baryon masses [9-11] change in
the medium. The neutron proton mass difference can be related to the vari-
ation of the quark and gluon condensates in the nuclear medium. Reviews
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of the QCD sum rules method can be found elsewhere in proceedings from
this school [10].

For the application of QCD sum rules A,p, the operators relevant for
the proton (neutron) with broken iso-spin symmetry are

¥p = €abe [(u“Cub)‘ysdc + t(u"C'ysub)d"'] )

By = €apc [(d°Cd®)ysuc + ¢(d*Cysd®)uc], (1)

where C denotes charge conjugation, a, b and c are colour indices of the u
and d quarks, and t is the mixing strength of the two independent operators
having the appropriate symmetry.

The parameter ¢ above represent the mixing between two independent
operators that have the same quantum number as the nucleon we consider.

Ioffe’s original choice for the nucleon correlator was ¢t = —1, a best fit
of the masses inside the § = 1/2'}' baryon octet gives t = —1.15.

The QCD sum rules [8] are based on the use of the operator product
expansion (OPE) of the correlation function for ¥ as defined above

xP(q) = [ 2 TE@), FOF) = Y Cal@)0n,  (2)

where a and 8 are spinor indices.

The short range part of the correlation function is given by the Wilson
coefficients Cp,, the long-range part enters the local composite operators Oy,.
In vacuum we take the expectation value of O, in the vacuum, in a medium
the expectation value in the ground state of the medium.

In this way the medium correlation to the sum rules are obtained by
the density dependence of the expectation values of the composite operators.
This approach is the most simple in the low density (or temperature) regime.

One should note that when one takes the expectation values in a me-
dium one has to choose a specific reference frame — the most convenient
is the rest frame of matter. Non-covariant condensates enter the game and
they generate contributions to the vector self energy TV as the covariant
condensates give the scalar self energy 5.

The phenomenological nucleon propagator in the medium takes the form

AN
(gu — ZY)ye - 28’

,Kphen ( q) =

(3)

where Ay is the coupling of the operator in Eq. (2) to the nucleon and the
OPE expansion entering sum rules read

xOFB(q) = uYiTy + 72+ auying (4)
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when we treat
ay = (Fr1uq) (5)

as a background field.

A nice thing is that the noncovariant condensates that appear, lead
to pole positions in the nucleon propagator that vary very little with the
density of the medium when covariant condensates decrease. On the other
side it can be shown that the mass difference App is mainly given by the
isospin breaking in the covariant condensates of (iiu) and (dd).

The noncovariant condensates can therefore be neglected when we make
a semiquantitative [7, 12-13] discussion of the in-medium dependence of
App.

It is well known since the first work by Ioffe [9] that the quantities
which are the most important in determining baryon masses are the values
of the quark condensates (Gq) and the quark masses. Gluon and mixed
condensates are rather unimportant.

Then it follows that the quantities with dimension that are the most
important for the neutron-proton mass difference are [14]

1. The difference between the quark (current) masses. §m = mgq —m,, will
always be taken to be 4 MeV.

2. The difference between quark condensates (iiu) — (dd) = z.
For convenience we can instead of choosing §m and z choose §m and
(Gu) as our variables with dimension, leaving the variable

_ (dd)
= @)~ (6)

as a dimensionless quantity.

We have now made plausible the result which emerges from more de-
tailed studies that the neutron proton mass difference can be expressed in
terms of (iu), §m and the three dimensionless coefficients

App ~ Dy -y(iu)/® + D; - 6m. (7)

The surprising thing in this formula is that QCD sum rules give — for all
values of the mixing parameter ¢ that are successful in spectroscopy — a
negative sign for the coefficient D3 - D; and the first term in (7) is positive.

This is the same as what happens when one calculates [9-11, 15] SU(3)-
flavour breaking with QCD sum rules by giving a mass to the strange quark.
Then one also finds for the mass difference between = and ¥ a formula where
the strange quark mass enters explicitly with a sign contrary to what one
would guess.
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It is this property that enables us to give an explanation of the Nolen-
Schiffer effect.

On the face of it our explanation of the effect through a decreasing
neutron-proton mass difference in the nuclear medium looks a bit strange.
The Nolen-Schiffer effect in Pb amount to something like 0.9+0.2 MeV and
this is around 70% of the neutron-proton mass difference in vacuum.

On the other hand the covariant condensates (gq)!/3, that according to
Ioffe give the dominant contribution to the nucleon mass, decreases only by
10-20% in absolute magnitude when the density varies from zero to nuclear
matter densities. But according to formula (7) the neutron-proton mass
difference is made up of two relatively big terms with opposite sign. Only
one of these shows an appreciate variation with density in the low density
regime.

Formula (7) is, therefore, quite interesting. Let us look at the first term:
(tiu) is negative, in vacuum (iu) ~ (—250 MeV)3. (-250 MeV)3.

Now da ad) — (a
_{ad) _,_dd -Gy
(tiu) (tu)

is clearly also implicitly a function of §m = mgq — my such that 4, has the
right sign because of the positivity of the first term in (7). As an example we
take the Ioffe choice for the correlator, neglect the continuum contribution
and find

Anp = —Al‘yMo - A26m. (88.)

My which is the nucleon mass in the chiral limit is proportional to (gq)!/3
and

4aM, M2 2Mya bM,
= R~ A p—rq —..0_ — — — —— b
A =1+ 37 2 =2+ ” 72 p” (8b)
Here a = —(2x)%(iu), b = x2(58G?) and y is the Borel parameter.

ag is the fine structure constant for colour forces and (G?) is the gluon
condensate.

In vacuum My and /¥ are around 1 GeV and with values of condensates
determined by fitting the spin !/;baryon octet one finds

(dq) ~ (~250 MeV)?, <%§G2> ~ (330 MeV)*.

A; and A, are therefore both positive. You also see that b/a = 0.19 GeV,

showing that the gluon condensate is quite unimportant for what follows.
The value of the parameter 4 that contains the isospin breaking effects

in the quark condensates can be estimated from the value it has in the

broken SUY sector. Using the simple scaling relation dd) | mq we find v =
3 g (3S) = mg
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—17.8-1073, a value consistent with other [17] independent determination
which give values in the range —0.006 to —0.009 and also consistent with
values found in the NJL model.

The same model shows that when the (§q) condensates change in a
nuclear medium v changes little, something to be expected as v involve the
ratio of (dd) and (iiu). We shall, therefore, keep 7 as a constant for baryon
densities in the medium much lower than the nuclear matter equilibrium
density pam =~ 0.16 fm™3,

The essential point is now that as the baryon density increases |(@u)/3|
decreases, so does M, and the same happen to A,,.

Looking at the theoretical expression of Eq. (7) or (8) we realize the
importance of the negative factor multiplying the current quark mass differ-
ence §m = myq — my in the expression for App. A relatively small decrease
in (Gu) is magnified by the size of |D;v] in Eq. (7).

The particular form for Agp in Eq. (8) comes from a very simplified
version of the QCD sum rules. The inclusion of the continuum, of nonco-
variant condensates and nucleon correlators different from Ioffe (as long as
the correlators will work in baryon spectroscopy) all give the generic form
(7) although the coefficients Dy and D, vary somewhat.

To see the possible relevance of Eq. (7) for nuclear physics we need to
know how (gq) varies with nuclear density. For small baryon densities p one
can always write
1/3 p

—1-c-L = R(p) (9)

Pnm

(o)
(ﬁu)o

and this is a good approximation when nucleons are close to the nuclear
surface. The constant C is in the range 0.1 to 0.2.

Suppose now that a neutron or a proton move in the field of a common
core of A nucleons with density p4(r) such that we compare two mirror
nuclei with nucleon number 4 + 1.

To the extent that the last nucleon has a flavour independent probability
distribution P() for moving in a medium of density p(r) it is clear that (9)
together with (7) leads to an effect in the mass difference between the two
mirror nuclei M(n)—M(p) that is precisely of the Okamoto-Nolen-Schiffer
anomaly type

fons = [ (4ap(0) - Aup(P)P(Aar

= (ﬁu)oC/Dl'y%-%P(r)d:’r ~ CDl'y(ﬁu)o/—Z(—:ZP(r)d:’r .(10)

o3

Note that the value of D; in (7) is irrelevant in the formula.
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Explicite calculations have been done where we use a density distri-
bution of the Woods-Saxon form [12], or by densities calculated using a
Woods—Saxon potential with parameters chosen to fit the experimental val-
ues for the core densities and single particle energies of the valence particles,
[13]. There is not much of a difference. They all show a gentle increase with
increasing A and can easily accommodate the calculations of the Nolen—
Schiffer anomaly by Sato [18]. In his calculations there are the systematic
feature that the anomaly is bigger for nuclei when we have a filled shell
minus one nucleon than when we have a filled shell plus one nucleon.

This is exactly the feature that we would expect from Eq. (10), i.e.that
the hole in the shell feels a bigger density than the particle outside the filled
shell [19]. The calculations by Shlomo [3] do not, however, show this effect
so it is clear that professionals in theoretical nuclear physics have to do some
work to get a consensus on what the anomaly really is.

I hope to have been able to show that if QCD-sum rules as we know
them can be used to compute properties of baryons, they can put the Nolen-
Schiffer anomaly in a completely new light. Instead of being a consequence
of broken charge symmetry they are a striking signal of the restoration of
symmetry when density increases.
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