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We discuss the general structure of relativistic theories in 2+1 dimen-
sions whose physical states carry fractional spin and statistics at both the
first—quantized and second—quantized level. We show that the Poincaré
representations carried by the physical states of the theory are modified
by coupling the particle-number current to a topological term. We dis-
cuss the spin-statistics theorem and the dependence of the total angular
momentum on the number of particles and we show that due to short-
distance divergencies they are different in the first— and second—quantized
theories.

PACS numbers: 11.30.Ly

1. Introduction

The possibility of arbitrary spin and statistics in the quantum mechanics
of planar systems opens the way to a variety of new theoretical issues which
have been intensely investigated in recent times (see Ref.[1] for a review).
Largely because of the possible relevance to realistic systems which occur
in condensed matter physics, most of the theoretical effort has gone into
the elucidation of the nonrelativistic quantum mechanics (and, to a lesser
extent, field theory [2]).
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Poland, June 4-14, 1991.

(983)



984 S. ForTE

However, experience with the spin !/,case, as well as general arguments,
suggest that it is only in the relativistic theory — in particular in field
theory — that most of the physical effects of spin manifest themselves. For
example, whereas in nonrelativistic quantum mechanics the wave function
is just a tensor product of its spin and space parts, in the relativistic case
the spin and spatial degrees of freedom are coupled dynamically by the
requirement that the wave function be an eigenstate of the Pauli-Lubanski
operator; also, the spin-statistics theorem [3] can be proven only in the
setting of second quantization.

On the other hand, most of the conventional wisdom on fractional spin
and statistics fails in the relativistic case. For example, the possibility of
fractional spin is usually viewed as a consequence of the fact that the rota-
tion group for planar systems is the abelian group O(2), therefore there are
no quantization conditions due to commutation relations on the spectrum
of its single generator J, the angular momentum operator. Also, the path-
integral for non-relativistic particles with fractional statistics is constructed
[4] by exploiting the fact that paths which belong to different homotopy
classes may be assigned weights which provide a one-dimensional unitary
representation of the fundamental group of the configuration space 73(C).
For indistinguishable particles in the plane 71(C) is the braid group, which
admits an infinity of such representations. But if the configuration space is
the set of points in 2 + 1 dimensional Minkowski space then x;1(C) is the
permutation group, which has only two such representations, the trivial and
the alternating, corresponding to bosons and fermions.

Many other problems of this kind appear if the relativistic generaliza-
tion of the usual approach is pursued in detail. We shall sketch here how
these problems are solved both in quantum mechanics [5] and field the-
ory [6], concentrating on the effects which are not seen in a nonrelativistic
treatment. We shall see that, in particular, a new spin-statistics relation
appears, the second quantization of the theory does not commute with its
point particle limit, and more precisely that the mechanism for quantized
theories, is due to a quantum anomaly in the latter case.

1. Group theory and the cocycle formalism

The possibility of fractional spin and statistics in a relativistic theory
may be seen from a purely group theoretical viewpoint. Just as nonrelativis-
tic state vectors (wave functions in quantum mechanics, and functionals in
field theory) carry a generally reducible representation of the rotation group
(O(2), in the plane), relativistic ones carry a representation of the Lorentz
group, which in 2 + 1 dimensions is SO(2,1). Because the phase of the state
vectors is unobservable, the representation may be generally projective, and
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in particular multivalued, provided the multivaluedness is contained in a
phase. Now, the group manifold of SO(2,1) is a one-sheeted hyperboloid,
thus the group is infinitely connected, x1(SO(2,1)) = Z , and admits
arbitrarily multivalued representations; furthermore, multivalued represen-
tations of SO(2,1) correspond to multivalued representations of its rotation
subgroup SO(2). Since rotations are generated by the angular momentum
operator J, a state vector v,(g) which is multivalued upon rotations, i.e.,
which upon rotation of 27 acquires a phase

ei21r.7¢‘(q) = ei21rc¢‘(q) (1)

carries fractional angular momentum, equal to s mod( Z ).

The standard procedure to construct the quantum mechanics and field
theory of states that carry a representation of the Lorentz group associ-
ated to a given value of spin is to seek for a wave function which car-
ries an irreducible representation of the Poincaré group up to a phase, and
more specifically a Poincaré irrep induced by a multivalued Lorentz rep-
resentation. Poincaré irreps (in 241 dimensions) are characterized by the
respective eigenvalues m? and ms of the two Casimir operators P*P, and
€uvpMHY PP, where P# are the momentum operators, which generate trans—
lations, and M*#¥ are the Lorentz generators, related’to the angular momen-

tum J and boost B%, a = 1,2 operators by 1/ (M(”) M(“)) = R and

1, (]\/I (%) _ M (“0)) = B®. The eigenvalue conditions are interpreted as

wave equations, while the values of m and s are interpreted as mass and
spin of the state, respectively. In the second quantized theory the wave
function is promoted to a local field, which upon adjoint action of the group
transforms according to an irrep of the universal covering of the Lorentz
group associated to the given value of spin. The field equations then select
the one particle irreps of the first-quantized theory.

There is a technical complication in pursuing this approach in the case
of generic spin, because finite dimensional representations of SO(2,1) can at
most be double-valued, therefore, a representation associated to spin which
is neither integer nor ha.lf-mteger, and is therefore more than double valued
(compare Eq.(1)) requires infinite-component wave functions and fields (7].

However, a different approach to the quantization of spinning particles
is also available, recently proposed and developed by Polyakov [8] in the spin
1/,case. In this approach the 2+1 dimensional propagator is derived from a
path integral that contains an extra weight which provides quantization of
the spin degrees of freedom. From this viewpoint, wave functions which are
multivalued upon Lorentz transformation, as required for noninteger spin,
are obtained because the extra weight supplements the state vectors of the
theory with a mulitivalued locally trivial one-cocycle of the group. This
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approach turns out to be viable in the case of generic spin and statistics as
well, both at the first and second-quantized level.
Quite in general, a multivalued wave function ¥ may be written as

Yo(g) = e Dy(q), (2)

where v is a single-valued wave function, while ag(g) is function such that
if g7 € SO(2,1) is in the n-th Riemann sheet of the group manifold of
SO(2,1), but it projects down to the identity of SO(2,1), then

ao(¢%) - ao(g) = n, (3)

where ¢9 denotes the Lorentz transform of point g in configuration space by
the element g of the Lorentz group. The transformation properties of ag
imply that ¢y transforms with a cocycle wy(g; g), according to

U(9)¥o(g) = 139 yy(g9), (4)

where U(g) is the action of the Lorentz group element g on the Hilbert space
spanned by wave functions, and the cocycle is given by

wi(g; 9) = s (0(q°) — ao(q)) = s4%0xq. ()

Eq.(5) expresses the fact that the cocycle is trivial; nevertheless, due to the
multivaluedness (3) of ag the triviality is only local, i.e., it is not possible
to eliminate the cocycle by a local phase redefinition of the wave function.
An explicit expression of w;(g; g) can be given in terms of the winding
number density over the group SO(2,1). The winding number density is
a function w{g(t)] such that if g(t) is a one-parameter smooth family of
elements of the group, i.e., a path over the group manifold parameterized
by t, then the line integral of w along a closed path P on SO(2,1) is equal
to the homotopy class of the path, i.e., if P is in the p-th homotopy class,

then
f dtw(t) = p. (6)
P

The cocycle is constructed by choosing a reference point go in configuration
space, and it is given by

t
wi(g;9) = s/w(t),
0
g8 = A(to)go = g,
@ = A1) = ¢° - (7
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Now, a cocycle may be induced on the state vectors of the theory
by adding a topological term to the action which appears as a weight
in the sum over paths that provides the propagator of the theory. In-
deed, this is the standard path-integral approach to the nonrelativistic
quantum mechanics with fractional spin [4]. Given a theory with La-
grangian L(t) and canonical statistics, add a total derivative (topological)

term to the Lagrangian: L — L — %g— The propagator of the theory is
(¢f|¢t) = ('/’flq ’t')K(q '3 4, t)(q,thﬁ,) where

K@, tsa0= @ bl = [ Dalt) exp(i:/:dto(L—%)) (®)

q(t)=q
o(t')=¢'

The topological term depends only on the boundary conditions and can be
taken out of the path-integral:

K, tsat) = Y e Ko(g, t';,1)e 7D (9)
n

where ,

Ko(d',t';¢,t) = /Dq(to)exp (i /dto L), (10)

and the sum runs over homotopy classes of paths, since the configuration
space to which ¢ belongs in general is multiply connected, and in such case
the value of the surface term 2(g¢') may depend both on the boundary
condition at ¢’, and on the homotopy class of the path from g to ¢'. Then,
the phases e*”? may be absorbed in the wave function (g, t|¥) = ¥(g,t):

'I)O(q’ t) = eiﬂ(q)¢(q, t)‘ (11)

The path-dependence (the sum over n in Eq.(8)) may be reproduced by
simply fixing the choice of branch of the generally multivalued function 2
in Eq.(11) by

(q) = /q : dq'diq,n(q'), (12)

where the integration runs along a path which joins a fiducial reference point
go to the point ¢ at which 12 is evaluated.

The wave functions ¢ are propagated by Ky (10), for particular choices
of the functions f2 the phase ¢*? may have nontrivial transformation prop-
erties upon rotations, so that y carries fractional spin even though v has
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canonical spin. In nonrelativistic quantum mechanics the points ¢ are given
for a system of n particles by n two-vectors (#1,...,Z,), and a choice of 2
which provides fractional spin and statistics is

n i—1

(Z1,...,8n) =28 Z Z o(z; - z;), (13)

=2 j=1

where 6(Z) is the multivalued polar angle of the vector Z (with respect to
an arbitrary reference axis). Obviously upon rotation by 8 12 (13) varies by

A% = sn(n-1)0 (14)
thereby endowing the wave function (11) with angular momentum
j=snn-1)+¢ e Z (15)

according to Eq.(1).

Notice that there are two complementary views of this phenomenon:
either one deals with single-valued wave functions and a dynamics including
a topological action, or one deals with multivalued wave functions with an
ordinary Lagrangian, i.e., not modified by surface terms. In the latter case
the angular momentum operator J is the canonical one and has the unusual
spectrum (15) due to the boundary conditions, while in the former case the
operator itself is shifted with respect to the canonical one.

This above procedure may be applied also to relativistic quantum me-
chanics, provided a suitable relativistic generalization of 2 (13) is found.
The generalization to field theory of this approach is in principle also fea-
sible [9,6], by means of the Schrddinger functional formulation of field the-
ory. One singles out time ¢t and quantizes the fields ¢(Z) canonically at
fixed time; the state vectors are functionals of the field configurations:
(q,t|®) = (¢(Z),t]¥) = ¥[¢(z);t]. The propagator is

K(¢'(2),t'; 4(2),1) = / D(#,to) exp (,- /t * de [ dzcisca, ton), (16)

where the boundary conditions are the field configurations ¢(Z) at initial
time t and ¢'(Z) at final time ¢'. This procedure is not manifestly relativis-
tically invariant at intermediate stages, although obviously physical am-
plitudes (S-matrix elements) are. Rather, the state functionals transform
cova.nantly upon a Lorentz boost that takes the vector { into the time-like
vector #i the physical states are transformed into functionals of the fields
quantized on the plane orthogonal to i, at fixed values of the coordinate
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along 7i. In general, one may choose to quantize the system canonically on
a space-like plane ¥ and take the coordinate orthogonal to ¥ to parametrize
its evolution. Generic spin is obtained by adding to a bosonic Lagrangian L,
a topological Lagrangian £, which is the total divergence of a three-vector
density £y = 0,02#(z). If we demand that fields fall off at infinity, this leads
to nonvanishing contributions at initial and final times only, since there the
field configuration is nontrivial because of the boundary conditions:

/ d&dto 8, 0"[6(, )] = H(¥) - H(t)
H(t) = / dZ Mo (2, 1) - (17)

Again, the state functionals may be redefined according to Eq. (11), with
1(t) = H(t); the argument then is a rerun of the above. Notice however,
that explicit construction of the topological Lagrangian poses several tech-
nical complications, which we shall discuss in Section 4.

2. Relativistic quantum mechanics

The topological Lagrangian L; = %’tl associated to the cocycle 2 given
by Eq.(13) can be written in a covariant form by defining a particle number
current

b »
i*=z%) = E /ds 63 (z - z;) ddi" (18)
=1

Then, we define the (bilocal) action

1fj) = or [ 28y () Kpnl,0)"(0) (19)
(up to an irrelevant infinfte normalization) where the bilocal kernel
1. (z-y)f
Ky(2,y) = T Ty (20)

is the inverse of the operator ¢#Y?3, when acting on the current j¥, i.e., it
satisfies

fpupapra(z’ y) = 51106(3)(2 - .'/) (21)

up to the addition of terms proportional to 8, which are irrelevant because
79 is conserved.
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Substituting the point-particle form of the current (18) in the action
(19) one obtains

n n i-1
L= Rz]+2) ) Iz —2zj], (22)
i=1 1=2 j=1
s z(s) — z(1))?
Llzi=-3 / dzf dzf G#m"(l';%;;j,%%'l)'s" (23)
P
s T — T,
Itz[zi —_ 33] = -——2'/de dz;' e”py(lz:——zj'l)s" (24)

where the integrations run over the space-time paths traversed by the par-
ticles’ trajectories, and the reparameterization independence of I; has been
made explicit.

If we neglect the particle self-interactions (23) then it can be shown [1]
that I; coincides with the nonrelativistic topological action associated to 2
(13). Whereas it is easy to give a relativistic meaning to this quantity as
the sum of the linking numbers of the various one-particle paths in space
time, and while in the nonrelativistic limit the self-interaction terms can be
set to zero by a choice of regularization [10], it is clear that in a relativistic
theory this cannot be possible because paths contributing to a relativistic
path integral can go both forward and backwards in time, thereby making
the distinction between self-interaction and two-body interaction a Lorentz
noninvariant concept. This is just what we would expect since in the one-
particle case only the self-interaction exists, and we expect spin to modify
the single-particle path integral in the relativistic theory only. Most of
the new results in the relativistic quantum mechanics thus come from the
treatment of the self-interaction terms (23).

Although the kernel K, (20) is singular when z — y the integrand in
Eq.(23) is everywhere regular and the integral (22) can be computed without
need of regularization (contrary to occasional statements in the literature).
The result is best expressed in terms of the istantaneous unit tangent to the

path
- ad

el(t) = 7 (25)
which spans a two-sheeted hyperboloid and may be parametrized as A
cosh @
ez‘o)(t) = (sinhosinqb) . (26)
sinh 0 cos ¢

Then it can be shown [5] that

Il =s /dtq.ﬁ cosh 4. (27)
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This demonstrates immediately that the self interaction I} is not quite
“topological”, but rather, it depends on the metric properties of the path.
The quantity (27) (when rotated to Euclidean space) is actually known as
a knot invariant, called the writhing number: it is equal to a topological
invariant of the curve, its self-linking number, minus its total geometric
torsion (which is of course a metric quantity). The self-linking number is
defined as the number of intersection of the curve with the envelope of its
tangents; it is a measure of the number of coils which the curve forms.
Whereas the torsion varies continuously upon small deformations of the
curve, the self-linking varies discontinuously. The discontinuity may be
seen explicitly in the expression (27) which is ill defined when 6 = 0, i.e.,

0
the phases induced by the action (27) to be multivalued: because e spans
a simply connected space it is necessary to excise a point from it in order
to construct a multivalued function on this space. In the spin % case the
action (27) reduces to that evaluated by Polyakov (8], thus reproducing the
Dirac propagator when used in the path integral (8).

Because the action (27) is not entirely topological it cannot be elimi-
nated by a local phase redefinition of the wave function. However, the effects
of the topological interaction can still be reabsorbed in a phase redefinition
of the form (11) provided the wave function is localized on a path, rather
than in a point. This is possible because Eq.(27) evaluated for a closed path
can be rewritten as the holonomy of a certain potential Afe] (actually the
Dirac monopole potential) which, in turn, can be cast as a surface integral
on the surface S bound by the path:

1
when e = (0) . The presence of a singular point is crucial in order for

I=s f dti:-‘:-j[e] — /S dSPe,”?d, Al e] (28)

The generally open paths which appear in Eq.(27) can always be closed
without modifying the value of the integral (i.e., they may be closed by a
curve that carries vanishing writhing). Then, we may define a wave function

Yo(2) = e Py(2), (29)
on(e)= [ a & A, (30)

where Py is a path that joins a reference point zo to z in such a way that
the closed path Py U [z,2'] has the same writhing as the open path [z, 2']
for all z, z'. It can be shown [5] that ¢ (29) is propagated by the kernel
K, (10) without topological term, because the phase (30) transported along
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the path traversed by z in the path integration yields a contribution to the
propagator on the surface swept by Py which exactly reproduces the phase
(27). The fact that a relativistic wave function with fractional spin must
be localized on a path has been shown in Ref.[11] on axiomatic grounds;
Eqs(27)—(30) give an explicit expression of the nonlocal part of the wave
function.

Finally, it can be verified explicitly that ¥ (29) transforms with a
Lorentz cocycle (7), which reproduces the correct Poincaré irreps for mo-
mentum eigenstates. It thus appears that in a relativistic theory, too, a
dual description of fractional spin is possible, either with an extra term in
the action and usual wave functions, or with the ordinary action and un-
usual wave functions. Notice that in the relativistic case it is not enough
to shift the angular momentum operator (or its spectrum): in order to pre-
serve the Poincaré algebra all the generators must be modified. Indeed, the
above construction is made possible by the existence of a redefinition of the
Poincaré generators which preserves the algebra while shifting the angular
momentum spectrum [7].

When n > 1, the self-interaction and two-body interaction are both
present, and can both be absorbed in the wave function by setting

bl uit) = exp(is 5 3 04(0)

i=1 j=1

n X
/———d ky.. —dzkn exp(—is.zlepo(k.-)) (k1y- ey knl|¥(Z1,...,Fnit)),
=

E,

(31)
where Op, is as in Eq.(29). Whereas the phases &p, contribute to the spin,
but not to the statistics (they are invariant upon the interchange of two
particles), the phases 6;; contribute to the statistics (but not to the spin)
because upon interchange of two particles they vary by . If we define the
statistics o by

B0l eerZiyerrsZipers) = €T ho(ceey Ziyenns Ziye.n), (32)

(where the interchange is performed by an anticlockwise rotation), then
the two-body interaction (24) endows 1) with statistics & = s. Since the
interchange can be realized by the action of the orbital angular momentum
operator this also yields a contribution to the spectrum of the relative orbital
angular momentum L,z; of particles ¢ and j, which becomes

I,,,.,,J.=l+2o'; le Z,o=s. (33)

For an n particle system there are 3n(n — 1) contributions of the form
(33), and n contributions to the spin from the n self-interaction terms, thus
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the orbital angular momentum L, spin § and total angular momentum J
carried by the wave function 1, (31) are given by

L=n(n-1)s+¢{ L€ Z ,
S =ns, (34)
J=L+8=L0+n%s,

in agreement with the result of Ref.[11], based on the algebraic approach.

This shows that in the present theory there is a fixed spin-statistics
relation o = s. Notice that this is not a spin-statistics theorem in the usual
sense of the word: by construction in this theory o = s, but we have not
proven that a different theory with ¢ # s would necessarily be nonlocal or
otherwise ill-defined. Also, the spin-statistics relation, which connects the
coefficients of the one particle and two particle terms (23),(24) should not
be confused with the relation between o defined in Eq.(32) and the orbital
angular momentum spectrum (33), which is a kinematical identity and is
always true.

4. Relativistic fleld theory

Although formally the generalization of the above treatment to field
theory seems easy (after all the topological action (19) can be viewed as
a field theoretic object provided the currents j# are written in terms of
some covariant fields), a closer look at it reveals several problems. First of
all, in order to compute the effects of the topological interaction (19) we
have used crucially its explicit expression (22)-(24) in terms of one-particle
trajectories. As a matter of fact, if the current j# is a smooth density,
rather than being a sum of delta functions, it is not clear how we can tell
the particle self-interaction from the two-particle interaction, whereas this
separation is required if the topological interaction is to have effect both on
the spin (which is related to the self-interaction) and on the statistics (which
comes from the particle-particle interaction). Moreover, if the currents are
smooth densities, the action (19) (as a classical object) is inevitably Lorentz
invariant, and surface terms produced by it are Lorentz covariant: indeed,
in the quantum mechanical setting of the previous section all noncovariant
transformation properties could be traced back to the singular nature of the
point particle current (18). Finally, in a quantum field theory the propagator
(16) is going to be the same operator regardless of the number of particles
contained in the in and out states of the theory. The phase acquired by
the states upon rotation, instead, must depend on the number of particles
(for instance, it must be zero for the vacuum, and nonzero for the one-
particle states). The solution to all these problems is related to the fact
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that the lack of rotational invariance of the surface terms H(t) (17) arises
as a consequence of an anomaly.

Let us therefore assume that the action (19) is added to that of some
bosonic field theory which has a global U(1) symmetry, and thus admits
a conserved U(1) current j#, which coincides with that which enters the
action (19). It turns out that the surface terms H(t) (17) can actually
be computed explicitly [6] for an arbitrary field configuration, up to terms
which have trivial (i.e., covariant) Lorentz transformation properties. The
key remark is that the kernel K#¥ (20) has the form of the magnetic field
of a Dirac monopole; thus, it can be written as the curl of a gauge potential
with a Dirac string of singularities:

za

o= eFr 9, 4,. (35)
An explicit expression of A is
b
- - €abZ
A;=0, 4, = "r(:—b—rj’ (36)

where a = 1,2, and #? = t? — 22 — 22, The current-current interaction (19)
is thus of the form

I = _g / d®z &y j*(z) [a,‘ziu(z -y) -8 Au(z - y)]j"(y), (37)

or
- _3 3. b
I = ~3 /d z j4(z)0,%(2),
¥(z) = / @y (4,(2 - )i*(s) + Aoy - 2)i(3)) » (38)
which, in turn, may be cast as a divergence:
I, = ‘% / d*z 8,0*, (39)

where 2/ = $j¥,

Although Eq.(39) is still nonlocal in time, because 2°(t) is defined in
terms of ® (38) as an integral over all times, the divergent nature of the
monopole potential when z — y allows an explicit local determination [6]
of the surface terms (17):

Iy = -2s[H(t") — H(t)] + Icov, (40)
() = 5 [#= 4106 - i) (a1)
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where I,y denotes a contribution which cannot be simply cast as a surface
term, but is covariant upon Lorentz transformation. The function H(t)
may seem at first quite ill-defined, since the function ©(Z) is ill-defined
when |Z] — 0. Indeed, at the classical level I; (40) is Lorentz invariant,
implying that H(t) (41) is a rotationally invariant and Lorentz covariant
quantity; on the other hand if we use a point-particle expression (18) for
the charge densities in Eq.(41) then H(t) reduces to a sum of manifestly
rotationally noninvariant terms of the form (13). This contradiction entails
several paradoxes if H(t) is treated as a classical object [2,12]. 'However,
in quantum field theory the propagation kernel (16) is an operator, a func-
tional of the field operators on which the currents j#* depend. The phases
¢?*H(%) (17) induced on the state functionals should therefore be viewed
as operator-valued quantities. The fact that the bilocal kernel in H(t) (41)
is ill-defined at z = y is irrelevant because the product of the two charge

densities diverges when their arguments coincide as j°(z);j%(y) R P lvl .
—by -

This point is thereby effectively excluded from the integration domain in
Eq.(40).

This can be verified by checking that H(t) has a well defined expec-
tation value when acting on physical states. For this, we need to define

particle creation and annihilation operators ¢1(z) and ¢(z), respectively,
which satisfy (by definition)
[1°(5 ), 81(2,8)] = 62z - et ,
[1°@@,2), #(2,0)] = ~6@(Z - 7)o (42)

Then, if the states of the theory are constructed from a vacuum which is
annihilated by the charge operator, it is easy to show that

exp(2isH)$!(%; 1)[0) = exp (2i5(8) ¢! (&:1)10), (43)
exp(2isH)¢!(Z; )6 (7 )0}
= exp (2is[S(2) + 5(#)]) exp ( - 2is6(2 - 7)) $!(2;1)¢! (7 1)0). (49)
Here S(Z) and ©(Z) are the single and double commutator of H(t) with the
creation operator, respectively:
[H (1), 41(2,0) = S(z04(2,), (45)
[s@.6i@] = 0@- D él@, (46)

where

s@0 = [Py6E-Diwo, (47)
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(%) is as in Eq.(13), and
[0) = e2*H]0). (48)

The redefined vacuum |0) (48) is generally different from |0) because al-
though Q|0) = 0, in general j°(Z)|0) # 0. However, the redefinition does
not affect the Poincaré invariance of the vacuum, and amounts to normal
ordering. The action on a generic n-particle state is

n

exp (2isH)| %) = [[ (exp (2:'35(5,-))4»\‘(5.-)) |0) (49)

=1

= exp (-2:’.; > jf:ie(i‘.- — é’j))

j=1i=
e is 3 Z; . ti:‘ .
x [xp(z £ o)gw ,)lo>] (50)

The phases induced on antiparticles, created by ¢ are the same but with
the opposite sign, as required by angular momentum conservation. The
phases @ are obviously rotationally noninvariant, and so are the phases

S(Z):
RPexp (21’.9.9'[1'0(:3:')])Rﬁ”1 = exp (2isfQ) exp (2isS[j°(RB . 5:')]) , (51)

where Q is the charge operator and S[j°(R? - Z)] denotes the covariant
Lorentz transform of S[;j°(Z)], obtained by transforming the argument of
the field operators on which § depends. It may further be shown [6] that
upon generic Lorentz transformation the states (50) transform with the
appropriate Lorentz cocycle, weighted by the sum of the coefficients of the
phases in Eq.(48).

Eqs (42)-(50) demonstrate that thanks to short distance divergencies in
the product of currents which appears in the definition of the bilocal action
(37) the classically invariant action I; (37) induces an operator-valued phase
on the state functional of the field theory whose matrix elements are gener-
ally Lorentz nonivariant. This shows that the noninvariance which lifts the
Lorentz representation provided by the physical states of the theory to one
of the universal cover of the Lorentz group appears as a quantum anomaly
in this theory. Moreover, due to the short distance divergencies which are
at the base of the commutators (45)—(46), the phase induced on physical
states depends on the particle content of the states, as it ought to, and
naturally splits in a spin and a statistics phase, corresponding respectively
to the term in square brackets and that outside brackets in Eq.(50).
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An independent check that indeed short distance divergencies in the
product of the operator phase induced by the topological action (37) and
the field creation operators are responsible for the rotational noninvariance
of physical states may be obtained by computing directly the leading diver-
gence in the operator product expansion of ¢/t and a field creation operator
[13]. Let us look in particular at the lowest order in the topological cou-
pling s:

Iﬁﬁt(z) = [— %/d3z d3y j¥(z)
x(0udi(z = 9) - 0 Au(z - )" W)|o1(x).  (52)

The leading divergence comes from the operator product expansion

. Ct ) ELS -1

@), O (TE) 40w ™) (5)
The coefficient C can be calculated perturbatively, say in the ¢* theory; if
the current has the Klein-Gordon form j, =: i¢t6p¢ :then C = — 2.

4x

It follows that the leading divergence in the operator product (52) is

It¢t(z) = - ;—x /daz d3y j*(z) [3,,11,,(2 —y)—0,4,(z - y)]

(y—2)

X
ly — 2|3

¢T(y; z) + less divergent terms. (54)

A lengthy but relatively straightforward computation leads to
It¢t(z) = 235(5’)4)’(:) + covariant terms (55)

in agreement with Eq. (43). The check may be pursued at higher orders
and for generic n-particle states. This shows that the rotationally nonin-
variant phases in Eqs (43)-(44) are generated by the leading divergence in
the operator product expansion of the exponential of the action (38), viewed
as a composite operator, and the field creation and annihilation operators,
without having to manipulate classically ill-defined expression as that of
Eq. (41).

The spin, statistics and angular momentum of n-particle states can
now be read off Eq.(50). It should be noticed, however, that the statistics
of states should be a free parameter in field theory: namely, we are free to
choose the symmetry of physical states by symmetrizing the states on which
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the operator phase e2**H acts, i.e., by freely adjusting the coefficient of the
statistics phases @(Z — ¥) in Eq.(50). Then, we have

L=n(n-1)o+{; le Z
S = 2nls,
J=L+§, (56)

to be contrasted with the point-particle results, Eq. (34).

Eq. (56) shows that if we require the field theory to be local and well-
defined in the thermodynamic limit then a particular spin-statistics relation
is singled out [6]. Indeed, noninteracting in and out states can exist only
if the total angular momentum (which is an additive quantum number, be-
cause the rotation group is abelian) is linear in the number of particles.
Otherwise, either noninteracting states do not exist, in which case the ther-
modynamic limit is ill-defined, or causality is violated. This requirement is
satisfied if

28 = -0 (57)

which implies
J=_L+2ns. L€ Z. (58)

For this relation to be satisfied a nontrivial symmetry has to be imposed
on physical states, i.e., the statistics must differ from that automatically
generated by the operator phase, and displayed in Eq. (49). This prevents
the identification of the operators in brackets in Eq.(50) as the creation op-
erators for particles with fractional spin, and shows that the results found in
a semiclassical approach [14] do not carry over to the full second-quantized
theory. Notice that this is genuine spin-statistics theorem; it has the oppo-
site sign as that which one might have been naively guessed, and which is
displayed by the point particle theory discussed in Section 3 and derived by
some authors [11] in point particle and soliton theories. However, if spin is
integer or half-integer Eq. (57) reduces to the usual relation and there is no
difference between the field theory and the point particle case.

5. Discussion

We have seen that the cocycle approach to path integrals and wave
functions with fractional spin and statistics, which is standard in the non-
relativistic case, can be generalized both to relativistic quantum mechanics
and field theory. In relativistic quantum mechanics the main new results
are dynamical effects of spin even in the one-particle case through a gen-
eralization of Polyakov’s spin action, paths weighted by a knot invariant of
the path, wave functions localized on paths which transform with Poincaré
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cocycles, an explicit realization of the possibility of an internal redefinition
of the Poincaré algebra which preserves the algebra while shifting the an-
gular momentum spectrum, and finally a generalized spin-statistics relation
(although not a spin-statistics theorem). In field theory we have found an
operator valued spin-statistics phase, the generation of rotational nonin-

variance via an anomaly due to short distance divergences in the operator
product expansion, state functionals which transform with Poincaré cocy-
cles and obtain spin and statistics phases which scale with the number of
particles thanks to the action of the operator phase, and the possibility of
proving a novel spin-statistics theorem.

Comparison of the point particle and field theoretical angular momen-
tum spectra, Eqs (34) and (56) shows that: (i) the dependence of the spin
and statistics on the coefficient of the topological action is by a factor of 2
larger in the field theory; (#i) the statistics is a free parameter in the field
theory while it is fixed a priori in the particle theory; (iii) the dependence
of the statistics on the number of particles is the same while that of the spin
is not. This means that the second quantization of the theory does not com-
mute with the point particle limit, and can be traced to the different way
the repulsive core which gives rise to fractional spin and statistics is treated.
Namely, in both case the repulsive interaction which gives rise to a multiply
connected configuration space (required for fractional spin) and the exclu-
sion principle (required for fractional statistics) is due to the divergence of
the bilocal kernel Eq. (20) as its arguments z, y coincide. This divergence
however is regulated differently. In particle mechanics it is regulated geo-
metrically, by evalyating the kernel over particle trajectories, which leads
to the regular integrand of Eq. (19). In field theory it is regulated by the
current-current repulsion due to their short-distance divergencies.

This, in particular, explains the different scaling with the number of
particles of the spin, which is generated by each particle’s self-interaction.
The peculiar (quadratic) dependence of S on n (56) in field theory is re-
sponsible for the unexpected possibility of defining local in and out states
even in theories with fractional spin, which are conventionally viewed as
being intrinsically interacting.

The work described in Section 4 of this paper, including those parts
which have not yet been published elsewhere, was done in collaboration
with T. Joliceeur, and a large part of the remaining material was developed
or clarified in discussions with him. I thank J. Cortes and J. Gamboa
for discussions, G. Semenoff for several stimulating conversations during
the school, and the organizers for letting me present this somewhat formal
material at a school devoted to particle physics.
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