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Interpreting intermittency as the result of a cascade through a random
medium, it is shown that the long time behaviour of the D-dimensional
random heat equation generates intermittent patterns as well as a multi-
fractal structure. Intermittent fluctuations are arranged in a hierarchical
fashion. Moreover, multifractal analysis reveals that the cascading system
organizes itself into a point-like set of “spikes” whose statistical properties
are given. Such “spikes” are similar to localized asymptotic states. This
allows one to sketch out possible applications to “non-thermal”transitions
in multiparticle production.

PACS numbers: 05.45. +b

1. Introduction

Intermittency first appeared as an attempt to understand one of the
possible routes towards fully developed turbulence in Hydrodynamics [1]. It
means that from time to time there are highly irregular patterns emerging
from a laminar flow. As a consequence, intermittency has been coined to
designate phenomena where high peaks burst out from a flat background.
Since then, this concept has been successfully applied to high energy physics
[2], where the rapidity distribution of observed particles shows peaks and
holes reminiscent of hydrodynamic structures. It is still a major issue to
try to understand the origin of such fluctuations, and how to relate them
to Quantum Field Theory such as QCD (Quantum ChromoDynamics).
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Nevertheless, it is known that intermittency is almost surely related to
some kind of cascade. In Hydrodynamics, this is the well known Kolmogorov
model, whereas in Particle Physics partonic evolution can be viewed as
a quark—gluon cascade. Indeed random cascading models defined on the
Cayley tree [3] describe most of the features of intermittency. It is therefore
noteworthy to try to generalize such toy models. It will be shown that the
random heat equation, i.e. Schrédinger’s equation in euclidean time for a
random potential is a natural extension of random cascading models.

Let us recall a few results about intermittency. Suppose that the state of
a given system is specified by a density P and that phase space is partitioned
into small cells whose volume is § (for example the bin size of rapidity
distributions in multiparticle production). Then, intermittency implies the
following asymptotic behaviour

(P1) 1\ ¥¢

o o (3) )
where the average is taken over samples of the system. Usually, the system
is spatially homogeneous, i.e. (P?) does not depend on the precise location
of the cell, where the expectation value is taken. This will be assumed
throughout the paper. The positive scaling exponent ¢, is called the inter-
mittency index. It varies with ¢ in a non trivial fashion.

It has been pointed out [4] that intermittent phenomena are linked to
multifractal systems. It is even possible to establish the precise connection
between the intermittency indices ¢4 and the multifractal spectrum f(a) [5]
for random cascading models [4]. Multifractal analysis enables one to tackle
global features of the system. The cascade is most of the time dominated
by a point-like set of high peaks whose structure is spin-glass like. This
point-like set plays the role of an asymptotically localized attractor. There
is a “non thermal” phase transition in the cascade. The most prominent
characteristic of phase space is ergodicity breakdown. This is a consequence
of the spin-glass like structure.

It will be shown that the random heat equation is the natural general-
ization of random cascading models. Furthermore, all mentioned properties
of random cascading models, such as spin-glass like phase space and ergod-
icity breakdown are still true for the random heat equation.

This paper is arranged as follows. A few results about random cas-
cading models will be recalled. This will help formulating the link with
the random heat equation. Then intermittency and multifractals are intro-
duced for the case of a time-dependent cascade. By analogy with random
cascading models, intermittency in random media is studied. Intermittency
indices are explicitly computed. The multifractal spectrum is thus obtained.
Multifractal analysis hints that the end of the cascading evolution is dom-
inated by a point-like set of “spikes” whose weights are computed. This is
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then spelt out for Levy laws whose Levy index is g > 1, yielding strong in-
termittency. Possible applications to multiparticle production are added to
our calculations. In three appendices, we calculate the intermittency indices
and the multifractal spectrum of the random heat equation.

2. Intermittency in time-dependent cascades

Let us introduce a few noteworthy results about random cascading mod-
els.

2.1. Random cascading models

These models are the building blocks used in the sequel to obtain gen-
eral results about the random heat equation. The Cayley tree is a lattice
depicted in Fig. 1, where there are A branches at each node. As it stands
there is no loop on this lattice. This is, therefore, a well suited approxima-
tion of a standard D-dimensional hypercubic lattice when the dimension D
goes to infinity. This remark will be utilized at length later. As already
mentioned, intermittency is specified by the behaviour of a random density
P (a measure depending randomly on each sample) as the resolution § goes
to zero. The natural scale on the Cayley lattice is M~ where M is the
number of end-points, the random density P is obtained when assigning a
realization W/A to each branch of the tree; W being normalized random
variable whose density »(W) satisfies

/ r(W)dW =1, / r(WYWdW = 1. 2)

The density Py, of each cell m at the end of the Cayley tree is given by
the product of these random weights along the unique path (m) joining the
root of the tree down to cell number m.

v W,
Prn= ][ - (3)
a€(m)

The normalized weights are independent, from (3) the intermittency indices
are given by: ‘
In(W?
pg = HWT). *)

Thus the intermittency indices are only functions of the geometry of the
tree and of the random variable W. Let us introduce the following notation

Wq

S —ee, (5)
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t1 A2313) M1 [M]

Fig. 1. The Cayley tree on which independent realizations of the random variable
W are assigned. The number of steps is v, the branching ratio A (here equal to 2),
and the different end-points are denoted by [1]......[M]. Path (3) corresponding to
the end point [3] is depicted by a thicker line, the branch a € (3) is an example.

The random weight W, is then interpreted in terms of a Boltzmann
weight e~ €, the local exponent ¢, is an energy depending on each link.
The density P,, can be seen as the probability that a particle evolving on
the Cayley tree is at the m‘! end point. This comes from equation (3)
which is nothing but a Feynman-Kac formula giving the density P, as
the sum over all possible paths from the origin of the tree to the mtt cell.
More precisely, identify the number of cascading steps v (see Fig. 1) with a
cascading time then

Pn= Y, exp(— i ea) . (6)

paths a=1
from O to [m]

The path from the root of the Cayley tree 0 to [m] is unique, thence formula
(3). Therefore ¢, is a random potential in which evolves a test particle. The
density P,, plays a role of the probability of presence at m.

As natural in statistical mechanics [8], the phase structure of random
cascading models is deduced from a partition function

M
Z(g)= Y PL,. (7)
m=1

Notice that the partition function is normalized as (Z(1)) = 1. One can
also interpret ¢ as an inverse temperature. This is partition function of the
canonical ensemble describing an assembly of non interacting test particles
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evolving on the Cayley tree under the influence of the random potential
€4. It happens that this is also what is required to get at the multifractal
properties of the random measure P [5]. In a few words, Py, is a multifractal
measure if and only if M goes to infinity there exists an exponent 7(g) such
that
Z(q) .« M9 almost surely. (8)
M—+oo

From now on, scaling behaviours are specified almost surely, therefore, we
do not mention it anymore. To get at 7(g) it is possible to use the replica
method {8, 9]. This amounts to computing the moments (ZP(q)) as M gets
large [9]. It is then straight forward to compute 7(g) as:

nZ(q) _ _ 4 nZ2(9)

‘r(q): —M-»-}—oo InM _M-»+co InM : (9)

as it is known [10] that r(q) is a self averaging quantity. Suppose that one
can swap the limit p — 0 and M — +o00, this reads

ot e (2P(0)) -1

(o) = iy D1 0
It is necessary to analytically continue (Z?(¢)) when the number of replicas p
goes to zero. Results obtained using (10) agree with computations [8] based
on an analogy with travelling wave equations. On general ground [11], it is
proven that equation (8) entails that there exists a local Lipschitz—Hélder
index ag depending on ¢ and a function f(a) such that the number of cells
m whose density P,, behaves as

-t
P, Mmoo M (11)
is given by
No o« M) (12)
M—4o0

f(a) is the Legendre transform of 7(g), i.e.

g =ga-fla), a=, (13)

f(a) is called the multifractal spectrum of the random measure P, it is
equivalent to an entropy, and is interpreted as the fractal dimension of
the subset of phase space whose density behaves as (11). From statistical
mechanics, the multifractal spectrum satisfies

fle)20 (14)
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(positivity of the entropy). This is a natural requirement about the posi-
tivity of fractal dimensions which turns out to have dramatic consequences
[12]. In the case of random cascading models, the multifractal spectrum
f(a) is given by [4]

— dpg _ 29
a= 4’ fla)=—q rrk (15)
where ¢ is the free energy of the system:
€ = 3—1;‘—’3- -1, (16)

It has been noticed [4] that if the distribution r(W) is continuous, there
always exists an index g. such that f(ay ) = 0. Therefore, above ¢, the free
energy €, remains frozen at its value ¢;.. This is a “non thermal” phase
transition where replica symmetry breaking occurs [8, 9]. This more or
less means that the random distribution {P,,, m € IN*} is dominated by
a subset of cells whose dimension is formally zero, i.e. a finite number of
“spikes”. More about this transition and about explicit ergodicity breaking
in Section 5. If we stick to the particle interpretation given at the beginning
of this Section, these “spikes” are the result of a self-organization during the
cascade. They correspond to regions of phase space where a test particle is
localized. Particles belonging to the canonical ensemble will get clustered in
these domains. It will be shown that these spikes are statistically uncorre-
lated, they behave as free “quasi-particles” whose masses are given by the
weight of their surrounding neighborhoods. Explicit calculation of these
weights as a function of the number of “quasi-particles” will be given in
Section 5.

2.2. Time dependent intermitiency

We endeavour to generalize the above considerations where the Cayley
tree is replaced by some kind of phase space structure E while the number of
cascading steps » becomes a continuous time. In fact, we have in mind the
generalization of the Feynman-Kac Formula (6) to this more general setting.
Before embarking ourselves upon the precise definition of the random heat
equation, let us comment on what intermittency in the final state of the
time evolution of a random system would be.

Suppose that the probability density P(y,t) of being at y € E at time
t > 0 evolves from 0 to t according to

P(y, t) = G(t, 0)P(y, 0), (17)
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where G is the operator governing the time dependence and initial conditions

are fixed by
P(y, 0) = P(y), (18)

where P is a homogeneous random field, i.e. P(y, 0) is drawn from a random
variable P independently of P(y', 0) if y # y'. P(y, 0) is not supposed to
vanish outside a finite domain but a large volume cut off will have to be
introduced to compute multifractal properties. Then, intermittency occurs

if a scaling law similar to (1) holds, i.e. if there exists an appropriate volume
scale §(t) and a scaling behaviour

Foh s o

where §(t) goes to 0 as ¢ gets large. The positive index g4 is the intermit-
tency index.

In order to probe phase space structure, it is natural to introduce a
partition function Z(g, t) describing a canonical ensemble of non inter-
acting test particles evolving according to Eq. (17). These test particles
have a probability of being at y at time ¢ given by the random probability

measure 7 df,(:g;)(y’ e The region M(t) is the volume cut off; in order to
M(1)

have normalized multifractal properties the volume of M(t) is chosen to be
§~1(t). Then the partition function is:

J dPyPi(y, t)
M(t)

( S aPup@, )"

M(t)

Z(g,t) = (20)

where the integration is understood as in (7), i.e. it can be replaced by a sum
if phase space is discretized. Notice that the normalization (Z(1, 1)) =1
has been performed. Furthermore, the index ¢ retains its interpretation of
the effective inverse temperature of the medium. Therefore, test particles
flow through the medium towards a thermodynamically favoured final state
at t = +oo. This final state is a fractal set whose dimension is f(ag).
Following what has been said about random cascading models, the system
is asymptotically multifractal if there exists a function 7(g) such that

2(5,1),_x_ 607, (21)

where D is the dimension of E. Formulae (10)-(13) are still valid and
then interpretation is the same. If the evolution operator G(t, 0) generates
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intermittency then the behaviour of P(y, t) as t gets large is dictated by the
multifractal spectrum f(a). It is possible to generalize random cascading

models in such a way that most of the results are still true in their continuum
version.

3. The random heat equation
3.1. Intermittency

The most natural extension of the Feynman-Kac formula [18] for a
system in E ~ IRD is the following (see Fig. 2)

L y()=y
P(y,t) = Zs / dPy, / [dy]P(y0,0)
y(0)=yo

X exp [-% j (%)241—- j V(T,y(r))dr], (22)
0 0

where V(t,y) is a random potential and

y(t)=y 1 t do\ 2
_ D 2%
Zo-/ d“yo / [dy] ezp[ 4,/(dr) d‘r].
y(0)=y 0

Realizations of the random potential V (y, t) at different points and different
non zero times are supposed to be independent. The path integral is taken
over all paths ending at y at time t. The initial configuration is homogeneous
in all phase space E (see (18)). From ordinary quantum mechanics, it is
known that (22) is the solution of the random heat equation

oP

parametrized by the initial conditions. As it stands this is not a well defined
equation due to kinks of the random potential. Therefore solutions may not
be continuous functions of space and time. In order to regularize the forward
behaviour of the path integral (20), one has to discretize space on a lattice

aZZP where a is the lattice spacing. As shown in appendix A, the continuum
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Fig. 2. The time evolution of the cut-off region M (t) where the probability density
P(y,t) is taken to be non negligible. This domain evolves as time gets large. It is
depicted by the non-hatched region. The lines joining points of M (t) and M (2+6t)
(resp M(t + 6t) and M (t + 26t) represent a path followed by a test- particle. On
each link is assigned a random potential V(y(t), t)ét. Taking into account all paths
from the original domain My to a point y at time £ gives P(y, ) as a Feynman-Kac
formula. The motion of test particles is considered once random potentials are
fixed (quenched disorder). However thermodynamic quantities are averaged over
the random potential V.

limit is obtained taking time t large on a lattice whose lattice spacing a is
finite (small) before letting a going to zero.

Let us give a few physical hints about the Feynman-Kac formula (22).
A similar equation to (22) models the behaviour of directed polymers in a
random medium if one assumes that realizations of the random potential
are independent (including the initial time) and provided that the initial
condition is a delta function at yg. This is nothing but the propagator
K(y,t; yo,0) whose scaling behaviour is given by:

Kt ,0),_y @ (EE) e pr), 29

where 7 is the susceptibility exponent, f the polymer free energy, g a scaling
function and v is the exponent measuring polymer transverse displacements.
The exponent v is superuniversal, i.e. independent of D and has been re-
cently computed [25] to be % From the propagator (24), one can obtain the
solution P(y,t) by convolution with initial conditions. One cannot generally
compute this integral as the function g is not precisely known.
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Another way of representing the solution P(y,t) of (22) is to use the
spectral decomposition associated with the Hamiltonian operator H = — A+
V. To do so, one needs to know the generic form of the spectrum of H =
—A + V. First of all, in D = 1 dimension, the spectrum of the discretized
Schrédinger operator H = —A + V (y) is pure point [13], i.e., there are only
eigenvalues and eigenstates (Anderson localization). This means that as t
gets large, the dominant part of P(y,t) will come from the lower band tail
[15]. Furthermore, the eigenstates have exponential decay. Hence P(y,t)
will be localized around a few peaks (corresponding to the lowest energies).
Phase space will be dominated by a subset whose fractal dimension is zero,
i.e. f(a) = 0. In higher dimensions, the situation is drastically different
[14]. All that can be said is that there is an interval of energies [—Ey, Eg]
outside which the spectrum is pure point. Nevertheless, the presence of an
absolutely continuous part of the spectrum could modify the above conclu-
sion. In fact, the multifractal spectrum f(a) will be non trivial for con-
tinuous random potentials as soon as D > 1. It is suggested in the sequel
that the long time behaviour of the random heat equation is dominated
by a point-like set of high peaks (f(a) = 0). These “spikes”play the role
of asymptotically localized states. Particles evolving in time through the
random medium converge towards these attractors at low temperature (see
Section 5). Furthermore, the aggregation of particles in these regions of
space tend to create “quasi-particles” which behave independently of each
other.

Introduce the generating function of the random potential V'

(exp[—qV (y,7)]) = XD, (25)

which is space-time independent. It is shown in Appendix A that the nor-
malized moments are:

(P4(y,t)) (P4(y,0)) (K(qt)-gK(2))
(P(y,1))9 =00 (P(y,0))9°

Intermittency will stem from the exponential behaviour of these moments.
As mentioned in Section 2, the volume scale is defined once the volume §(t)
is evaluated. The volume scale is chosen to be

5(0) = 5(0) exp(+£K (1)) (27)

(26)

where §(0) is an unspecified constant. The constant £ is arbitrary. This
comes from the absence of scale in the model. { specifies the choice of
length scale which is done when measuring intermittency indices. Notice
that an intrinsic clock is given by the generating function K (t). However, it is
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necessary to introduce a constant £ to fix the length scale, i.e. intermittency
requires the existence of a fundamental scale. As explained in appendix A,
the generalized potential K (t) is supposed to follow

K(t), 5 t"B), (28)

where 7 > 1 and B(t) is bounded, furthermore . h.r{pn B(t) = B > 0. For
—+00

instance Levy and Gaussian laws are within this category.
Following (26), the intermittency indices are

oo =€ lim [T ) = 2P (- 9), (29)

t—r+ 00

where one swaps ; for £. This will be made explicit for Levy laws in Section
4 (see also Fig. 3).

flor)

Fig. 3. Multifractal spectrum. The embedding dimension is obtained for ¢ = 0, at
¢ =1 f(a) is tangent to the line f(a) = a. At g, there is a “non thermal” phase
transition where ergodicity is broken. It is a signal that phase space is dominated
by a point-like set of “spikes”.

8.2. Multifractal spectrum

We will at first follow a naive approach which is justified in Appendix
B. Notice that in order to evaluate Z(gq,t), one can try to use the replica
method. Let us suppose that the integral Z(g,t) is given by its expecta-
tion value for ¢ sufficiently small. This can be backed up by the analysis
on the Cayley tree [12] which shows that below the transition index g, :
Z(q) = (Z(q)). Therefore, taking the average of Z(q,t) and introducing a
time dependent volume cut off §71(t),i.e. the volume of the domain M(t)
in which P(y,t) is taken into account, yields

(Z(a:t),_x  8(t)7 " exp[K(gt) - gK (¢)] (30)
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and eventually for the function 7(gq)

T(g)=D [—1 +g(l+§)—¢ lim {ff((%)] : (31)

This can be expressed as a function of ¢, given by (29). Then taking the
appropriate derivatives (see (13)), one retrieves the following formulae

a(q) = D( - %—1),
298¢
dg’

f(a) = -Dg (32)

where the free energy e, is given by (16). Hence, up to a factor D, the
infinite dimensional case is recovered from mean field considerations. The
overall factor D is present because in the continuum case the cascade is em-
bedded in D-dimensional space whereas the end-points of the Cayley tree
are naturally represented on the real line. Therefore fluctuations of solutions
of the random heat equation as ¢ gets large are multifractal. Notice that
ag is a decreasing function, its minimum is reached at g. where f(ag ) = 0.
Therefore, the fractal set corresponding to the singularity a4, is a point-
like set as its fractal dimension is zero. Furthermore, it is the most singular
fractal set as g, is minimum, i.e.Vg > g §(t)*9~ e T 0. This entails

(see (11)) that the density P(y,t) is negligible outside this dominant frac-
tal set in the asymptotic regime. Hence these “spikes” are asymptotically
localized attractors towards which test particles converge when ¢ > ¢. (low
temperature). As shown in Section 5, where the dynamics of the conver-
gence towards these attractors is analyzed, particles ending in the vicinity
of different “spikes” follow independent paths, i.e. they share a negligible
part of their trajectories. Therefore when considering the flow of a large
but finite number of initial test-particles they tend to get clustered in inde-
pendent “quasi-particles”. These “quasi-particles” are the asymptotically
localized states emerging from the self-organization of test-particles during
their time evolution. There is a “non-thermal” transition between an initial
state (at ¢ = 0) which is randomly distributed and a final state (¢ = +o0)
where localization has taken place. (¢ > gc).
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4. Application to Levy laws (7, 17]

The simplest probability laws which generates intermittency are Levy
laws L,. They depend on a single parameter u, the Levy index, and their
support is the positive real axis. A way of characterizing these random
variables is to give their generating function

(exp(—t L,)) = exp(-C(p)t*), (33)

where C(p) = T "’; o) and p €]1, 2. They are stable laws, i.e. up to
rescaling they are limiting distributions of a sum of random variables. The

Gaussian case is recovered if u = 2 and C(2) = —_-2& There is a significant
difference between u < 2 (Levy laws) and 4 = 2 (Gaussian laws). The
former laws are of very long range as their variance is infinite whereas o?
measures the width of the Gaussian law. Levy laws model distributions
where large deviations from normal fluctuations are allowed. In the finite
dimensional continuum models, the normalized moments read

(Pi(y,1)) (P(y,0))

2 o ——————exp[-C B — q]t*]. 34
Observe that C(ps) < 0 for 4 > 1 and therefore high moments diverge
rapidly as t goes to infinity, a clear signal of strong fluctuations. From (34),
the intermittency indices are given by

¢ = gs(e" — 9). (35)

This is the result obtained on the Cayley tree. From (35), one can compute
the multifractal spectrum (see Fig. 3)

fla) = D(l - (-q‘-’-) “) ., a=D(1+532-(1- u*)),  (36)

(-4

where the transition index ¢, is given by

o- (B0 @

These expressions are meaningful for 4 > 2, they correspond to (28) where
n>2.

Notice that for u < 1, one cannot conclude from Appendix A that there
is intermittency. This is drastically different from the infinite dimensional
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case where 4 < 1 leads to weak intermittency. Finally, the upper intermit-
tent dimension is Dyy = 1 as D-dimensional cascades can be mapped onto
the Cayley tree (Dyy is the dimension above which intermittency indices
are equal to those obtained on the Cayley tree).

5. Non thermal phase transition

It has been several times mentioned that the long time behaviour of
solutions of the random heat equation is dominated by a point-like set of
“spikes”. In Appendix B it is shown that this comes from a replica symmetry
breaking which entails a drastic difference between the behaviours of the
multifractal spectrum f(a) above and below g. where the free energy ¢,
gets frozen, i.e. remains constant. In this Section, we will indicate how this
comes about, i.e. we study the time evolution of test particles through the
medium given the inverse temperature gq.

5.1. Replica symmetry breaking

In Appendix B, the moments of the partition function (Z?(g)) are com-
puted. They correspond to taking into account correlations of p test parti-
cles starting at the same point at ¢ = 0. The result obtained is similar to
what is calculated on the Cayley tree. One can apply the replica formalism
[8, 9]. In order to get at the scaling exponent r(g), the limit p — 0 is per-
formed in (B.16), the maximization problem is replaced by a minimization
(following Parisi, see Ref. [19]).

1
—-pg Min | [dQeg,(q)
(ZP(q)) o  &(t) Wm{o ) ], (38)
t—'+go
p—b

where z(Q) is a monotonic increasing function whose range lies between
0 and 1. The minimization is taken over functions z(Q). This function
measures the fraction of paths starting at a given point at ¢ = 0 and sharing
a common trajectory for a fraction Q of time t (the overlap Q).

Pro[Q < Qo] = 2(Qo) (39)

which can be also written for the density P(Q), the probability of having
an overlap between Q and Q + dQ

P(Q) = j—;. (40)
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x(Q) (a)

P{Q) (b)

1 b
-7y =N

‘/N -
Q Q

1 Q=0 Q=1

Fig. 4. Replica symmetry breaking: a) The overlap function (Q) measures the
probability that two test particles follow the same path during a fraction Q of
time ¢. It depends on the number of effective spikes N. Due to a one level replica
symmetry breaking, test particles can either have overlap Q = 0 or Q = 1; b)
The probability density P(Q) of overlaps. It is a sum of two Dirac delta functions.
The probability of overlap Q = 0 is 1 — & whereas it is 1 for Q = 1. Notice that
overlap @ = 1 means that two test particles follow the same path, they reach one of
the N “spikes”. “Spikes” are equally probable (probability % of reaching a given
“spike”).

N'(S)

i ——
“\‘.,_

¥ x*" S

0 1
Fig. 5. The weight distribution A/(S). This is the probability density that a “spike”
has a weight S, i.e. that the region surrounding this high peak has overlap @ =1
with the “spike”. It depends on the number of spikes N (here chosen to be N = 50).
As natural, if the number N is large enough, the weight S is almost surely close to
S$=0.

As argued in Appendix B, up to a set of Lebesgue measure zero, paths
are uncorrelated. Correlation comes from paths ending within the zero
Lebesgue measure neighbourhood of a “spike”. Carrying out the minimiza-
tion (38) (see Fig. 5) yields

2(@)=1 if ¢<g,
dQ=7 i g2 (41)
Introduce the effective number of “spikes” N = (1 — gqi)_1 (see Ref. [20]
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and Section 5.2.). This is the number of dominant spikes when the index
q is greater than g¢.. Interpreting ¢ as an inverse temperature yields that
below a critical temperature q(_,1 only a finite number of “spikes” play the
role of attractors. From (41) the overlap distribution P(Q) is concentrated
inQ=0and @=1[8]:

P(@)= (1- 7 )@+ 5@-1). (12)

This is one level replica symmetry breaking as test particles can either
remain glued together for a very long time or split up right at the beginning
of their evolution.

Above g, the fractal dimension is zero. Phase space is cut into a point-
like set of “spikes” such that each cell of a “spike” has overlap one with its
neighbourhood. Between cells belonging to different spikes, the overlap Q
is zero. “Spikes” behave as free “quasi particles” as there is no overlap, i.e.
no correlation between them. Nevertheless the location and the width of
the overlap @ = 1 neighbourhood of each spike vary from event to event
(see Ref. [8]).

5.2. Particle interpretation

The physical quantity which describes a “spike” is its weight, i.e. the
fraction of particles starting from the same point which fall in the neigh-
bourhood of a “spike” (whose overlap with a given “spike” is one). As shown
in Appendix C, the number of “spikes” is infinite. However, choosing ¢ to
be greater than g, allows one to study the flow of test-particles towards an
effective finite number N of attractors

N = (1-22)—1. (43)

Conditionally to the number of attractors NN, it is possible to compute the
weight distribution A(S) which measures the probability that the weight of
a given “spikes” is between § and § +dS

S¥-1(1-8§)" ¥
r(ra-4)°
notice that (§) = 7{7 In particular the average probability that a-given

particle flowing to the given set of N “spikes” goes to a particular spike
is §; (see (42)). The long time behaviour of a steady flow of test particles

N(S)=

(44)
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Fig. 6. A single event shape. The distribution P(y,1) is dominated by a few peaks.
Each peak is surrounded by other smaller peaks whose overlap with the dominant
“spikes” is 1. A way of characterizing the multifractal structure of the density
P(y,1) is to introduce divergent levels £, ()(23)(£n 41(t) > £a (1)) in such a way that
E.(t) = {:r. / ng%%, > l,.(t)} dominates the evaluation of the partition function
Z(qn, 1) for a given value of moment g,. Furthermore[23], these sets are arranged
in a hierarchical way E;(t) D Ej(t)--- D E(t). The measure of each E;(t) is small
and ‘lir;l u(E;(t)) = 0 (4 being the Lebesgue measure). Besides, there exists a
— +00
limiting set E(t) corresponding to the piece of phase space which dominates the

evaluation of the partition function for ¢ > ¢, i.e. “spikes” are localized on the set
E(t) whose measure goes to zero as t gets large.

moving inside the quenched random potential is equivalent to an ensemble of
non interacting “quasi particles”. It is conspicuous that localization occurs
at the end of the evolution. This is a result of the “self organization” of
intermittent cascades (Fig. 6 and Ref. [15]).

5.3. Ergodicity breakdown

The existence of “spikes” has an important consequence for the ergodic
properties of test particle motions. Test particles almost surely do not
have a uniform probability of visiting all phase space, only a few regions
corresponding to spikes are probable. Thus, it can be said that the motion
of test particles is not ergodic. This is quantitatively proven examining
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moments of the partition function. From Appendix B, one gets for ¢ < ¢,

1

[ @vPiwn) v (P, (45)
( J dPy | M@
M(t)
This is what is expected from an ergodic system; moments can be obtained
integrating a given sample of the system over all phase space. However as
soon as ¢ is larger than ¢,

—amy | e g P ). (46)

M(t) M(1)

This is precisely a case of ergodicity breakdown. One can interpret it saying

that no matter how much the moment index ¢ is increased, the integral
J dPyPi(y,t) is dominated by a few “spikes” which play the réle of

M(t)

ground states of the system.

6. Conclusion and possible applications

Random cascades on the Cayley tree have been shown to be equivalent
to solutions of the random heat equation. The random heat equation, whose
solution is given by a Feynman-Kac formula, can be interpreted in terms of
cascades through a random medium: it reveals intermittent features as t gets
large. Furthermore, multifractal analysis which is performed on the Cayley
tree thanks to the replica method is still valid for the random heat equation.
It turns out that the long time behaviour is dominated by “spikes” where
the probability density P(y,t) is large. .These “spikes” are uncorrelated.
They represent the regions where a canonical ensemble of test particles
get clustered. Moreover ergodicity is broken due to the non uniformity of
phase space. Let us now apply the above considerations to different physical
situations.

6.1. Deconfinement of a continuum medium

Suppose that a continuum medium is described by a density P(y,t).
It evolves from initial conditions which are random homogeneous at ¢t = 0,
this complies with the fact that small density variations can be present
at t = 0. In a drastically simplified picture, one can argue that interactions
and particle motions can be very crudely approximated saying that particles
inside the medium are sensitive to an effective potential Vi(y,t) depending
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on space and time. Particle motion generates an effective temperature 7' =
B~1. The external potential V(y,t) can be of two kinds:

(i) short range interactions yield a gaussian random potential .V (y,t)
which is the result of an infinite sum of interactions (central limit theorem),

(ii) long-range interactions yield a Levy random potential. In that
case the sum of an infinite number of interaction converge towards broad
distributions{!"] : Levy laws (generalized central limit theorem).

Thence the time evolution of the medium is modelled out by the parti-
tion function Z(g,t) ((20), (22)). Depending on the value of 8, the contin-
uum medium can undergo a “non thermal” transition:

(i) B < g. — Instead of filling up all space as at ¢ = 0, the continuum
medium is spread over a fractal region of space whose dimension is f(ag).
The continuum medium gets lacunar. One can say that the effective tem-
perature 87! is too high to generates big lumps of medium independent of
one another.

(ii)) B > g. — The continuum medium undergoes a “non-thermal”
transition. It gets deconfined as time gets large. Asymptotically localized
“quasi-particles” are created. They correspond to the appearance of lumps
of medium independent of each other. If the temperature $~1 is sufficiently
low (87! < ¢;1), there are N = (1 — %)_1 “quasi-particles”.

6.2. Confinement of an ensemble of interacting particles

Consider a finite but large number of interacting particles. Following
the same path as in Sect. 6.1.) one can model out this ensemble by a random
potential V(y, t) and an effective temperature T = 3~1. As above, two cases
are possible:

(i) B < gc — Particles flow towards a fractal set whose dimension is
f(ag) > 0. Therefore no transition is expected as particles are not confined
to a point-like asymptotic set.

(i) B > q. — Particles get clustered amongst N = (1— %)"1 asymptot-
ically localized “quasi-particles”. These “quasi-particles” are independent
of each other. They represent the result of the self-organization of the en-
semble of interacting particles. Notice that if 8 is very large (almost zero
temperature), interaction creates a single “quasi-particle”. This is a gelling
transition.

6.3. Intermittency in multiparticle production

The above approach can be utilized to model out intermittency in mul-
tiparticle production [2]. It is known that random cascading models describe
most of the observed features of intermittent rapidity distributions [22]. One
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can argue that these cascades can be interpreted as the evolution of non in-
teracting test particles in a random medium. One can assume that there is
no fixed effective temperature. A mixture of all possible asymptotic fractal
attractors is present. Both cases 6.1. and 6.2. can then be physically in-
terpreted. One can think that case 6.1. represents the creation of hadronic
matter out of an initial quark-gluon plasma, whereas case 6.2. could be
the formation of jets from an initial partonic distribution. This picture of
confinement-deconfinement “non-thermal” transition would yield Levy-type
intermittency indices. This is not far from fitting present day experimental
data [24]. Needless to say that it would be interesting to carry on in this di-
rection to see whether these are pure analogies or if they could be backed up
from fundamental principles, te if intermittency indices could be obtained
from Quantum Field Theory.

Let us briefly mention another application which will be developed else-
where [23]. It is possible to relate the random heat equation to the ¢*
Landau-Ginzburg equation (Newell Whitehead equation [21]) describing
Rayleigh-Bernard convection. In that case there is a link between Newell-
Whitehead equation and log-normal cascades “a la Kolmogorov” [23].

Thus random cascading models seem to be good candidates to under-
stand pattern formation in disordered systems. It would be noteworthy to
know other systems which could be mapped onto the random heat equation.

I am very grateful to R. Peschanski for many remarks and suggestions
on the manuscript.

Appendix A

Random heat equation intermittency indices

Bounds on the moments (P%(y,t)) which are sufficient to exactly cal-
culate (P%(y,t)) /(P(y,t))? are obtained. To do so, discretize the random

heat equation on the lattice aZZ?® whose lattice spacing is a.

0P,

Bre = AdFa- VP, (A1)

P, is the solution of the discretized random heat equation. It is a function
of 7o and a, A, is the lattice Laplacian

Auf(z)=2D ) [f(y) - f(=)] (A.2)

(z,v)
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the sum extends to all nearest neighbors of z. The time 7o and the random
potential V are related to ¢t and V by

t
;5"
V =a?v. (A.3)

To

The continuum limit @ — 0 has to be taken to retrieve P(y,t) from Py(y, 70),
it amounts to letting a going to zero while ¢ is fixed (A.3).

Notice that the solution of the random heat equation can be written as
an expectation value with respect to the Wiener measure E,(-) such that

Pa(y ) = By (exp(- ]Ot”f(y(r),f)dr) Pn)0),  (Ad)

where Pg(-,0) is the initial configuration and E, is normalized as:
E,(1)=1. (A.5)

As initial conditions are homogeneous, one can single out the configuration
which remains the same for all times between 0 and 7y, it yields:

P,(y,70) > Pa(y,O)exp(— /Tgv(y, -r)d-r)e“"°, (A.6)
0

where the exponential term e~ 70 represents the probability of staying at the
origin. Two cases have to be distinguished:
Autonomous random potentials
If V(y,t) = V(y) independent of ¢ then one gets

Pa(ya TO) > Pa(y, 0) €xp [ - TO“;(y) - TO] . (A7)

Taking moments on both sides (q>1)

(P3(y,70)) = (P2(y,0)) exp(—gmo) exp ( + K(ga’1o)) . (A.8)
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Time dependent random potentials
Write

T0
Poly ) 2 Pl 0)exp{ 70 0)m = [ [Plarr) - Piw0)]ar = n} .
0

(A.9)

Suppose that increments of the random process f’(y, -) are independent then

(P?(y,m0)) 2 (P(y,0)) exp[K (ga’no)]

X <exp{—q /[f’(y,‘r) - V(y, 0)]}> éxp(—qmo). (A.10)
0
Splitting up the expectation value

(P3(3,70)) > (P3(y,0)) exp(K (ga>r0) ~ g70) [exp(—qAro)

+<exp{—q jdr[ff'(y, ) - V(y, 0)]}1(;,“;)_;,(%0)) S A>] , (A1)

where A is chosen such that the probability Pro({(V(y,7) - V(3,0)) < 4},
for all 7 < t) is arbitrarily close to one; and finally

(Pd(y,70)) = (P¥(y,0)) exp [K(ga’mo) — gATo — g7o] . (A.12)
Observe that in both cases, one can write
(P3(y,m0)) > (P{(y,0)) exp [K(ga’ro) — gx7o] (A.13)

for a given constant .
Furthermore, one has

(Pd(y,70)) = (F3(0,70))

= <(E,, (exp [—zﬁ(y(r),r)dr] Pa(y('ro),O)))q>. (A.14)

Using Holder’s inequality, it yields

(1w < By (ex [—qfff'(y(r),r)dr] PIr)0))) (A1)
0
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then
T0

(P2(r,m) < (P2 VB ((ex0 -1 [ Purmae] )] (a0

0
because P,(y(7o),0) and exp [— a/;° ﬁ(y(‘r),r)dr] are independent. Ap-
plying Jensen’s inequality

T0

T0
(-2 [mPrinir) < < [e (- P n)ar (41
0 0

yields
{(Pd(y,m0)) < (P3(y,0)) exp [K(groa®)] . (A.18)
Therefore, from (A.13) and (A.18)
(Pq(yv t)) t
exp [K(qt) axX— ] (PT(y,—d)—) < K1) (A.19)

Impose on K (-) the following asymptotic behaviour
~v 7 -
K(t) o B(t)t", (A.20)

where > 1 and . li? = B > 0. In order to reach the asymptotic regime
—+00

t = 400, and then perform the continuum limit a — 0, choose the following
scaling behaviour for ¢

ﬂ?
()"
L
where L is a fixed length. This ensures that as ¢t — 400

it >» a

a—0

\ (A.21)

K(gt), > earxat—2 . (A.22)
Then, taking a — 0 gives for very large t
(Pi(w:t)) o (P(y, 0))e(ed. (A.23)
From (A.23), one can conclude that

(P4(y,2)) (P4(4,0)) K(et)—ak(s
(P(y,1))? t—too (P(y,0))4° eK(a)=aK(®), (A.24)
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This is the relation which is used to compute intermittency indices of the
regularized random heat equation.

Appendix B
The replica approach to the random heat equation

It will be shown that the naive way of calculating multifractal spectra
utilized in Section 3 is indeed valid if one takes care of the freezing of the
spectrum f(a) above a certain threshold g.. In order to prove that

(27,1, =_(2(a1) (B.1)

if ¢ is sufficiently small, the replica method is used.
The random heat equation is solved once the propagator X(y,t, yo,0)
is known

y(t)=y t 2 t
K(y,t,90,0) = / [dy]exp[—i-/(%) d‘r—jV(r,y(r))dr] , (B.2)
¥(0)=yo 0 0

where the sum is over all paths from yg at t = 0 to y at t. Then the solution
reads

1
P(y,t) = Za / dPyoK(y,t,y0,0)P(ys,0), (B.3)

where Z; is a normalization factor. Densities P(y,t) and P(y’,t) are uncor-
related if the points are different y # y'. As explained in Section 5, dominant
patterns of the long time behaviour of the random heat equation are located
on sets whose measure goes to zero (see Fig. 6) [15, 23]. Within these sets
correlation is maximum. In order to show (B.1), one has to regularize (B.3)
on the lattice.

Then the p** moment of the partition function is given by

(Zp(q)) x aDp(l_q)6pq(02To)e_PqK(a2‘ro)
2300
A—+too

A
x Y -(m—%!.—a—A-!-(HPg“‘(i,ro)). (B.4)
=1

ar+-aa=p
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The independence of the densities P(y,t) in the thermodynamic limit entails
that

A
lim lim lim (HP:‘”(:',TO)>=H(P°‘“’(z’,t)). (B.5)

a—0 A—r+o0o0 t—+o0 =1
1=

Therefore (ZP(q)) is a sum of exponential terms whose leading behaviour is
given by a dominant exponential. Choosing t large, A large and a sufficiently
small one can write

(2°(q)) ~ aPP(1-9) §P9(t) e~PIK()

t—+00
A—+o00
a—0
! ;
Y — = [[¢P2:9G,2)). (B.6)
1. cas aA‘ ‘
a1+ ras=p g==1

This can be written in terms of the free energy function ¢, given by
(14) as:
(2°(g)) ~ PP

t—++00
A—+4o0

a—0

xﬁ&(t) ) P &I (B.7)
=1

ayl-ay!
arttag=p 1 A
Notice that: ‘

VOI(G) _ al!;,!' ay! _ I(ay +11.,)(p.+1;()aA +1)

(B.8)

is the volume of the symmetry group amongst replicas clustered within 4
blocks of o; replicas (i € {1,...,A4}). The symmetry group is G = Saq,
X +++ X Sq,. One shuffles the partition {a;}i=1...4 of P in such a way that

a2 az---2ay. (B.9)

Define the overlap function @; by

i o
Q=) = (B.10)
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where Qg = 0 and Q4 = 1.
Denote by

2(Q;) = o (B.11)
the value of a; arranged according to the ordering in (B.9). This allows one
to write moments of the partition function as:

(2%(¢)) ~ aPPO79
t—+o00
A—+o00

a—0

A-1
A ' V
1 -Pg 3 (Qip1-Q0)eg2(Q;41)
I v '
i=1 ayt-tas=p Vel(@)
(B.12)

When p is not an integer, this expression holds true if one takes into account
the expression of Vol(G) as a function of a; and p is given in (B.9). Moreover
the above construction of the overlap Q; and the partition element z(Q;)
has to be generalized. One introduces a hierarchy amongst the p replicas of
the system. To do so, denote by Q the overlap between two replicas, i.e.the
fraction of the replica hierarchy shared by two test particles emanating
from the same initial point (see Fig. 7). At any overlap Q;, one puts p/z;
groups of z; replicas. The number z; is the proportion of replicas which
are clustered, i.e.their overlap is larger than Q;. Then going from one step
Q; to the next one Qj41, each group of replicas is divided into z;/z;41
branches. When p is less than one, this entails the following inequalities

0=Q0<:<Qj<Qj41°-<Qa=1,

P=29 < <2j<zjy1-<zp=1. (B.13)
The order of the second inequality is reversed compared to the above ex-
planation to comply with the limit p — 0. In order to obtain the scaling
exponent 7(g), one takes the limit A — +oo (the thermodynamic limit for
the replica tree). This amounts to considering an infinite tree representing
the breaking pattern of p replicas. This tree can be viewed as a copy of the
physical time evolution of test particles. Equation (B.12) is still valid when
considering the above hierarchy. It is now possible to take the continuum
limit A — +o00 and then a — 0. In this limit z; becomes a function z(Q)
where @Q varies from 0 to 1. The sum over all partitions of p is replaced
by an integral over all monotonic increasing function z(Q) whose range is
between 0 and 1. Therefore

- } 9Q eq,
2@,y [l o (B.14



On the Emergence of Asymptotic Localization... 925

and the normalization is such that [[dz] = 1. As t gets large, moments of

the partition function are dominated by the saddle point. Due to the limit
p — 0, one replaces the maximization by a minimization, one gets

1
~pg Min fdQe 2(Q
(Z°(a)) « 6(t) 3y [ oo ’], (B.15)
t-—*+go
p—’

where 2(Q) is now a monotonic increasing function whose range lies between
0 and 1. It corresponds to the total number of replicas at a given overlap Q.
Performing the minimization is rendered straightforward noticing that z(Q)
has to be a constant function. Depending on whether the index g is less or
greater than g. (the critical index where ¢, is minimum) one gets different
values for the scaling behaviour of (ZP(q)). Thus there are two regimes.
When ¢ < ¢ the p replicas are equivalent (symmetry group S,) whereas
when ¢ > g, replica symmetry is broken (symmetry group IXX..-xX p
times) [8,9,19]. This entails that (see Section 5)

1<q (2°()) o 6(t)7Peee

t—+400
p—0

¢>g (27(0)) o 6()7Pre (B-16)

t—-+4o00
p—0

As explained in Section 5, this is a one level replica symmetry breaking.
From (B.16) the function 7(g) is given by

¢<4q. 7(q)=—Dgeq,
g>4qc 7(9) = —Dgeg,. (B.17)

From thermodynamics, the free energy is defined by —7(g)/g. This shows
that g4 is the free energy, it remains frozen above g.. The multifractal spec-
trum plays the réle of a local entropy (see Eq. (13)). Thence

de
7<4c f(a):-DqZqu-,
4249 f(a)=0. (B.18)

Therefore, the naive result resulting from the calculation of (Z(q,t)) for ¢
large is retrieved for ¢ < g.. Above g, the multifractal spectrum remains
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0 Qq ITC
- q TI:
a -— xj/x,-.|branches
8
; - Q)o'
3
S

Fig. 7. The tree structure of replica symmetry breaking. The p different replicas
are organized in a tree structure whose vertical coordinate is the overlap Q;, the
p replicas are put in p/z; groups, each containing z; replicas. At the next value
Qj+1, each one is separated in z; /zj+1 subgroups, each with z;,; replicas, and
so on and so forth... In this tree structure, the root corresponds to the overlap
Qo = 0 (symmetry group S,) containing all replicas (2o = p); the last step gathers
the cluster of individual replicas (z4 = 1) with individual overlap Q4 = 1. The
replica methods consists in an optimization method to get at the scaling exponent
7(g) in the space of all pairs (Q;, z;) between these two limits.

equal to zero. The consequence of replica symmetry on ergodicity breaking
are spelt out in Section 5.

Appendix C

Weights of asymptotically localized “quasi particles”

Define §; as the weight of the ¢ — th “spike” which plays the réle of
an attractor for particles evolving through the random medium when q is
greater than g..

. M
Si= Jim s (C.1)

where S EM) measures the fraction of the M initial particles flowing to the
ith “spike”.
M 1
s =3l (C.2)

a—i

The symbol @ — i means that the at* particle goes to the it* “spike”.
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Notice that for M sufficiently large:

Zs‘“’ Z Yr=1 (C.3)

ot

which implies that weights §; are normalized according to
Z S;i=1. (C4)
i

In order to compute fluctuations of the weights 5;, one calculates moments
(S,(M)q> for M large. At the end of the calculation, the limit M — +o0
is taken. Then

() = (7 Z S Y (c:5)

aq—"'

where the average is taken over fluctuations of the random medium.

Using (C.1) one can insert 3; 3¢ an.u-»i Iy ,, =1 and get
M
(56401 = <§: e o TerTegn) (C.6)
ay—i
ags1—i

This is nothing but the total probability that (¢ + 1) particles starting at
the same point get clustered amongst the same dominant “spike”. One can
express this condition saying that overlaps between these (¢ + 1) particles
have to be of order 1:

<S§M)q> e—-vO(ZMq+1 Z Iy -- aHl()(Q"la:

(23] —
xg4t —t

Fe)---0(QU1e+ — 14 e)> , (C.7)

where 6 is the step function and Q2P is the overlap between two particles
a and S. This is most conveniently computed going to replica space as this
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is the probability of choosing one cluster formed by m replicas and then ¢
replicas amongst these m replicas. Therefore

i g P(m=1)-co(m = g)
<Sf>-}]’.1_%¢h_1&’ P(P"'l)“-(p—q) ’ (C.S)

where one lets the number of replicas p going to zero in order to obtain
thermodynamic quantities. Taking into account that

gz_zj})m =z(l-¢) (C.9)
and eventually
. 1
eh}}% z(l-¢)=1- N’ (C.10)

where N is the effective number of “spikes”. Notice that this is different
from z(1) = 1. This entails that one chooses N effective “spikes” and only
consider particles flowing to these IV attractors. Then from (C.8) and (C.10)
one gets

Fg+x)
I(#)F(g+1)

This can be easily inverted to yield the density A(S). The density of the
weight S is given by (see Fig. 5).

(8) = (C.11)

Sk=11-5)"%
r(F)rit-#)°

This is the number of weights between S and $ 4 dS. The normalization is
chosen such that N(S) = 1. This proves that the average number of “spikes”

is infinite as
( > 1) = (§;7) = +o. (C.13)

1]

N(S) =

(C.12)

However, due to the condition N(S) = 1, the density N(S) can be inter-
preted as the conditional density having chosen a given set of NV “spikes”.
This corresponds to studying the flow of particles at a given fixed “temper-
ature” lower than g;!. Taking only into account particles flowing to this
given set of N “spikes”, statistical properties of weights (5;) are given by
(54).
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