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From all orbits described by a ball bouncing elastically inside a tri-
angular billiard some special classes are selected for further numerical
investigation. One of these classes consists of all orbits starting in a direc-
tion perpendicular to a side. Evidence is presented to show that almost
all orbits of this kind are either periodic or end in a corner. The starting
points with the same period form intervals, which are distributed in some
regular fashion. Even for orbits with very high period the phase portrait
and the velocity portrait show peculiar regularities. Although these ob-
servations suggest a number of theorems with general validity, the author
cannot support them with more than plausibility arguments.

PACS numbers: 05.45.+b

1. Introduction

The triangular billiard is one of the simplest dyna.nncal systems and yet
its qualitative features are not fully understood.

An excuse to study this billiard is found in the fact that for rectangular
triangles it is equivalent to two hard balls moving on a line and colliding
with the walls and with each other [1-5]. For such a system it is natural to
ask questions about its behaviour during very long times. Typical questions
are:

1. is there a dense orbit in phase space, i.e., is the system topological
transitive?

2. does every orbit lie dense in phase space, i.e., is it minimal?

3. is the measure of every invariant set in phase space either zero or unity,

i.e., is it ergodic?

* Presented at the XXXI Cracow School of Theoretical Physics, Zakopane,
Poland, June 4 - 14, 1991.
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4. are there ergodic subsets, i.e., are there ergodic components?

5. is for all f and ¢ tlir&ff(th)g(z)dy = [ f(z)dp- [ g(z)dy, i.e., is it

mizing?

6. is the distance between two points in phase space growing exponentially

in time, t.e., is it a K-system?

7. are there periodic orbits?

8. are there aperiodic orbits and if so are they dense in all of phase space

(aperiodic dense) or in a subset (aperiodic local)?

It is expected that, if these questions can be answered for polygonal billiards,
the insight gained will also apply to more realistic systems.

The following is a short list? of the main result for these billiards. A
review, giving the state of the art in 1986, was written by Gutkin [6].

1973: Sinai [3] proves the non-ergodicity of rational billiards.

1976: In a numerical study Casati and Ford [2] show that triangles with
irrational ratio’s of the angles probably are mixing.

1976: For almost all starting directions the flow on a rational billiard is
minimal (Zemlyakov and Kato [7]).

1978: Boldrighini, Keane and Marchetti [8] prove that for almost all start-
ing directions every orbit comes arbitrarily close to at least one
vertex. Using this theorem, they then show that the entropy is
zero.

1980: Katok [9] proves that rational billiards are not mixing.

1983: There is a triangle with an aperiodic local orbit [5].

1986: According to Masur [10] every rational billiard has a dense set of
directions each with a periodic orbit.

Open questions are among others whether every irrational triangle (i)
is ergodic, (#) has an aperiodic local orbit and (7ii) has a periodic orbit.
In this paper the first two questions will be left untouched. The problem
of periodic orbits, however, will be investigated in some detail, mainly by
applying numerical methods.

An orbit is described by giving the series of triples (%o, fo,00), (31,
F1,01), <<+ (ks frs0k), + -+, where i is the side which was just hit by the
bouncing ball, f is the collision point on that side, with the side length as
unit and § is the angle between orbit and side. See figure 1. The relation
between the angles for a collision (8,7) — (', j) is given by

3
O =n—-0- E €ijk ks (1.1)
k=1

! With thanks to T.H.M. Dijkstra for its compilation.
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C ¢ 2 A

Fig. 1. Definition of f, 8 and side number i

where ¢;;; is the completely antisymmetric tensor and the angles of the
triangle are denoted by a;,a; and as.
Equation (1.1), because of its simplicity, suggests to define two classes of
special orbits, namely:
1. Integer orbits, for which each collision angle 6 can be written as § =
q101 + g2a2 + g3z with integer go. From Eq. (1.1) it then follows that
the next angle is also of this form, §' = ¢} a; + ¢jaz + gjas, with

g, =1—qr — €5, if i and j are successive sides. (1.2)

2. Half-integer or orthogonal orbits, for which each collision angle § can
be written as # = ¢y a1 + g2a2 + g3z + ™2, again with integer g,. The
next angle is then again of this form, 6' = ¢ja; + ¢4z + g3a3 + ™2,
with

QG = —dk — €ijk if 1 and j are successive sides. (1.3)

If at one and only one point a half-integer orbit hits a side perpendic-
ularly, which for an irrational triangle is only possible if ¢; = ¢2 = ¢3 = 0,
the orbit will be called mono-orthogonal. If there is a second point on such
an orbit where this happens, the orbit will be called bi-orthogonal. A bi-
orthogonal orbit of course is periodic. The orbit is called weak-orthogonal
if for all points § # */. Many years ago [4] it was discovered that for
every irrational rectangular triangle almost every orbit, which starts per-
pendicularly from the hypothenuse is most probably periodic and therefore
bi-orthogonal with the above definition.

The present paper is a report about a more extensive search for periodic
orbits in the classes of integer- and half-integer orbits. The results can be
expressed in the form of four conjectures, supposedly valid for any irrational
triangle:

1st Conjecture: Almost all mono-orthogonal orbits are bi-orthogonal

and therefore periodic.
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2nd Conjecture: When considering all integer periodic orbits which

start with a given angle from a certain side, then all these star- ting

points form a set of intervals which cover that side densely.

3rd Conjecture: The set of weak-orthogonal periodic orbits is empty.

4th Conjecture: In an irrational triangle a periodic orbit is either integer

or bi-orthogonal.

The first conjecture can be made plausible using a statistical argument.
Let s = *1 indicate whether the number of collisions since the start of
the orbit is even or odd. Then after one step s’ = —s. If r, = sqp, it
follows from Eq. (1.3) that r}, = ri + s€;j;. In each step, therefore, only
one component of the vector ¥ = (r;,r2,73) is changed by +1 or —1. Since
the orbit is assumed to be mono-orthogonal, the starting point can be taken
at the origin ¥ = (0,0,0) of the 3-dimensional cubic lattice. The collision
sequence generates a walk on this lattice, but since 0 < § < = the walk is
such that -/, < 7. & < ™/, where & = (a1, az,a3). If the actual path
is replaced by a random walk, this condition is no longer automatically
satisfied, but must be imposed. The path, therefore, is effectively a random
walk on a 2-dimensional lattice. For this case the random walker will return
to the origin with one hundred percent probability. This recurrence means
that the orbit again hits a side under ninety degrees, which implies the first
conjecture. For rectangular triangles additional (and better) evidence will
be presented in the next Section, while arbitrary triangles are considered in
Section 3.

The other conjectures have a lower status and are mainly based on
examples to be given in Sections 4 and 5.

The pictures which will be shown in the following Sections are mainly
of two types. In the first, of which two examples are given in Fig. 2, the
circumference of the triangle, i.e., BCAB, is put on the horizontal axis with
the length of each side normalized to unity. The vertical axis is for the
reflection angle ranging from 0 to 180 degrees. Every point in this “phase
portrait” now fully represents the collision with a side.

The second type of picture, the “velocity portrait”, shows the way in
which, during a collision sequence, the velocity vector of the billiard ball
has been changing. In each collision with a side i, the new velocity vector
is obtained by reflecting the previous one in a line through the origin which
is parallel to side 7 of the triangle. Two successive reflections, first T}, and
then T;, amount to a rotation around an axis perpendicular to the plane.
More specifically D; = T;T} is an anti-clockwise rotation over 2a;, where
(i7k) is a cyclic permutation of (123). The three rotations Dy, D; and D3
commute among each other, D;” 1= T+T; and D1 D2 D3 = 1. In a series of
2n collisions the velocity vector therefore suffers n rotations, each over one
of the six angles +2ay, +2a3,+2a3. If one such rotation is represented by a
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Fig. 2. Examples of phase portraits. (a) A = 49.33333333, B = 83.0,
C = 47.66666667, 6 = 47.0, i =1, f = 0.258, period = 34738. (b) A = 1.23,
B =235 C=176.42,60 = 4.56,i =3, f = 0.5, period=47658.

unit vector of a hexagon Ssee Fig. 3), the rotation after a number of collisions
can be written as D{‘Dz, where k and £ are uniquely determined. In the
velocity portrait this rotation is represented by a point with coordinates
(k,¢) along the Dy— and Dy—axis.

For a periodic orbit in an irrational triangle it is necessary, but not
sufficient, that the values of k and ¢ of the endpoint of the orbit are equal
to k = £ = 0. For a rectangular triangle with az = ™/, the orbit can also
be periodic if £ = 0 and £ even. Two examples of the resulting picture are
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Fig. 3. Representation of rotations of velocity vectors after two collisions
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Fig. 4. Two examples of velocity portraits

given in Fig. 4. This example also shows that the motion does not very
much resemble that of a random walker. Therefore, if periodic orbits will
be found, it will be necessary to explain their existence on other grounds
than with statistical arguments.

2. Bi-orthogonal orbits in a rectangular triangle

By looking at Fig. 5 the reader can easily convince himself that any rect-
angular triangle has a bi-orthogonal orbit with period 6. Actually, assuming
that a < /4, every point of the hypothenuse at a distance less than ¢ from
the corner C is the beginning and the end of such a period-6 bi-orthogonal
orbit. When the starting point, denoted by a black square, is moved into
the direction of the arrow, the other collision points also move as indicated.
The endpoint ¢ of the period-6 interval is reached when two of these points
coalesce in a corner. The figure shows that c is the orthogonal endpoint of
a ball which is launched at C with an elevation /2 — 2a. From this follows



Periodic Orbits in Triangular Billiards 961

that, when the hypothenuse has unit length, the value of c is 2sin? a. The
point b is defined as the location where the hypothenuse is hit perpendicu-
larly by an orbit, which started from B into a direction a with respect to
the side BC. This point divides the periodic interval into two equal parts.
This property holds for all periodic intervals and is a consequence of the
“reflector theorem”, which is shown and proved in Fig. 6.

1
)
1
h
b

[ —

Fig. 5. Bi-orthogonal orbits for a rectangular triangle

Fig. 6. The "reflector theorem”

Fig. 7. Construction of a period-22 orbit

If the starting point on the hypothenuse is moved to the right of ¢, a
new interval of period-22 points appears. This is seen in Fig. 7. Because
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of the reflector theorem the left side and the right side of the bundle are
always parallel, which proves the periodicity. Determining the period itself
is a matter of counting. Before this can be done, however, the order must be
established in which the sides are touched by the orbit. Especially when the
orbit comes close to a corner this requires an accurate numerical calculation.
This also shows that the period will depend on a. The upper limit on the
base line of the period-22 interval is again reached by an orbit leaving C
with an angle commensurate with a and ™/, i.e., of the form (p+1)™/; +ga,
where p and ¢ are integer numbers. In this case p = 2 and ¢ = —6. The lower
limit was obtained with p = 0 and ¢ = —2. The b-point in the middle of this
interval is reached by an orbit starting from B also with a commensurate
angle of the form (p + 1)™/; + ga, but with p = —3 and ¢ = 5. The reason
why the upper limit of the periodic interval is indeed reached by an orbit
leaving C (and not A or B) is seen in Fig. 8. When the point “in” is moved
in the direction of C also the point “out” moves in the same direction. The
number of infinitesimal orbit elements necessary to turn an incoming ball
into an outgoing one is denoted by e. In the example of Fig. 8 its value is
€ = 3. For an angle of ninety degrees or larger ¢ = 1, while for acute angles
€ is at most equal to the number of times the angle is contained in .

te upper linit
_-*in c2 steps

to lower limit
---{a cl steps

-

o

Fig. 8. Turning through a corner

From the construction in Fig. 7 it is seen that, if c; is equal to the
number of path elements of the orbit from C to the lower limit of the
periodic interval, and ¢, the corresponding number of the other orbit to the
upper limit, then half the period is equal to 1o P =¢; +¢c2 + ¢.

The same half period can also be calculated from the number of path
elements of the orbit from B which follows the centre of the bundle and hits
the base line perpendicularly in the middle of the periodic interval. If this
number is b then 1P = 2b + 1.

These two relations can also be written as

P =2(2b+1) (2.1)

and
e=2b+1-¢c3 —ca. (2.2)
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For the orbit shown in Fig. 7 these variables have the following values: b = 5,
c1=2,¢c3=6and e=3.

The process of moving the starting point to the right can be repeated
over and over again, where each time a new periodic interval is found, with
lower and upper limits which can be reached from C by. following orbits
with starting angles of the form (p + 1)/ + ga. The midpoint of such an
interval is reached from B with a starting angle of the same form.

In this way an infinite series of periodic cbe-intervals is constructed,
with an accumulation point, which, however, is not'the endpoint 4. By
starting from A a similar set of periodic intervals can be constructed, of
which the midpoint is again reached from B, but the lower and upper limits
are now a-points. An example of a bi-orthogonal orbit of this type is shown
in Fig. 9.

Fig. 9. Family of period-58 orbits with A as singular corner

In this way the whole base line is covered with intervals, so that every
point of a given interval is the starting point of a bi-orthogonal orbit, with
a period which is characteristic for the interval. The same process can be
repeated for the other two sides of the rectangular triangle.

The truth of the above statement still depends on the validity of the
assumption that at the half way point each orthogonal orbit passes the
rectangle B close enough, so that on its way back it remains parallel to the
part of the orbit leading up to B. In spirit this is similar to the theorem
of Boldrighini, Keane and Marchetti, quoted above [8], but not the same.
The reader is invited to give the proof, since the author was unable to do
so. There is, however, overwhelming numerical evidence for the truth of the
first conjecture, which will now be presented.

For a rectangular triangle with a = (v/5 — 1) /s =~ 37.082... a large
number of orbits was constructed which began in a corner in a direction
(p + 1)™/ + qa and ended orthogonal to one of the sides. The value of ¢
was varied between — 100 and +100. For each ¢ the value of p is fixed.
After each collision p and ¢ have again integer values, so that the decision
whether the final angle is indeed ninety degrees is simple: p and ¢ must
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TABLE I

Partitioning of side B — C of rectangular triangle into intervals with period =
2(2b+1). a = length of orthogonal orbit leaving A. b = length of orthogonal orbit
leaving B. ¢ = length of orthogonal orbit leaving C. (p+1) 90 + g * A = starting
angle. 2 = position on B — C, where orbit hits side perpendicularly. ¢ = number
of turn around collisions. ¢ =2b+1—a; —azor e =2b+1—cl — c2.

ABC P q z a b ¢ ¢ | period
B 0 —2 | 0.116511 7 4 30
A 1 —4 | 0.233023 11
B 2 —6 | 0.310234 45 4 182
A -5 10 | 0.387445 76
B 4 | —12 | 0.387524 9343 4 37374
A 5 | —14 | 0.387604 18607 '

B 12 | —-30 | 0.387607 202435 4 | 809742
A ? ? | 0.3876107 | 3862607

B 10 | —26 | 0.387614 226845 4 | 907382
A 9 | —24 | 0.387618 67427

B 8 | —20| 0.387652 68599 4 | 274398
A -13 30 | 0.387687 69768

C 3 -9 | 0.387691 119795

B 22 | 54| 0.387725 61733 2 | 246934
C -3 5| 0.387760 3670

B —4 8 | 0.388577 1840 3 7362
C -1 1] 0.389395 8

B -2 4 | 0.694697 4 1 18

both be zero. The only question therefore, is whether for each collision,
especially for those with a collision point close to a corner, the collision
side was identified properly. For the longest orbit found, with a length of
more than two million steps, the shortest distance to a corner was 5.10~7,
with a hypothenuse of unit length. For all other orbits this distance was
larger. Although this is a small number, it is still very large compared to
the accuracy with which the endpoint of the orbit could be determined,
which is of the order of 1012, This was verified for the longest orbits by
taking an arbitrary starting point from the interval claimed to be periodic,
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and letting the ball follow the orthogonal orbit for the full period.

The results are given in the Tables I, IT and III for the division of the
sides opposite to the corners A, B and C respectively. The first column gives
the corner from which the orbit started: p and ¢ determine its direction; z
is where it hits the side perpendicularly; a, b or ¢ is the number of steps; ¢
is the number of turnarounds in a corner; the last column gives the period
2(2b + 1) for each point in the interval. The small values of € testify to
the fact that there are no gaps between successive intervals, except at the
accumulation points, of which there seems to be only one per side.

One orbit from B to the side opposite C (Table III) has a question
mark. It should have the period 612578 if ¢ = 2, but has not really been
found.

The phase portrait of a rather long bi-orthogonal orbit is shown in
Fig. 10. The most conspicuous feature of this picture is that only a small
number of different reflection angles occur. Also curious is the symmetry of
the figure: with every @ also 7 — 8 occurs. The explanation is simple: every
orbit which is sufficiently long, will consist of many parts running parallel
to each other and at close distance, but in opposite direction,.because of
the reflector property of the ninety degree angle at B.

The motion, therefore, is certainly not one of a random walker, which
in the first Section was suggested as a possible explanation of the periodic
orbits. The same can be said about the velocity portrait, Fig. 11, for the
same orbit.

B 1 C 2 (] 3 )
#=37.882039325 | ] - T |— N
898 —_— e —
£=52,917968675 +— —a—— e —
£:0, _—
period=41448 — e —— o

B 1 [} 2 ! 3 8

Fig. 10. Phase portrait of bi-orthogonal orbit with period 41410. A = 37.082...,
B =90.0,C = 52.91..., f = 0.8423.
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TABLE II
Same as Table I for side C— A

ABC | »p q z a b ¢ period
B -1 1| 0.363558 1 6
C 0] —2| 0.727116 2
B -3 5| 0.783966 5 22
C 2| —6| 0.840816 6
B 5| —-13 | 0.841381 2806 11226
C —4 8 0.841947 5605
B -5 11 0.842120 8345 33382
C 4| -12 0.842293 11084
B 11 | =27 | 0.842334 10352 41410
C 6| —16 0.842375 9618
B -9 21 | 0.842376 48501 194006
C -8 18 | 0.842377 87383
B -3 7| 0.842397 43741 174966
C -10 22 | 0.842417 97
B -23 55 | 0.842437 2445 9782
C 10 | —26 | 0.842456 4792
B -19 45 | 0.842493 9257 37030
C —-12 28 0.842530 . 13721
B -15 35 | 0.842532 232501 930006
C -14 32 | 0.842534 451279
B -17 39 0.842538 228237 912950
C 14 | -36 0.842541 5194
A 16 | —41 | 0.842544 7586
B -7 15 | 0.842562 5779 23118
A —16 37 | 0.842579 3969
B 7| —-17 | 0.842584 6854 27418
A 12 | -31 0.842589 9736
B 17 | —43 | 0.842654 6716 26866
A -12 27 | 0.842720 3693
B 71 -19 0.842784 7898 31594
A 8] -21 0.842848 12100
B -13 31 0.842850 7419 29678
A -8 17 | 0.842852 2735
B 9| —23 | 0.844130 1614 6458
A -6 13 | 0.845408 401
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TABLE II continued

ABC P q z a b c € period
B 1 -3 0.845770 500 4 2002
A 2 -7 0.846132 506
B 11 -29 0.858303 268 4 1074
A -2 3 0.870475 27
B 3 -9 0.935237 14 2 58

TABLE III
Same as Table I for side A — B

ABC | p q z a b c € period
B -1 2{ 0.272883 2 2 10
A 0 —2 | 0.545766 3
B -5 10 | 0.630711 10 4 42
A -4 8| 0.715657 14 :
B -5 12| 0.727983 46 4 186
A 4 —12 | 0.740309 75
B 3 —8 | 0.746177 309 3 1238
A 6 —16 | 0.752046 541
B 0.752047 292429 47 | 1169718
A 0.752048 | 584314
B 0.752050 633953 47 | 2535814
A 0.752051 | 683589
B 0.752053 349846 4?7 | 1399386
A -14 32 | 0.752054 16100
B 37 —-92 | 0.752060 174383 4? 697534
A 0.752066 | 332663
B 0.752068 277320 47 | 1109282
A —18 42 | 0.752070 | 221974
C 16 | d—41| 0.752086 131251
B -15 34 | 0.752095 171516 2 686066
C —16 37| 0.752104 211780
B 9 —22 | 0.752106 120069 2 480278
C 14 —35 | 0.752107 28357
B 0.752113 271882 37 | 1087530
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TABLE III continued
ABC P q z b c € period
C 0.752119 5154057
B 0.752119 379033 2?7 | 1516134
C -12 27 | 0.752120 242660
B 0.752120 1531447 27 | 6125787
C 8 | —21 | 0.752120 63627
B 13 | 32 0.752126 72921 2 291686
C -8 17 0.752133 82214
B -11 26 | 0.752183 42350 3 169402
o -6 13 | 0.752233 2484
B -~19 44 | 0.755350 1270 2 5082
C 4| -11 0.758466 55
B -7 16 0.765532 32 3 130
C 2 -7 0.772599 7
B -3 6 | 0.828334 18 2 74
C -2 3 | 0.884069 28
B 1 —4 | 0.942034 15 3 62

3. Bi-orthogonal orbits for arbitrary triangles

For the triangle with a; = 32.321654, a;

A=17.882833328
8=98

£=52.917968675
£=0.8423

period =41418

Fig. 11. Velocity portrait of orbit of Fig. 10

= 82.024024 and a3
65.654322 the simplest bi-orthogonal orbit has period 12. An example is
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]
#237.321654

8=82.0240824 length=é
£=65.654322

t ]
Fig. 12. Bi-orthogonal orbit for triangle with A = 32.321654, B = 82.024024,
C = 65.654320.

=32.321654
=82.024824
=65.654328

Fig. 13. Construction of limiting orbits

shown in Fig. 12. More details are seen in Fig. 13, where the dashed line
consists of 6 steps, which constitute half of the bi-orthogonal orbit.

On the basis line two intervals are marked by heavy lines. Each point
of the first interval, when considered as starting point of an orthogonal
orbit, is mapped after 6 steps on a point of the second interval, where the
orbit hits the base line perpendicularly. The intervals have equal length
and the same orientation. The endpoint b(1) of the first interval is given
by a 1-step orthogonal orbit, which starts from B. The other endpoints
¢(5) and b(4) similarly are given by 5-step and 4-step orthogonal orbits,
starting from C and B respectively. Once the orthogonal orbits, connecting
these endpoints, are found, other bi-orthogonal orbits from one interval
to the other can be constructed by drawing path elements parallel to the
“endpoint trajectories”. This holds not only for the special case shown in
Fig. 13, but also in general. The number of steps from one interval to the
other can be determined in two ways. Firstly, starting from a point close
to the lower limit of the interval on the left, L; steps must be taken to
come close to-the corner from where it takes also Lj steps to reach this
lower limit exactly. In the same way, starting from a point equally close
to the lower limit of the interval on the right, L, steps must be taken to
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come close to the same corner from where it takes also L, steps to reach
this lower limit exactly. If in addition it takes £ steps to turn through this
corner to connect the two parts, the total length of the orbit between the
two intervals is equal to § = L3 + L3 + £{. The second way to calculate this
S is by considering two paths which start (equally) close to the upper limits
of the left and right interval. If it takes R; and R steps to reach a common
corner exactly, starting from the upper limits, and if r is the number of
steps for the orbit to turn through this corner in order to connect these two
parts, the total length of the orbit between the intervals is now equal to
S = R1+ Ry +r. The numbers Ly, Lz, R3, Rz can be large, but £ and r are
small and limited by the number of times the turn-around-angle is contained
in w. This construction also provides a method to find the pairs of intervals
which are mapped onto each other by way of bi-orthogonal orbits. Upper
and lower limits of the intervals are determined by looking for integers ¢;,
g2, g3, such that orbits starting from the corners A, B and C with angles
6o = q1a1+g2a2+gs3as+*/2 will hit a side perpendicular before 50,000 steps
are taken. Given these upper and lower limits a point of the interval is taken
as starting point of an orthogonal orbit. In this way the length S of the
orbit is determined, as well as the position of the twin interval. The numbers
{=S5-Li—L; and »r = § — R; — R; turn out always to be small, which is
consistent with the picture as sketched above. Table IV contains the results
obtained in this way. It shows the position of forty intervals numbered from
1 to 40. In column 7 the pairs of twinned intervals are indicated.

Although only 64.6% of the base line is covered by these forty inter-
vals, it is expected that an infinite number of them exists. In this case
there should be (at least) one accumulation point. There is, however, no
indication yet where it should be located.

The same analysis can be repeated for obtuse triangles. An example is
shown in Fig. 14. If the succession in which the orbit hits the sides is taken
for granted, the reader will have no difficulty in convincing himself that the
orbit indeed is bi-orthogonal with period 20.

period=28

£=22.698745
8=95,123456
£=62.177799

¢ A

Fig. 14. Bi-orthogonal orbit for obtuse triangle with A = 22.698745,
B = 95.123456, C = 62.177799.



connected by bi-orthogonal orbits.
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TABLE IV

Partitioning of side C — A of acute triangle into pairs of intervals, which are
Angles: A = 32.321654, B = 82.024024,
C = 65.654320, ABC: Corner of departure, § = 90+ ¢ * A+ g3« B+ qa3+C :
angle of departure, f: point of orthogonal incidence on side C — 4, L/R: number
of steps until incidence on side C — A, n — m: interval n mapped onto interval m,
S: length of orbit between intervals n and m, I/r: number of turn around steps in
orbit from lower/upper limit of the interval 0.646288: fraction of C — A covered by

40 intervals.
ABC q1 q2 qs f L/R n-m S
B 1 0 0 | 0.222566 1 1-3 6
- : 2-37 | 22
A -3 6 | —1 | 0.238287 14
- 0 0.24546
c 8 1 2 245464 52 | o as | 104
B 1 2 | —2 | 0252706 | 173
4-32 | 364
A 8 —13 | -2 | o.258068 39
c 1 -1 | -1 | 0.270370 5 51 6
B -2 -1 1 | 0.492936 4
c 8 2| -8 | 0498745 1566 | . |,
B -2 9 | —3 | 0.498013 | 382
-6 - )
c 4 6 | 0.514208 6 | o |
B 5 4| —6 | 0.530701 7
- - 3| 05 152
A 3 4 0.531519 5 s_921 | 266
A -7 14 | —1 | 0.534206 | 246
- - ) 6
c 2 2 2 | 0.563951 o_31 | 188
c 0 -2 0 | 0.571747 2
o | | 1| ol osesess |aare |01 [s052
B 7 _o _6 0.583689 2623 | 11735 | 2696
- : 12-23 | 4050
o, -8 -6 8 | 0.584001 | 3588
c -5 -5 5 | 0.586973 TUN B
B 4 3| -5 | 0.603465 54
c -3 ~3 3 | 0.613199 103 | . 1o 3082
c -13 1 9 | 0613520 | 571
- - . 7
B 5 2 4 | 0.617811 5T | 618 | 824
A 0 -7 2 | 0.618843 | 313




972 TE.W. RULIGROK

TABLE IV continued

ABC Q q2 a3 f L/R n—m S lir
B -4 - 5 |0.624320 |1
5 0.62 32 16 _28 | 1406 |1]1
B -7 2 4 |0.625201 | 137
-2 - 4 |0.655749 | 426
g 4 ? 3 3229416 766 |17 3% | 962 1211
- - ) 18—15 | 824 [1]4
A 0 3 -2 |0.660449 | 507
c 4 10 —8 [0.701889 | 338
19-29 | 844 |2]2
B 4 -1 -3 |o0.702772 | 68
B 2 -3 —1 [o0.703024 | 118
A 4 1 ; 0.708103 | 109 | 20739 | 186 1114
A ~5 10 1 0.710880 16 | 2178 | 266 15)4
- - ; 2240 | 94 |[5]2
A -1 2 -1 |0.713824 | 92
B 8 —7 |0.725348 |1
1 0.725348 | 1426 |, ., 4050 |12
c 10 4 —10 |0.725661 | 460
c 0 -6 0.753609 | 76
B 0 5 f 0771747 | 44 |22738 12 141
A 2 _1 2 0'776983 g7 |2°734 | 462 1214
- - : 26-30 | 442 |5]1
B -2 -5 3 |0.782882 | 190
c -10 -2 8 0701807 3526 | . | oo,
B -1 10 —4 |0.791975 | 4711
- - .809
B 5 6 6 |0.809996 9 | e 16 |1406 111
B -8 1 5 | 0.810876 | 1268
c —6 10 8 (0849731 | 504 | | (],
B —6 -1 5 |0.850614 | 774
- - .871435
A 3 6 11087 10 V3026 | 442 |51
B -1 —4 2 |0.877334 | 251
c -1 -3 1 |osssses | 181 | ||,
c 2 0 —2 |0.891483 | 184
B 2 3 -3 Jososa2s | 190 | 1o | ],
A —8 9 2 10.904785 | 321
- .907878
c 0 8 4 |0.907 534 |0 v losg |2|1
B -3 0 2 |0.911546 | 195
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TABLE IV continued

ABC q1 q2 qs f L/R n—m S ) r
B 0 5 | -3 |0013757 | 416 | w2 |24
A -2 | -3 2 | 0.918993 31 -
c -9 -1 7 |oo2ser [ 215 | oL,
B 6 | -1 -5 | 0.921488 72
AHBREFEEEREN
- : 37-2 22 4
A 1 —2 | -1 | 0.967848 4
T e e [ [
A 4 _5 2 0.997055 73 | 39720 | 186 | 1)4
- - ; 40 — 22 94 5] 2

A=37,123456
B=80,124578
C=62.751966

¢ g18

Fig. 15. Period-3 orbit in acute triangle with 4 = 37.123456, B = 80.124578,

C = 62.751966.

4. Integer periodic orbits

In the previous two Sections it was shown that each side of a triangle
can be divided into pairs of intervals which are mapped onto each other
by way of bi-orthogonal orbits. For orthogonal triangles the two intervals
of each pair are touching each other, while for arbitrary triangles there
is a gap in between. In this Section integer periodic orbits — with 8 =
Q101 + q2a2 + gaaz — will be considered and the question will again be
asked whether it is possible to dissect each side into sets of intervals which
are mapped onto intervals of the same set by orbits all with the same starting

angle, but not necessarily with the same period.
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/=37.121456
0=80. 124578
=62.751%66

¢ ] — — "

Fig. 16. Doubling of the period-3 orbit

A=37.123456
8=88.124578
£=62.751966

L

Fig. 17. Limits for the period-6 orbits

A=17.123456
B=88.124578
C=62,751%6

1-0,6450%)
thetasd3, 001122
thetazi-¢ perisdss

Fig. 18.  Construction of period-5 orbit for the same triangle as in Fig. 15.
f=0.646099, § = B — A = 43.001122, i = 2.
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Fig. 15 shows the standard construction of a period-3 orbit in an acute
triangle. The starting angle is given by (¢1,¢2,¢3) = (0,1,0). In Fig. 16 it
is seen how this period doubles when the base point is shifted. The largest
possible shift (figure 17) is obtained when two collision points coalesce in
a corner of the triangle. The same sequence occurs in Figs 18-20 for a
period-5 orbit.. It should be noted — by the way — that the period-5
orbit of Fig. 18 can be seen as a period-3 orbit in the larger triangle ABC'
obtained by reflecting B in side AC, calling it B' and constructing C' as
the intersection of AB' with BC. In Fig. 17 some intervals on the sides are
heavily shaded. Each of these intervals is mapped onto itself after half of
the period-6 integer orbit has been traversed. The orientation is thereby
reversed. The same phenomenon is seen in Fig. 20, where a number of
intervals are specially marked. Each is mapped onto itself by the same
period-10 integer orbit, traversed in one direction. For each interval other
starting angles can be found by reversing this direction, i.e., by changing
(91,92, ¢3) into (1 - g1,1 — g2,1 — ¢3).

Figs 17 and 20 suggest a method for finding intervals which are mapped
onto themselves by integer periodic orbits: for a point infinitesimally close
to a corner (and on either side) try to find directions § = ¢y a1 +¢22 +¢3a3,
such that an orbit starting into this direction will be periodic. Once such a
direction is found the starting point is shifted away from the corner, thereby
maintaining the direction, until the orbit changes its period. In this way
a number of periodic intervals with a corner at one of the boundaries were
found. They are listed in Table V. Each of these intervals is of course
mapped by the orbit on many subintervals of the sides, but only for a lim-
ited number of them the collision angle will be the same as for the original
interval. Consider, for example, an orbit with period 274, which starts from
the side C' — A at a distance from C between 0.95861 and 1.0 (i.e., close to
A) and with an angle of 14.133564 degrees. There are four different points
on the orbit where it hits the side C — A with the same angle. First after 64
steps, then after 73 steps, then again after 64 steps and finally again after
73 steps to complete the periodic orbit. The process is shown in Fig. 21.
The four intervals have equal lengths and two intervals which are connected
by an odd number of steps have opposite orientation. The analogous de-
composition of the period -2094 orbits is given in Fig. 22. All paths, except
the ones marked with 372 and 603, have a length of 12 steps. The intervals
with this period and with a starting angle given by (q1, 92, ¢3) = (-6,0,4),
cover a fraction of 9.5% of the side B — C. In Fig. 21 this fraction is 16.6%
of side C — A for the intervals with a period of 274 and an angle given by
(41,92,93) = (—3,0,2). This fraction increased to 20.5% after it was dis-
covered that there are two more intervals on C — A with the same starting
angle, but with periods of 90 and 150, both listed in Table V.
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TABLE V
Intervals with integer periodic orbits A = 37.123456, B = 80.124578,
C =62.751966,0 =q1 * A+ q2xB +q3*C
side interval o | g2 | g3 é period covered

A—B|0.88357—1.00000f 0| O 1 |62.751966 6=34+3 0.233
B — C|0.00000 — 0.25264| 1 0 0 [37.123456 6=3+3 0.505
A—-DB|0.61838 — 1.00000( —1 0 1 |25.628510 10=5+5 0.763
B - C10.00000 — 0.25264| 2 0 0 174.246912 10=545 0.505
C — A10.00000 — 0.08298| —2 1 0 | 5.877666 30=15+15 0.166
C - A10.00000 — 0.01133]| 3 0 [—1 |48.618402 30=15415 0.023
C — A 0.00000 — 0.02516 | —3 1 1 |31.506176 58 = 29 429 0.050
C —- A10.00000 — 0.03367| 4 0 | —2 122.989892 58 =294 29 0.067
C — A4]0.00000 — 0.00615] -2 | —1 3 133.884408 90 = 45445 0.012
C —- A|0.00000 — 0.00973| 3 2 |{—4 ]20.611660 90 = 45+ 45 0.019
C — A|0.26667 — 0.28070| —3 0 2 | 14.133564 90 = 45+ 45 0.028
C—-A[0.13339 — 0.13910| -3 0 2 | 14.133564| 150=754175 0.012
B —C|0.00000—0.00428] 5| 2 |[—5 |32.106606] 150= 6-+69 | 0.017

+ 6469
C—A}0.96615—1.00000] O© 1|-1117.372613| 274=73+64 | 0.135

+ 73+ 64
C - A]0.95861 — 1.00000| —3 0 2 |14.133564| 274=64+4+1T73 0.166

v + 64+ 73

C — A0.99454—-1.00000| 0 |-—2 3 |28.006742| 278=109+430| 0.022

+ 109 + 30
-B—C]0.00000—0.00592)—6 | 0 | 4 [28.267128] 2094 =372+ 12] 0.095

+ 12412

+ 603 + 12

+ 12+ 12

+ 372+ 12

+ 12412

+ 603+ 12

+ 12412

No systematic effort was made to find more periodic intervals on C — 4
with the same (g1, ¢2,¢3), because it turned out that, if they exist at all,
their period is 10,000 or higher. The evidence for the corrections of the
second conjecture, therefore, is not very convincing. However, it is not yet
disproved either.

At this point it may not be irrelevant to mention that, although in a
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Fig. 18. Doubling of the period-5 orbit

A=37.123436
B=88.124578
C=62.7513656

801 _lllalal 18 '10' A

¢

Fig. 20. Limits for the period-10 orbits

et £ SRR :

75 R A ' !
iy i S At :
G ——] al
Ty Ay 8.612 } 8,654 {8,695 8,917 0,958}

! H + H )

75 e S Py S — i !

:
.

Fig. 21. Mapping of intervals of C — A onto themselves. Return to C — A with
the same angle of 14.133564 degrees after indicated number of steps.

two-dimensional random walk the probability eventually to reach the origin
is one hundred percent, the expected pathlength is infinite [11].

5. Miscellaneous

So far only acute triangles were studied extensively. Only one example
of a bi-orthogonal orbit in an obtuse triangle was given in Fig. 14 while
another one is shown in Fig. 23. It is, however, not difficult to perform a
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Fig. 22. Same as in Fig. 21 for side B — C with return angle = —6A4 + 4C
= 28.267128 degrees.

more extended analysis like for acute triangles. The evidence assembled so
far further supports the correctness of the first conjecture that all mono-
orthogonal orbits are indeed bi-orthogonal.

/=37 423456
8=1808,124578
£=42.751966

[ ____A

Fig. 23. Bi-orthogonal orbit for obtuse triangle with A = 37.123456,
B = 100.124578 and C = 42.751966 degrees.

A=17,123456
B=188,124578

period=7 C=42.751966

¢ L]

e=I8

Fig. 24. Integer period-7 orbit in obtuse triangle with A = 37.123456,
B = 100.124578, C = 42.751966.
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8
(- i EE;E i A

Fig. 25. Doubling of the period-7 orbit

A337,123456
§=100,124578
C=42.751%66

c&
20,1566

Fig. 27. Limits for the period-14 integer orbits

Fig. 28. How to construct period-5 and period-7 orbits
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The second conjecture requires the construttion of integer periodic or-
bits. For obtuse triangles this has not been done on a large scale yet, but
the series of pictures 24-27 shows that in principal it is feasible. Starting
from a period-7 integer orbit (Fig. 24), period doubling occurs (Figs 25 and
26), until the orbit hits a corner (Fig. 27). Actually, in a systematic ap-
proach, first two integer directions emanating from a corner must be found,
such that they match to form a periodic orbit: The collision points with the
sides then fix the intervals with the same period. Again many examples of
integer periodic intervals in obtuse triangles have been found in this way.
They support the second conjecture, but an almost full covering of the sides
by these periodic intervals has not been achieved yet. A general method
for constructing integer orbits of periods 5 and 7, starting from a period-3
integer orbit, is shown in Fig. 28.

The third conjecture about the non-existence of periodic weak-orthogo-
nal orbits is confirmed so far, because after an extensive search non has
been found yet. The same can be said about periodic orbits with arbitrary
starting angles, so that it is not too outrageous to claim the
4th Conjecture: In an irrational triangle all periodic orbits are of the integer-
or of the half-integer type.

The reader who has reached this point probably does not need further
justification for doing this kind of work. For those, however, who started
reading at the end, it may be interesting to note that the study of classi-
cal periodic orbits can be very helpful in classifying and even calculating
molecular spectra. A review paper on this subject was recently written
by J. Zakrzewski [12]. Therefore it is not excluded that by measuring the
spectrum of cavities with a triangular cross section the periodic orbits con-
structed in this paper will be of some help in explaining the data.

The author is grateful for the special way in which Dr. J. Groeneveld
has contributed to this paper.
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