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Classical Yang—Mills mechanics is shortly reviewed. The family of ba-
sic periodic orbits corresponding to different values of energy was found.
Several unstable bifurcations existing in this family are presented in detail
and compared with their counierparls from the ZOO of stable bifurca-
tions. A brief discussion of the separatrix splitting is also included.

PACS numbers: 03.50.Kk

Introduction

The Yang-Mills (Y-M) mechanics is the dynamical system arising as
the Y-M potentials in the whole Y-M gauge theory are assumed to be time
dependent only. Of course the resulting equations of motion strongly depend
on a chosen gauge group and a fixed gauge. We have limited ourselves to the
SU(2) gauge group and the simplest gauge choice. Thus we have obtained
the one-parameter system of Hamiltonian equations in four dimensional
phase-space. This dynamical system was extensively studied for the special
value of the above mentioned parameter. The theory arising then is claiied
to be chaotic {1]. Any other possible choice of the parameter gives rise to a
completely different system, exhibiting weak chaotic behaviour only [2] It
turns out however that this system is also interesting from the other point
of view. Namely: a family of unstable bifurcations can be observed very
clearly using rather simnple numerical procedures. All (stable) bifurcations in
four dimensional Hamiltonian systems are described in detail [3]. However
from the physical point of view unstable bifurcations are more interesting
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as they are closely related to the syniinetry properties of the system under
stiidy. This is our motivatioch to preseilt them and compare with their stable
colifiterparts.

The pajrer is: mgmuzed as followd: Sect. 1 présents the Y-M dyhartii-
cal systein and- (slmrtly) the numerical algorithms-used in our analysis. In
Sect: 2 th¢ iﬁmﬂy of basic, periodnc orbits (dependent on energy E) is stud-
ied in detail. The route of the PCM (ptmupal characteristic multiplier) on
the complex plane is particularly interesting. Sect. 3 presents graphically
the (iihistable) bifdrcations Existiilg in the above inentioned family of ira-
jéctories. We also comparé theiii with tlie appropriate members of ZOO of
stable bifurcations. The last Section involves the (short) description of the
so-talled séparatrix splitting which eah be observed in our model.

1. Yang=Mills mechanics

We tegard Y-M mechani¢s as 15i® dynamical system corresponding to
the SU{2) gauge theory with the simiplest possible gauge choice [1]. This
system is governed by the foﬂé\vmg 8t of Lagrangian type differential eqna-
tions:

= W3 = uz),
it = (5w — uz),
0 = —3(sw - uz), (1:1)

stibject to the kiniematical cénstraint:
82 = dz + uth — iw = 0. (1.2)

(A dot overa lettet denvtes the differentiation with respect to time.) It can
easily be diiecked tiat

L= (s 4 )i~ ) - (3 4+ 0)(u - 2),

By = (o= w)(i+ )= (6 - 0)(u+ 2), (13)
are constants of motion of the Bqs (1.1) and the constraint (1.2) requires

the equality Iy = L. Takmg this into account we can reduce Eqgs (1.1) and
{1.2) to the two dimensiomal Hamiftohian system with

"= 40E 480+ e L o
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where
z =§((s+w)'+(u—z)’)
y =§(3— w) + (u+2)")
P§=
gy:y. (1.5)

and L = L, = E5. This system with L = 0 was extensively studied and
is claimed to be chaotic [1]. ‘Jts qualitative hehavious for L # 0 weakly
depends on the definite value of L and we limit ourselves to the simple
choice L? = 0.5. The Hamiltonian (1.4) is singular for |z| = |y| and thus
the (z,y)-plane is divided intq four discopnected parts. Qur ipvestigations
are limited to the region z > [y| but besguse of the symunetries 2 < y
and z — —z, y — —y any ather chaice will lead to the same results, The
motion of the system has an oscillating sharacter hath in z and y directigns
apart from the only solution for wluch y(t) = 0 2] We exslude it from
further considerations as our aim is {g sbudy ?e:;qd;c solutions apd their
bifurcations. This allows us tg redyee the whele system to the two first
arder (nen-Hamiltgnian) differential equations with the phase of y-direction
oscillations as the new independent yariable. It is 1mpqrtam tg note that
this reduction has a glebal character and is valid gn the whole phase space.
To be more precise: we define the actiop-angle type vasiables:

y= \/ggiw;

= vV3lzc0s: (1.6)
It can easily be proved that ¢ > 0 what justifies ous ghoige of the
indepepdent variable. The variable I is galeylated from the energy formula

as a functien of z, p,;, ¢, the energy B and the ;qpamg&gr E. Finally we
obtain the following set of differential equations [2]:

dz By
m(m, 0 B, B)’

l(?’ & 9’ E: L) .
T e wpi B L)’ (1:1)

where p = p., v = 1/2 .-':m;.l the (rather complicated) formulas for the
functions I and m are given below;

l('ﬂ: P E, L) = -..53; + ‘3-[127-74(1 + 3)3 ’
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. . J+z
m(p, 2, p; B, L) = l+pvzsxngocosgo+b-(—]—_—_—_~;$§, (1.8)

with:
b=2L*®sin’ g,
%a+i—(2—d1—d2), ifAZO;
T lla+3(14e (1—a)2—3b), if A<0;
a= (2E - p*) v*sin’ p,
dy = Y/(1-a)® + (5 + a) + W4,

ds = {/(1-ap +2(5+a) - 92,
A=10%+0(1(5+a) - L(1-a)®) + 2b(1 -a)?,
¢ = min(cosy; , cos;, coshs ),

¢1=%; T/’z=%+2§5; ¢3=3§“‘2?",

—(1 - a)® — 2ba?
¥ = arccos ( Y -3 =1 - (1.9)

((1 - ay? — 36)?

The system (1.7) is very suitable for numerical calculations because it
ensures that the obtained (numerical) solutions remain strictly on the con-
stant energy surface. Our numerical analysis is based on several algorithms:
the fifth order Runge-Kutta method with adaptive stepsize control [4], the
Bulirsch-Stoer method with the Richardson extrapolation [4] and the Gear’s
algorithm for stiff differential equations [5].

2. The family of periodic orbits

We have found the one parameter family of periodic orbits of the systemn
(1.4). The parameter is the energy E which varies between 0.1 and 100.0.
(The other parameter — as was mentioned in the previous Section — is
fixed: L? = 0.5.) The orbits of our family are basic in the sense that they
consist of only one oscillation in the y direction. Fig. 1 presents a view of a
typical trajectory in the (z, y)-plane on the background of the equipotential
lines of the potential given in (1.4). For each periodic orbit I from the family
we regard the Poincaré mapping P [3] on the local transversal section S of
I’ defined by the condition y *= 0 and restricted to the constant energy
surface £5. S may be described by the pair of coordinates (z,p = p.).
I’ corresponds of course to the fixed point of P. According to the symplectic
eigenvalue theorem the characteristic multipliers of P are A and A~} (for
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Fig. 1. A typical periodic orbit on the background of equipotential lines (E = 0.5).

complex X the equality |A| = 1 must also be fulfilled). In practice we obtain
A regarding the system (1.7) linearized in the neighborhood of I'. The so-
-called principal characteristic multiplier (PCM) [3] is defined as that X for
which |A] > 1 in the real case or Im A > 0 in the complex case. The PCM
moves on the complex plane with varying energy. Its route (see Fig. 2) gives

2.0 q
Im\

0.0 C e e

-10 e v e e r—r

Fig. 2. The route of the PCM on the complex plane (Eyiq = 0.1, Eqay = 100.0).

us an important qualitative information about the system under study. The
fixed point of P is called elliptic if the appropriate PCM satisfies: |A| = 1
and hyperbolic if |A\] > 1. This terminology becomes obvious when we
compare the two phase portraits on the Section S corresponding to both
just mentioned cases (Fig. 3). Loosely speaking the dynamical system in
the neighborhood of elliptic I" is integrable and chaotic if I is hyperbolic.



262 J. KARKOWSKI

0.0015

" {a)
0.0000 - .o '

feee®

-0.001S 1
1.6215 1.6230 16245
x

{b)

Fig. 3. The neighborhood of the fixed point of P: (a) elliptic case (E = 1.0), (b)
hyperbolic case (E = 1.51).

3. Review of bifurcations

It can easily be checked that Hamiltonian (1.4) has no critical points.
Therefore possible bifurcations existing in our dynamical system must be
connected with its periodic solutions [3]. In this Section we present sev-
eral bifurcations we have found in the family of the basic periodic orbits
described in Sect. 2. Each bifurcation of a given trajectory corresponds of
course to the bifurcation of a appropriate fixed point of the Poincaré map-
ping P introduced earlier. Fig. 2 suggests that the PCM acquires (for our
periodic solutions) all complex values on the unit circle in the upper half
plane. The possible (stable) bifurcations in such case are classified and may
be the following ones: emission (absorption), phantom kiss and subtle di-
vision (murder) [3]. However our system possesses the symmetry: y — —y
mentioned in Sect. 1. This symmetry may be easily broken by many dif-
ferent perturbations and therefore the Hamiltonian (1.4) is not structurally
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stable. That is why it seems interesting to compare bifurcations existing in
our model with their stable counterparts. We expect the periodic trajecto-
ries of our family to bifurcate when the PCM takes the value exp(i2x/n)
withn = 2, 3,... (n = 1 is excluded because for E — 0 the PCM tends
to but never reaches 1.0). Let us begin with n = 5. The emission of two
trajectories then occurs (Fig. 4). One of them is elliptic and the other
hyperbolic.
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Fig. 4. The emission of two orbits: elliptic (solid) and hyperbolic (dashed);
(n =5, E = 0,64, PCM = exp(0.401041I:): (a) (=, p) view, (b) (=, y) view.

Their periods are five times greater than the appropriate basic ones (as in
the stable case)., The cases with n = 3, 4 are similar. The phantom kiss is
not observed. Insiead the emission of two orbits (elliptic and hyperbolic)
takes place as for n = 5, When n = 3 (PFig. 5) the new periods are thrice as
much as the basic periods, The case n = 4 differs in this respect however,
because the periods of the new orbits are only doubled (Fig. 6). The similar
situation occurs for n = 2, The trausition of the basic trajectory from
elliptic to hyperbolic is accompanied by the emission of the (elliptic) orbit
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Fig. 5. The basic period trajectory (solid) with the emitted one (dashed);
(n = 3, E = 1.083, PCM = exp(0.6680011:): (a) of hyperbolic type, (b) of ¢l-
liptic type.

with the same period (Fig. 7). This bifurcation resembles the (stable) subtle
division but then the new period is doubled. In general case n odd the
emission takes place identical with that of the stable case. When n is even
the situation differs because the periods of the new orbits are twice less
as expected for stable bifurcations. The above mentioned symmetry y —
—y is responsible for this fact (compare [6]). The basic trajectories are
invariant under this symmetry and posses two turning rest points. Therefore
their projections on the (z, p)-plane wind twice the same route during each
period. The similar situation occurs for bifurcations with n odd. For n even
however, the new trajectories are either non-invariant under the existing
symunetry or do not posses turning rest points. Therefore they follow only
once their route on the (z, p)-plane during each period. From the other
side the Poincaré section S (defined by y = 0) is obviously invariant under
y — —y and the fixed points of the Poincaré mapping P are reached twice a
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period for orbits of the first type and once for the trajectories of the second
type. These are the sources of the described complications.
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Fig. 6. The emission of new trajectories (n = 4, E = 1505, PCM =
exp(0.5000211¢): (a) elliptic one, (b) hyperbolic one.
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Fig. 7. The (unstable) subtle division. The basic trajectory (solid) and the emitted
(dashed) elliptic one (n = 2, E = 1.505, PCM = 1.02417): (a) (z, p) view,
(b) (=, y) view.

4. Separatrix splitting

In the foregoing Section we have described two types of bifurcations
existing in our model: the subtle division (n = 2) and the emission (n =
3, 4,5). When the emission takes place two new periodic orbits appear:
one elliptic and the other hyperbolic. This type of bifurcation is closely
connected with the so-called separatrix splitting: an important and hardly
understood reality accompanying the transition from integrable to chaotic
region [7]. We briefly present how it happens limniting ourselves to n = 3.
Let E, be the value of our main parameter (i.e. energy) for which the
emission (with n = 3) occurs. When E > I, and the difference £ — E is
siall the three points at which the (emitted) hyperbolic orbit intersects the
Poincaré Section S are very close to the fixed point corresponding to the
basic periodic trajectory. The sides of the triangle assigned by these three
points (together with their extensions) from the figure (called separatrix)
invariant under the Poincaré mapping P (Fig. 8). The separatrix divides
S into disconnected parts which can be grouped into three subareas also
invariant under P.

This picture is nearly the same as that corresponding to the linearized
equations in the neighborheod of the given periodic orhit. For E much
greater than E, however, the separatrix splits into six very cemplicaled
curves crossing each other and filling the section §. The invariant subregions
of § seem not to exist any more, Numerical compulations give a pickyre
like that on Fig. 9. It is impossible of course to calculate strictly the value
of E for which the separatrix splitting begins and what is the shape of the
Splittgd ﬁnﬁ.ﬁy
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Fig. 8. The numerical picture of the separatrix near the bifurcation energy value
(n=3, E=1.1).
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Fig. 9. The splitted separatrix (n = 3) for the energy far from its bifurcation value
(E =1.3).
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