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‘We discuss the phenomenology of point matter distributions, using
examples of photoelectron count arrival times, galaxy distributions and
multihadron production at high energies. Count distributions in phase
space cells, multiplicity moments and correlation functions are discussed
along with their interconnections. The possible description of higher or-
der cumulant correlations (both for hadrons and galaxies) by linked two-
particle cumulants and negative binomial coeflicients, is reviewed.

PACS numbers: 06.30.-k

1. Introduction

The basic problem in assessing the structure of and behavior of a system
composed of a large number of “points” is how best to characterize its
texture. (Note that from our vantage the “points” might represent trees,
galaxies, photons, bacteria, hadrons or whatever.) Simply presenting a
catalogue listing all the phase space positions is extremely useful, but does
not give data in a form which the human mind can easily understand. The
primary physical question is one of correlations, i.e., given that one object
is at a certain place, how is the likelihood affected that other objects will
be at other places? Secondly, how do these correlations evolve dynamically
as “time” progresses. It might be thought that such a traditional topic, at
the heart of intense research activity in all branches of science, would be
totally developed. That this is not the case is even true for “geometric”
phenomenology, as is proven by the recent appreciation of the widespread
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occurrence of fractal structures. In fact the techniques used in these lectures
represent some combination of probability theory and fractal engineering.
Some of the recommended data analysis procedures that emerge from this
point of view are of general use whether or not scaling fractals are involved,
although the techniques have been tuned to that case [1].

As everyone knows, concepts of probability play a crucial role in science,
from the interpretation of quantum mechanics to the estimate of errors in
data analysis. The development of statistical physics as a calculus of prob-
abilities beginning with Maxwell, Boltzmann and Gibbs, not to mention
Einstein and many others, represents one of the major achievements of sci-
ence. A well formulated probabilistic law has the same predictive power
as a symmetry group transformation law. Despite all this, accomplished
theorists willing to learn the most erudite mathematical techniques remain
ignorant not only of the techniques, but more importantly the spirit and in-
tent of, probabilistic reasoning. As a consequence, the conceptual evolution
of mainstream physics has developed a blind spot which in most cases is
the ghost of classical determinism. Now that some basic issues of nonlinear
science have been clarified, especially the sensitivity to initial conditions, no
informed person can adhere to these old views. Still, their pernicious influ-
ence is very strong. It is commonly believed that an equation of motion for
some set of fields is a finer construct than the discovery of a statistical law.
Surely the Maxwell-Boltzmann distribution is as great a discovery as the
equations of QCD.

Having expressed these philosophical opinions, let me say that in my
view our job as physicists is to explain data. In order to avoid the vagueness
that follows from excessive generality, we focus on three types of experiments
to bring out some key issues.

Photoelectron Counts. Here we imagine a light source striking a detec-
tor (or detectors), producing well-resolved photoelectron counts (Fig. 1(a)).
The z-marks on the time axis indicate the idealized times when the photon
energy momentum excites the electron in the detector, Notice that Fig. 1(a)
represents a particular example of the experiment, lasting for a time T'. In
order to understand the physics properly, we need to collect many such ex-
amples under the same conditions. The appearance of the spike distribution
will differ from event to event.

Galazy Distributions [2]. When looking at the night sky we see a highly
irregular distribution of luminous matter. Disregarding all details, we shall
speak of “the galaxy distribution.” What we see can be regarded as pro-
jected onto the surface of a sphere, located by the usual angular coordinates
(6, ¢). More detailed three-dimensional data are currently becoming avail-
able, largely due to red-shift measurements (see Fig. 1(b).)

Following fifty years of belief in a homogeneous, isotropic universe, as-
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Fig. 1. In (a) the arrival times of photocounts are shown for one experiment in
which the detector is on for the interval 0 <t < T'. (b) indicates the projection of
galaxies in three dimensions (open circles) onto the sphere (8, ¢), solid circles. (c)
shows a typical multiparticle production event at high energy in the c.m. frame.
The vectors indicate that the transverse momentum p, , is typically (i.e., except for

scarce jet events) limited to a tube of radius ~400 MeV/C, while the longitudinal
momentum is parametrized by the rapidity y = 1/2In(E + p,/E — p;).

tronomers have suddenly begun to scrutinize every imperfection in the mat-
ter distribution. Despite the complications involved (e.g., dark matter) it
is believed that studies of these irregularities will illuminate the dynamics
and evolution of the universe. I agree with this optimism.

Note that we have only one universe available for inspection, unlike the
photocount experiment. However, since the size of the universe is so large,
it is useful to regard carefully chosen subspaces as members of an ensem-
ble of statistically independent entities. But care is needed since correlated
structures of enormous extent have been discovered. New ideas about the
best way to deal with this situation are currently in a state of intense de-
velopment. In fact this nontrivial complication shows up in many branches
of science.

Multihadron Momentum Distributions. Consider the production of had-
rons (usually dominated by pions) at energies so large that the fate of the
projectile and target are of small consequence. In typical events a large
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fraction of the initial kinetic energy is transformed — in a small space-
time region — to final state hadrons, plus some secondary leptons and
photons not of interest for this discussion. Except for scarce jet events
the momentum of secondaries transverse to the collision axis is small — one
speaks of longitudinal phase space (Fig. 1(c)) and focuses on the dependence
of the final particles on their rapidity y = 1/2In(E + p;)/(E — p;). Usually
one integrates over the p; dependence of the inclusive differential cross
sections, or simply ignores p, altogether. The locations of the individual
rapidities of a particular event are strewn along the kinematically allowed
rapidity axis in the c.m. frame

-YmM <y<Yum, (1.1)
s

YM = i ln——— 1.2

27 4m2’ (1.2)

where the maximum allowed center of mass rapidity of the typical particle
(pion) is given by Eq. (1.2). Typically data are presented in histogram form
(Fig. 2) since the experimental resolution may not resolve the exact location
of the particles in a bin. In that case one simply counts the particles in the
bin. As we shall explain, it is also informative to study the irregularities of
the histograms as a function of bin resolution. Current experiments have
104-10°% events and resolution going to a rapidity bin size of around 0.1.
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Fig. 2. A typical rapidity histogram is shown. For a given event we imagine n
particles to be located at the points denoted by short vertical segments of equal
length. Since the resolution is 8y, the height N counts the number of particles in a
given bin. Collecting many events, we can for example find the count distribution
in the interval Ay, find the correlation between y4 and yp, etc.

From the foregoing discussion it is clear that fluctuations occur in the
number of counts in the individual events: the number of photons arriving in
time T'; the number of galaxies on a given photographic plate; the number of
charged hadrons in a particular part of momentum phase space (here usually
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a given rapidity interval AY'). The probability P, of the count distribution
can provide crucial information about the nature of the physical process
under consideration, as we shall explain.

A related measure of fluctuations is given by the number moments in
bins i of the phase space (n;}, (ni(n;—1)), (ni(ni—1)(n;—2)), ... Here we
are introducing the factorial moments (nlPl) = (n(n—1)...(n —p+ 1)) as
explained below. The value of this approach for multihadron production has
been developed by Bialas and Peschanski [3], who stressed the importance
of measuring the dependence of the factorial moments on resolution (bin
size). One can also evaluate correlations between bins, e.g., (n;n;), i # j.

In fact all the aforementioned measures of fluctuations can be computed
from the density correlation functions py(z), p2(z,2'), ps(z,2',2"),...
should they be available. Before explaining these connections we list a
variety of methods currently in use to analyze the structure of matter dis-
tributions. Here we can only describe a few of these methods.

a) Count Probability Distributions. In this case the probability of finding
n particles in a given part of space is computed.

b) Histogram Analysis. Particle counts and moments in given space
bins are analyzed.

¢) Correlation Functions. Correlated counts in different bins define the
correlation functions.

d) Pair (Multiplet) Counts [4]. In this approach the emphasis is on
counting pairs, triplets, of particles closer than some variable distance e.
There is a close connection with the sequence of correlation dimensions for
scaling fractals.

e) Information Correlations [5). Beyond the usual information entropy
of a probability distribution, one can define a sequence of information corre-
lations, the second order version being the well-known mutual information.

f) Power Spectrum [6,7]. The nomenclature refers to the connection
of the autocorrelation function of a time-dependent function z(t) to the
squared Fourier transform |z(w)|? via the Wiener-Khinchin theorem.

g) Multifractals. Since the scaling properties of fractals can be mixed in
character, various methods are under development to quantify them. One
such is closely related to the Renyi entropy, although in applications true
probabilities are replaced by event counts [8,9].

h) Wavelet Analysis. Few of the measures mentioned above give ade-
quate information about what is happening where in space. (The master
set of correlation functions do so in principal, but are very hard to measure
precisely.) For example, given a strange attractor (fractal set) with mixed
scaling properties, we might want to also know where on the attractor cer-
tain scaling properties occur. Wavelets, analogous to Wigner transforms,
allow one to localize and scale the various components of a set. Again,
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practical use depends on the existence of precise data.

2. Interlude: some useful definitions from probability theory

The material in this Section is well known to those who know it well.
In any case it will establish our notations for the subsequent Sections. For
a more extensive account we refer to the treatise [11] of Kendall and co-
workers, as well as a physics-oriented review in Ref. [12].

We refer to the basic relations connecting count probabilities, moments,
and the generating functions which collect the moments into a single struc-
ture. Given a count probability distribution P,, n = 0,1,2,... we can
define (p=0,1,2,...)

ordinary moments p,

[~ <]
pp = (nP) = ) nPP,, (2.1)
n=0
moment generating function M())

M(\) = Z e p,

(‘p",)’u,, (22)

oo
p=0

cumulant moment K, and generating function

mMO) =} (;"')’/c,,, (2.3)
p=1 7

Ki=(n), Kz=(n?)-(n)?
K3 = (n®) — 3(n?)(n) + 2(n)3,.... (2.4)
For our discussion of the structure of point distributions of one species
of particle it is more convenient to use a variant set of moments and cumu-
lant moments in which ordinary powers are replaced by “factorial” powers,

as indicated in the introduction. We define the factorial moment £p, its
generating function Q(A) and cumulant factorial moment f, by

factorial moment
& = (n(n~1)...(n - p+1)) = (nl))

=Y alip, (2.5)

n=0
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factorial moment

generating function
oo o0
EY
am=Ya-wr=y S (2.6)
n=0 p=0
factorial cumulant moment
generating function
o (=A)?
an(A) = E p! fP (2'7)
=1

fr=(n), fa=(n(n-1))~(n)’
f3 = (n(n - 1)(n—2)) - 3(n(n - 1)){n) + 2(n)*,.... (2.8)

Each set of moments, generating functions and cumulant moments has
its own merits and most naturally describes certain distributions. Consider,
for example the Poisson distribution and its predictions for Eqs (2.5)—(2.8):

e
Q(X) = exp(—A#n),

III.Q(A) = _Aﬁ,

bp= (nlP) = 7P,

f? = 171.51,1 . (2.9)

Note that {,/7ip, = 1 and that all cumulant factorial moments vanish beyond
the first. The Poisson distribution describes a minimal fluctuation structure.

For purposes of data analysis it is useful to employ both the normalized
factorial moments F,, which are easily measured:

r=1, =800,
e

as well as the normalized cumulant factorial moments Kp = f,/(n)?:

(2.10)

Ki=1, Ky= (n(n -(:;)))2— (n)z’
K3 = <n(n — 1)(n — 2)) —(i()":(n — 1))(n) + 2<n)3 . (2'11)
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Both the F, and K, moments will be shown to be averages over related
correlation functions, with the K, allowing the expression of the easily mea-
sured F, moments in terms of mostly lower order K, moments:

Fi=K;, F=1+K,,

F;=14+3K; + K3,

Fy=1+4+6K;+3K? +4K;3 + Ky,

F5 =1410K; + 156K3 4+ 10K,K3 + 10K3 + 5K4 + K5.  (2.12)

The identities (2.12) are in a sense akin to a phase shift decomposition of a
scattering amplitude. These equations apply to the particular phase space
domain for which the probabilities P,, are defined. We shall explain how
these relations and their generalizations, averaged over larger parts of phase
space, are useful in studying fluctuations.

Besides the Poisson distribution, the Negative Binomial Distribution
(NBD) is of major significance in describing count probabilities in arbitrary
partitions of phase space for photon, galaxy and hadron count distributions.
Known in mathematical statistics for some time, this distribution appeared
in physics in 1924 when Planck [13] considered the distribution of n Bose—
-Einstein (B-E) particles in k cells of average equal occupancy #i/k. The
geometric B-E distribution P, = #™/(1 + 7)"*! has generating function
Q(A) = (1 + AX)~! so that for the k cells (n = ZLI n;)

Qr(V) = (1 + %ﬁ—) - . (2.13)

The corresponding NBD count distribution is

pk_ (k=1 (a/k)"
m T Ak —1)! (1+A/k)TE

(2.14)

In modern times (2.14) was derived by Mandel [14] for semiclassical photo-
count distributions for k sources of gaussian random fields. In the early 70’s
Giovannini [15] showed its success in describing hadronic multiplicity data.
In 1983 we [16] rediscovered this distribution after the publication of the
UAS5 data. This group subsequently presented an impressive fit of hadronic
data as a function of energy, in which the k parameter decreases with energy
[17]. The meaning of, and the dependence of this parameter on energy and
rapidity interval remains somewhat obscure.
It is easy to derive from (2.14) the scaling form

APk = Y (n/A) n,i > oo, (2.15)
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kk
¢k(z) = (k — 1)!zk—le—kz y T= —;"
In fact v, a special case of the gamma-distribution, is a good approximation
for moderately large n, fi.

Eq. (2.15) is a particular expression of Koba-Nielsen-Olesen (KNO)
scaling [18]. According to UAS, this scaling is broken (but in a simple
manner) via the energy dependence of the k parameter.

For subsequent use, we derive the factorial cumulant moments for the
NBD. Comparing Eqs (2.7) and (2.13) we find f, = aP(p — 1)!/ kP71, i.e.
K, = (p—1)!/ kP~1. Hence the ordinary factorial moments are given by [19]

(2.16)

Fr=1 +1/k,
Fs=143/k+2/k2,
Fy=1411/k* +6/k%,... (2.17)

i.e. as a power series in 1/k. In application, we will consider these formulas
in terms of their dependence on the considered volume, in which 1/k is the
average of the two- particle cumulant correlation function defined below.

3. Counts and their fluctuations

In the simplest type of measurement we simply count the number of ob-
jects appearing in a given fixed volume (e.g., galaxies), time interval (e.g.,
photons) or rapidity interval (hadrons). By accumulating many such ex-
amples we can find the frequency of occurrence of a particular number of
objects. The form of the probability distribution P, summarizes the fluc-
tuation in the count (n) observable. (Of course there can be subtleties in
the preparation of the ensemble; in the case of galaxies we have to sam-
ple different volumes of the same universe, a more subtle process than al-
lowing the same accelerator to produce statistically independent collisions
under basically identical conditions.) Note that the count probability does
not determine where the individual contributor is located in the count cell
(cell=volume, rapidity bin or time interval).

First consider how the nature of the fluctuating electromagnetic field de-
termines the photocount distribution. Consider highly coherent laser light
scattered by a fluid at its critical point, at which the density undergoes
strong fluctuations. The scattering process changes the form of the pho-
tocount distribution P, from Poisson to a much broader distribution, [20]
closely approximated by the negative binomial. Similar results were found
in the early days of laser physics. Below the threshold for coherent light
emission, the single mode noisy photocount distribution is well described
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by a Bose-Einstein (NBD with k = 1) distribution, while the Poissonian
appears in the coherent regime.

A simple model — the coherent states [21] of a simple harmonic oscilla-
tor — provides a clear illustration of the dependence of the count distribu-
tion on the density matrix of the field ensemble. The usual coherent states
la) (a is complex)

laj = exp (- %mt’)é%—aw (3.1)

are produced by a classical external force [22] coupled linearly to the oscil-
lator and in any case are prototype quantum states giving classical coherent
motion {a|z(t)a) « cos(wt — ¢). The pure density matrix p, and the count
probability corresponding to the coherent state are

pa = |a)(al

a2
P, = |(n|a)|2 = |a|2n_e_ﬂ_(_7?|_ﬁ|__)_ ) (3.2)

confirming what is clear from (3.1): ## = |a|? for a Poisson distribution.
Next consider a Gaussian probability in the complex a plane, with density

matrix laf2/N)
exp{—|a
p= /dza-—(—x'N'-——pa (3.3)

and count distribution

Pn = (nlpln) = ('1'3%;)?5 (3.4)

The Gaussian random oscillator variable a is the prototype of noisy and
thermal field ensembles.

Eq. (3.3) is a special case of the “P-representation” of the (single-mode)
density matrix [21]

p= f PaP(a)]a)(a] - (3.5)

This representation is of rather general validity; in quantum domains one
has to realize that P is not necessarily positive. Note that (integrating out
the phase angle), Eq. (3.5) leads to the useful Poisson transform

(zn)" exp( zn)

P, = / dzf(z) (3.6)
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This expression, and its generalization to higher dimensions in 7 (and 7) is
extremely useful. We note that for large n and #, fip, ~ f(n/) is a useful
scaling form. The reader can confirm that for the choice f(z) = ¥(z)
of Eq. (2.16), the NBD (2.14) is recovered. One can also confirm this by
compounding k independent oscillators with gaussian weights corresponding
to equal average occupancy N/k (i.e.,

k
exp (- 3 lail?/(N/K))
plog«--az) = '(;N/k)"

subject to n = Z:-;l n; one recovers (2.13) and hence (2.14).) (However
in physical problems the effective oscillators are correlated and k can be
nonintegral.) Note that the photocount distribution for a superposition of
k independent Gaussian sources is negative binomial.

Naturally the connections of photocount statistics and their relation
to the fluctuating light sources have been thoroughly worked out since the
advent of the laser [20]. We must also mention the Hanbury-Brown, Twiss
eflect on intensity correlations. In high energy physics the analogous effect
for like-sign particles goes under the name of Bose-Einstein correlations.

Next consider counts of charged hadrons for a fixed rapidity interval.
Originally (e.g., in a bubble chamber) one derived n-prong cross sections
and hence the probabilities in full phase space. In other detectors (say UA1,
UAS5)) the forward and backward cones — where diffractive events live —
are excluded. Most published data do not distinguish plus from minus, Ks
from xs, etc. When angles rather than true momenta are measured the
variable of choice is the pseudorapidity 7 rather than the rapidity y.

By now there exist data for many energies and for many choices of
target and projectile. Here we only discuss multihadron production in
hadron-hadron and et —e~ collisions at high enough energies that statistical
methods make sense (say c.m. energy W = /s 20 GeV, with charged
multiplicity = 10.

For hadron-hadron collisions *-p, K*-p, p-p, p-p for c.m. energies
ranging up to 600 GeV, the NBD provides a remarkably good fit to the
count data. The k-parameter depends on the energy and the size AY and
location of the rapidity bin. For old timers this is known a “violation of KNO
(Koba-Nielsen—Olesen) scaling” [18] which would be expressed by Eq. (2.16)
for constant k. At 900 GeV the UA5 group has difficulty accommodating
their data with NBD formula. Perhaps this is real, perhaps not.

The value of k decreases from order 20 to 3 as energies increase to col-
lider values. Unfortunately there is no truly persuasive theory of the NBD,
or its parameter k. Many cluster, cascade and stochastic evolutions lead to
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such a result, but we are a great distance from the analogue of, say, deriving
the Maxwell distribution as the stationary solution of the Boltzmann equa-
tion. Later we shall see the connection with an equally mysterious structure
of the correlation functions. For the time being we accept the resylt as a
phenomenological law. '

High energy multihadron production in e* —e~ collisions is known to be
via jet production and decay. The multiplicity distribution is much narrower
than for h-h collisions at the same energy. In fact the shapes are quite
similar to almost coherent laser photocount distributions (which are very
sensitive to small amounts of noise.) The deviation from Poisson is, however,
worth more discussion because of the apparent validity of KNO scaling in
et — e~ production. The pure Poisson distribution does not scale, and the
agreement with scaling requires special tuning of the signal/noise ratio. For
this reason, the alternative log-normal distribution « exp(—A4In?(n#)) is
appealing. Actually the log-normal is close to negative binomial except for
large n. The NBD is turn goes over to the Poisson for large k (this can be
seen by comparing Eqs (2.9) and (2.13)).

Phenomenologically it is interesting that photo count distributions of
Gaussian light sources resemble those of hadronic multiparticle production,
and that photocount distributions of nearly coherent laser sources resemble
hadronic counts from jet sources. Although we have argued [24] that a
quark jet resembles a decelerated classical current source, which produces
coherent (multiple-Poisson) counts in QED, the absence of a persuasive
hadronization theory prevents taking the analogy too seriously. Even so,
the mystery deepens when we consider galaxy counts.

As we all know, the luminous matter distribution in the universe, as
measured by galaxy distributions is highly irregular, unlike the homogeneous
models written up in textbooks. In fact it is not really clear that there is
a scale beyond which uniformity exists. Primitive measures of irregularity
are given by count distributions and by low order correlation functions.

In 1934 Hubble published [25] count statistics for galaxies as seen in
photographic plates (i.e., two dimensional projections). Instead of multino-
mial — Poisson (for dilute samples, he found a log-normal count P,)

exp (- (n(n/n))? /20%)
V2xo ’

where o ~ 0.46 and the normalization is [ ¥(z)dz/z = 1.

This simple result gives the simplest measure of non-randomness and
corresponds to Fig. 1(b).

Later, stimulatéd by our work on hadronic counts, we constructed [26].
the (conditional) count distribution based on the Zwicky catalogue [27]

Y(n/n) = APy,

(3.7)
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of clusters. After some hand- waving in data interpretation to remove
anisotropy in the count distributions we were surprised to find (Fig. 3)
a good fit with the gamma distribution with k ~6. (Note that since the
average cluster size is fixed, we cannot vary the cell size, as in the Hubble
case.) Yet the general shape of the curves are quite similar. Another distri-
bution has been derived from thermodynamic considerations. [28] Although
it is not very different from the NBD/T' distribution in appearance, it seems
less good when confronted by the void probability data.
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Fig. 3. The probability of finding n galaxies in a Zwicky cluster is given in scaled
form. The average number of galaxies is fi ~ 97. The solid squares denote angular
regions of the heaven found in volumes 1 and 2 of the catalogue; the open circles
volumes 3 to 6. The ambiguities for small N < 20 account for the absence of points.
The dashed curve is the gamma distribution for k = 6 : g o z® exp(—6z).

From Eq. (2.6) we note that Q(1) = Py. From (2.7) and (2.11) we find

(=5
p!

Py(v) = exp Z Ky|, (3.8)
p=1

where 7 and K also refer to the void volume v. Clearly Py depends on
moments (fluctuations) of all orders. In the case of the negative binomial
- K, = (p—1)!/kP~? giving agreement with (2.14) as it must. This can be
rewritten as a scaling law

InPy _In(l+#/k)
_ ﬁf’ === (3.9)

This NBD prediction has been nicely confirmed by Fry et al. [29] It also
has been confirmed for multihadron rapidity-gap distributions [30].
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Having begun to look around, we have found negative binomial count
distributions everywhere [12]. Even the Poissonian and near-Poissonians,
as well as log-normals are limits of or closely related to the NBD. Since
the physical details and circumstances of these systems are so distinct, any
search for a universal explanation would seem to depend on a statistical
assumption.

Without looking too closely into details, we can notice similarities. In
the cases we have discussed, the basic force laws are scale invariant (QED,
QCD and gravity) to first approximation. There are many active degrees
of freedom; the systems are driven (by lasers, collisions or big bangs) and
dissipative. Cascading or branching dynamics seems appropriate. (Note
that fluid turbulence shares these features, although we shall not discuss
that problém here.)

Unless these similarities are purely accidental, there ought to be a way
to analyze them all in a unified way. In order to make this point of view more
persuasive we go on to consider the behavior of moments and correlation
functions.

4. Histograms, multiplicity moments and correlations

In order to better analyze the texture of count distributions it is useful
to subdivide the phase space into pieces of variable size. In addition to
assessing the size dependence we can learn about correlations through the
mutual dependence of counts in various phase space cells.

In Fig. 2 we exhibit the main features of this analysis, for one dimen-
sional bins in time or rapidity y. The number of individual occurrences in
each bin are counted and give rise to the bar graph (histogram). By assem-
bling many equivalent examples for differing §y we can learn about many
interesting features of the data. These include:

1. Correlations: If a particle is known to be at y 4, how likely is another
at yp (a‘nd ¥C» YD, ---)?

2. Counts: For an arbitrarily centered interval of arbitrary size Ay, what
is the count probability?

3. Fluctuations: These are measured by the variation of number of pro-

duced particles as well as their distribution y;.

When the bin size is large enough so that several or many particles are
counted, the irregularity of the point distribution is smoothed out. At first,
the appearance of the histogram becomes more irregular as the resolution
is increased, as shown in Fig. 4(a)-(b). However if we keep decreasing dy,
eventually every bin is empty or has one particle (Fig. 4(c)). This elementary
fact presents a number of subtle data analysis problems [31] for the modest
number of particles characterizing many experiments of current interest.
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(a)

(b)

(c)

Fig. 4. Histograms are shown for bin widths 85y, 48y, &y ((a),(b),(c) respectively).
For sufficiently small bin sige the finite multiplicity event (here eight particles) will
be resolved into vertical bars of equal height. At first the number fluctuations
increase as resolution improves, but eventually the irregularities are measured by
the point distribution, which is more fundamental.

Returning to Eq. (2.10), let us consider the bin-averaged factorial moments
of Bialas and Peschanski [3]. Here a large interval AY is broken into M
equal segments §y with

1 ,
Py =32 ) F3(8), (4.1)
i=1
1 M
Fs =+ > Fi(5y), (4.2)
i=1

etc. (The individual bin moments can be normalized locally or to the overall
average.) The averaging process improves statistics but can be misleading
if the bin-dependence is strong. )

As mentioned in Section 2, the deviation of the F} from unity signifies
non-Poisson Statistics in bin . Fig. 4(a), (b) show intuitively how the fac-
torial moments should increase as §y decreases if fluctuations are nontrivial,
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until the mean bin population drops to order unity (Fig. 4). This example
has eight particles distributed among eight bins:

a) Y omi(ni—1)=2x1+2x1+1x0+1x0=4,
i

b) =4Xx3+2x14+2x1=186,
c) =2x1=2.

Higher factorial moments are dependent on large bin population for their
survival. As 6y — 0, n; = 0,1 and no factorial moment survives. Methods
to correct for this effect have been developed by Lipa et al. [31).

The quantitative dependence of the F,(§y) moments on bin size §y is
shown in Fig. 5 for the UA1 experiment (640 GeV c.m. energy pp collisions).
We note that the F,, increase with decreasing éy and increase for fixed 8y
with moment order. (Not discussed here is the increase of the Fj, with
c.m. collision energy for fixed 8y, or the decrease with increasing complexity
of the collision, due to the introduction of nuclei as projectiles or targets.)

.,

F=1 1y

dy\
-ln 6y

Fig. 5.  Schematic representations of possible factorial moment dependence on
bin resolution 8y is shown. The horizontal line F = 1 corresponds to the absence
of correlations (Poisson count statistics). The sloped straight line corresponds to
scaling F(8y) o< (§y)~" and the curved line to “saturation” expected for a finite
correlation length. The dashed segments indicate the falling off of the F-moments
due to the population per bin dropping to one or zero for small 5y (see Fig. 4).

As we have stressed elsewhere, [32,33] the behavior of the moments
is rigorously determined by the correlation functions. The inverse is not
so strict: good data [34,35] on moments exists to 5¢h order even though
correlation functions are not known beyond third order in hadronic data.
Nevertheless such information gives for the first time important clues about
higher correlations. The question of the behavior of the factorial moments
is the question of éxplaining the sequence of rapidity correlation functions.

We illustrate this connection in the case of the two-particle correlation-
density j2 and its associated moment F;. Taking one step backwards we
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introduce the single particle density §; and two particle density p; for a
given event with n particles located at positions s;.

pyid) =) 6y- ), (4.3)

i=1

n
P2y, y2: ) = Y 8(y1 — 8:)6(v2 — 35). (4.4)
i#j=1
Averaging these densities over events [36] we arrive at the one and two-
particle inclusive differential cross sections:

1ds 1 _d
ody’ odydy’

In order to see the connection between Eq. (4.4) and Eqs (2.10) and
(4.1) we integrate y; and y2 over identical ranges in bin i, obtaining

(ni(ni — 1)) = [ dy1dy2(p2(y1,¥2)) - (4.5)
Q;

If we normalize locally we find that the second of Eqs (2.12) also holds for
bin averaged moments (note (n;) = p;dy)

F3(8y) =1+ K3(8y), (4.6)
Ki(by) = / Pz(yx,yz)(-ps;(yl)pl(yz)d(y;:)zz - (1)

i
The structure p; —pj p1 is the second order cumulant correlation function; its

vanishing signals the absence of correlation, in this order, and to Poissonian
counting statistics. Experimentalists frequently present data for the ratio

p2(¥1,¥2)

p1(y1)p1(y2) - (4.8)

k2(y1,92) =

since many detection errors cancel in the ratio. For small bin size (4.8)
equals the integrand of Eq. (4.7), so that F,(8y) is predicted once k; (often
called R in the experimental licerature) is known.

Although knowledge of k2 determines F3, the converse is not true. It is
possible to get good agreement [37,38] with F, using translation — invariant
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correlation functions that are only qualitatively correct at relatively low
energy.

In order to illustrate several points with an analytic model consider the
popular exponential fit to Eq. (4.8)

k2(y1,y2) = vexp (:Iyl_f—y_z_j) . (4.9)

The correlation strength vy and correlation length ¢ are of order unity and
increase with c.m. energy.) Due to the translation invariance all bins give
equal contributions. The integration domain for the bins is shown in Fig. 6
to be the set of squares along the diagonal. Integration of (4.9) gives

Fa(by) = 1+ 272 (@/5 -1+ e-Wf) (8y)?. (4.10)
Y2
n

¢ //
4 // ¥

AA 1

A
o

Fig. 6. This figure exhibits the geometry and integration domains that allow the
exptession of bin-averaged factorial moments and strip integrals in terms of the
two-particle correlation function. The squares give bins (here 6 of width §y each),
counting (ni(n; — 1)) for each bin. The strip domain has equal area to the sum of
squates (but note that the variables 9 and ¢ are stretched and contracted by v/2 on
this plot); it leads naturally to the pair-counting formula of Eq. 16. The rotated
cootdinate axes of the strip approach, expressed in the variables  and ¢, is shown.

Expressions such as (4.9), or more realistic fits such as

suggest that the bin (box) geometry is not the most natural one to use.
Instead the strip integral of equal area suggests itself. Redefining K> in
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(4.6) for the strip geometry, we find from Eq. (4.9)

éy/2
Fy(8y) =1+~ / alcexp(—'—gl ,
—by/2
Fy(8y) = 1+-y(1 x 7%)) . (4.11)

§y/2¢

In Fig. 7 we have compared (4.10)-(4.11); clearly either is a good approxi-
mation to the other. One can also show that if a box is covered by a small
number of strips, very accurate numerical agreement is obtained. (For many
purposes the strip definition is preferred since fluctuations due to binning
are reduced.) Since the shapes of (4.10)-(4.11) are similar, one is easily
mapped on the other by tuning the parameters y and £. Fig. 5 shows how
extremely good fits (for the UA1 experiment) can be obtained from such a
primitive formula as (4.11).

UAL dats, 830 GeV

§ UA5 data, 546 GeV

Fp

1.4 - exponential k, fit to UA1—

—  exponential k, fit to UAS

~--  power law K, fit to UAlL
for 6y < 3 and 8y < 1

NP (AT B BT R
-2 0 2
~In 6y

Fig. 7. Best fits for F§ moments for exponential correlation k3 = v exp(—|y1 —
y2|/€) for UA1 [y = 0.669, £ = 3.24] and UAS5 [y = 0.656, £ = 2.95] (solid lines).
Dashed lines show best fits using a power-law correlation k3 = ¢(y1 —y2)~". For the
latter, fits were done on all points §y < 3 and §y < 1, giving [c = 0.61, p = 0.033]
and [c = 0.63, p = 0.022] respectively.

In order to extend the foregoing analysis to higher orders of Fj, moments
and of the corresponding correlations it is important to recognize that the
density correlations typically [32] contain lower order background correla-
tions that are best handled by the introduction of cumulant correlation
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functions Clp:

C2(y1,¥2) =p2(y1,¥2) — P1(¥1)P1(¥2),
Ca(y1,¥2,¥3) =p3(y1,¥2,¥3) = Y p2(y1,92)p1(33)

perms

+2p1(y1)p1(y2)P1(y3) - (4.12)

Statistical independence of any y; results in factorization of the p, correla-
tions and vanishing of the cumulant. Correspondingly we can invert (4.12)
to get

r2 = pa(y1,v2)/P1(v1)P1(v2) = 1 + k2(y1,¥2)
r3 = Pa(yl,yz, ys)/Pl(yl )P1(3/2)P1(3/3)
=1+ ka2(y1,v2) + k2(y2,¥3) + k2(y3, ¥1) + k3(v1,¥2,¥3), (4.13)

with k2 given by (4.8) and k3 = C3/p1(y1)p1(y2)p1(y3). Comparison with
Eqs (2.12) should convince the reader that Eqs (4.13) are the correlation
counterparts of the moment identities. Either (4.12) or (4.13) expands the
F moment (or the density correlation) in a series of terms exhibiting increas-
ingly complex correlations. The context of Eqs (2.12) and (4.13) is similar
to carrying out a phase shift analysis of a scattering amplitude: here we are
interested in the breakdown with respect to increasing orders of (cumulant)
correlations.

We note several uses of Eqs (2.12) (refined as in the sequence of Eqs
(4.1)-(4.7)). First of all we can systematically [33] extract K2, K3, Ky,...
from the measured factorial moments, and study their dependence on en-
ergy, rapidity and bin width. The K, are the key quantities to be produced
by theoretical models. As it turns out, a large fraction of the numerical
value of the F;, moments is produced by the K contributions alone, until
CERN collider energies at which the higher moments are fairly sizable (and
interesting). The related data analysis is too lengthy to be given here, but
can be found in Refs [33] and [37].

What about the higher order reduced cumulant correlations K, appear-
ing in Eq. (4.13)? How are they related to the negative binomial moments
of Eq. (2.17)?

The following linked pair ansatz [32] provides the connection:

k3(1,2,3) = 2[k2(1,2)k2(2,3) + 2 perms], (4.14)
k4(1,2,3,4) = 5lk2(1,2)k2(2,3)k2(3,4) + 11perms]. (4.15)

For k, the numerator is (p — 1)! and the denominator ?'/; counts the num-
ber of symmetrized terms in the bracket. The connectivity is required for
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0 1 ) L 1 1
g 05 1.0 15 20 25 30 35 4.0 4.5

x = 8y/2¢

Fig. 8. Here the box integral for (F; — 1)/v (4.10) is compared with (F; — 1)/~
for the strip integral, in the case of the exponential cumulant correlation function
k2 = yexp(—|y1—y2|/€). Note that (F;—1)/y = K3/y = 1/k~v, k the negative bino-
mial parameter when that is appropriate. Note (K3/7)box = [z — 2+ exp(—2z)]/z?
while (K3/7)strip = (1 — exp(—z))/z. Numerically these functions are close, as
could be surmised from Fig. 7.

statistical dependence of the cumulant. In Fig. 7(a) we show the “linked
pairs” of Eqs (4.14)-(4.15). Note that other linked graphs allowed by graph
theory are not included (Fig. 8(b)).

In our original conjecture [32] we introduced coefficients A, instead
of (p — 1)!: the data fit produced values close to negative binomial ones
[38]. Therefore it seems that the linked pair approximation (LPA) merits
further study both for phenomenological purposes and for derivation from
a dynamical-stochastic framework. Of course one is accustomed to express
correlations, Green’s functions, efc. in terms of two-body correlations of
Feynman propagators. But that is only possible when one knows the free
energy or S-matrix in terms of observables, unlike the situation in QCD.

As mentioned, the (integrated) moments are not sensitive to details of
the correlation function. On the other hand it should be possible to check
the structure of k3 for selected rapidity values.

Curiously, the same correlation structures (4.14)-(4.15) describe galaxy
correlations, [39] although the magnitude of the coefficients is not as well
determined as for multihadron production. And for cluster-cluster correla-
tions, [40] the coefficient 2/; in k3 comes directly from data.

This unlikely coincidence of correlation structures is cause for some med-
itation. To be sure the two particle cumulant k; is cutoff for one-dimensional
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rapidity distributions and scaling (o< #~1®) for galaxies. Yet both theories
are basically self-similar and probably involve dissipation via some cascade
mechanism. Hopefully the answer to this puzzle will be available by next

AN
VA

Fig. 9.  The linked pair structure of Eqs (4.14)-(4.15) is indicated graphically
in (a). Other topological structures allowed by graph theory are not needed to
describe moment data. If present they would modify negative binomial counts.

A further insight into this situation is provided by the intermittency
(factorial moment) analysis recently carried out to fifth order by Chmaj,
Doroba and Stominski [41]. Excellent scaling is seen (in this case the highest
cumulants dominate) and the magnitudes seem in reasonable agreement
with linking with negative binomial coefficients.
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