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An analogy is pointed out to exist between the algebraically deformed
harmonic oscillator introduced by the author some years ago and the
algebraically deformed rotators described by the examples of deformed or
“quantum” Lie algebras originated in the last years from the “classical”
algebra of SU(2). An experimental question is asked, if in fact. physical
harmonic oscillators are not (slightly) algebraically deformed. A loose
relation to the Poschi-Teller potential is discussed.

PACS numbers: 03.65.Fd

Deformed Lie algebras called also “quantum” algebras or “quantized”
enveloping algebras [1,2,3] arouse recently much interest, although their
applications in physics are as yet rather technical. Perhaps, the adjective
“quantum” used by some not only distinguishes the new algebraic structures
from the “classical” Lie algebras, but also reflects certain expectations that
they may imply an important step in quantumn physics.

In the prototype case of the “classical” algebra of SU(2), where

i) =Jdo, [Jordy)=Jdp, [osdo] = J- (1

with Jy = (J, £ iJ,)/ V2 and J, = J,, the best known are three deformed
Lie algebras:

q*'o — g%

[J+)J—] = q2 ___ q_3

s [JO)J-5~]=J+’ [J—-aJO]:J- (2)
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of Drinfeld and Jimbo [1],

8~1J+J_ - 6J..J+ = Jo y 82J0J+ - 8—2J+Jo = J+ N
82]_.’0 - 8-2-70-,_ =J. (3)

of Woronowicz [2], and
S-IJ.*_J_ - 8J._J+ = JQ 3 31/:JQJ+ - 5—1/2J+J0 = J+ 5

PLLN S ANPLLILY A SE (4)

of Woronowicz and Witten [2]. These deformed Lie algebras can be consid-
ered as different “quantum” maps of the underlying “classical” Lie algebra
[4,5). Speaking in a more physical way, they describe different algebraically
deformed rotators.

It happens that as early as 1983 the analogical idea of an algebraically
deforimed harmonic oscillator was discussed. In fact, a deforined commuta-
tion relation for one-dimensional harmonic oscillator was introduced [6]:

[a, a*] =14+ (A* = 1)a*ta, (5)
or
aa* - Mata=1, (6)

where A # 0 denote a real constant. (This was done in the context of sonie
speculations about the origin of lepton and quark generations which are
irrelevant for the present paper). It was also shown that if A? # 1 the exact
spectrumn of the deformed excitation-number operator

N =ata )
is exponential (and bounded from below):

DXL | =
N, = 0 forn=20

A7 _1 3{1+,\’+...+A2"-= forn > 1

(n=0,1,2,...). (8)

For A? > 1 or A? < 1 the spectrum N,, is rising to +o00 or to the finite limit
1/(1 — A?), respectively, when n is increasing. If A> — 1, then N, — n, re-
producing the spectrum for a “classical” harmonic oscillator. The deformed
annihilation and creation operators, a and at, satis{y the relations

aln>=+y/Noyjn—-1>, atln>=+/Napn+1>, (9)
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where a0 >= 0 and N, ,; = AN, + 1, while
Nin>=Nyn>, <njn>=1, (n=10,1,2,...). (10)
This is due to the deformed commutation relations between N and a or at,
aN —XNa=a, Na'-MNa*'N=at, (1y)

following from the basic Eq. (6).
The Hamiltonian of the algebraically deformed harmonic oscillator is

H = j(pz + wiq?), (12)

where -
ata a—at
9= —\/3 -ﬁ_ y P=Vw—— \/_
are deformed canonical variables satisfying through Eq. (5) the Heisenberg
deformed commutation relation

20-1_ A-1
[p,q] = (1+ /\,+1H—/\2+1) : (14)

(13)

Then, from Eqs (12), (13), (6) and (7)

H=1(a*a+ aa)w= (i——;—_—EN-F ) (15)

Hence, the energy spectrum of our deformed harmonic oscillator is
A2 41
E,,:( 5 N,.-!—%)w (16)

with N, as given in Eq. (8). For A? > 1 or A? < 1 the spectrum E,, rises {0
400 or to the finite limit (1 + A?)w/2(1 — A?}, respectively, when 7 increases.
Thus, in the case of A2 < 1 a new phenomenon of saturation appears for the
spectra N, and E, of our deformed harmonic oscillator. If X* — 1, then
E, — (n + 1)w, giving the spectrum of a “classical” harmonic oscillator.
Unless the algebraically deformed harmonic oscillator a.ml/or the al-
gebraically deformed rotator are purely mathematical exercises only, th:ir
existence in Nature should manifest itsell in soine experiments. A priori,
these manifestations might either be restricted to a few yet unexplaitied
phenomena or, on the contrary, be universal. Obviously, in the secor.d
case the algebraic deformations should be extremely small and governed
by universally fixed parameters. In the present note we would like to ask
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a long-distance experimental question, if in fact physical harmonic oscilla-
tors are not (slightly) algebraically deformed in the sense of the deformed
commutation relation (5) with A? ~ 1 but # 1.

Good examples of physical harinonic oscillators are particular modes of
Bose physical fields, first of all, of the electromagnetic field. For instance, the
radiation field of monochromatic laser represents such an oscillator. Thus,
in the case of A2 < 1 the phenomenon of saturation might appear for the
energy of the laser’s radiation field. Of course, the saturation limit should
be very high, increasing infinitely with A? — 1.

It would be interesting to investigate the possibility of analogical satura-
tion phenomenon for an adequate example of algebraically deformed rotator,
when its “classical” angular momentum j increases. A physical candidate-
-system might be here a nucleus with very high spin. As is well known, the
physics of nuclei with very high spins is presently a dynamically developing
domain.

In the case of the Heisenberg-deformed commutation relation (14) we
can find explicitly its exact position-type representation. To this end, let us
use the ansatz

.0
P =P = —zaqcv q“—f(qupc)) (]8)

where ¢. and p, are the “classical” canonical variables:

[Pc, QC] = —1. (]9)

Within the function f(g.,p.) they are presumed to be ordered in such a way
that all ¢, stand on the left of all p.. Then, Eqs (14) and (12) imply the
relation

9f(qcy e .
f(aqq £ ) = 1[p?q] =1- é‘w + %Pi + %wgfz(qc’pc)) (20)

where £ = 2(A? — 1)/w(A\? + 1). Of course, 3/3q. commutes here with
pe. If the operator f(0,p.) is given, the differential equation (20) should

determine the operator f(g.,p.). Let us assume that ¢ = 0 when ¢. = 0.
Then f(0,p.) = 0 and we obtain fromn Eq. (20)

C(p

0= Slaor) =+ oo (w5008 (20)

where :( ): denotes our ordering of q. and p., while the operator

C(pc) = ’/1 - éw + %pcz (22)
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may be defined by its spectral representation or its formal series. If £ <
(i.e. A? < 1) then VZ = i1/|f] and in Eq. (21) there appears the hyper-
bolic tangent of w+/|£|/2 C(p.)¢.. Observe from Egs (21) and (22) that
g — g for £ — 0 (i.e. A* — 1), as it should be. Let us mention that an
analogical, momentum-type representation also exists for the commutation
relation (14). Then p = g(¢.,p.) and ¢ = ¢. = i9/0p..

The deformed position operator ¢ in its position-type representation
(21),when acting on the plane wave < ¢.|p. >= exp(ip.q.)/ V2T, gives

g C(pC) 4 «
q—‘/%.; exp(ipeg.) = w2 tan (w\/;jC(pc)qc) 7% exp(ipeqe) - (23)

Here, ¢. and p. are eigenvalues of the operators ¢, and p.. For £ — 0 (i.e.
A? - 1) Eq. (23) becomes trivial since ¢ — g.. If £ > 0 (i.e. A? > 1) and
C(p.) is real and # 0 (it is so for all p. when 0 < wf/2 < 1), the effect
of ¢ is periodic in ¢, with the period 7/ (w\/l_/_2 C(p.)) and singular at the
equidistant poles

2v+41

(v} — x —
g (pe) = T (v=0,41,%2,...). (24)
w+/€/2C(p.) 2

Thus, in this case, a one-dimensional lattice structure is implied by the form
of g. For £ — +0 (i.e. A? — 140 all poles ¢*) are removed to too. If £ < 0
(i.e. A? < 1) and still C(p.) is real (it is so for p? < w + 2/|¢| when |{ < 0),
there is no lattice structure, but it appears again if £ < 0 and C(p.) becomes
imaginary (for p? > w + 2/|¢| when £ < 0). Note that, strictly speakiag,
the position operators are g/\/m and ¢./+/m, where m is the mass of the
harmonic oscillator. Similarly, \/m p and \/mp. are momentum operators.

Due to Eqs (18) and (21) the Hamiltonian (12) of our deformed har-
monic oscillator can be considered as the Hamiltonian of “classical” particle
moving in a complicated momentum-dependent potential:

H=1p+< {: ;C—(\/IEL_—/—)E tan‘(w\/gC(pc)qc) :} . (25)

Fortunately, we know exactly the spectrum of H.
If the momentum dependence of the potential in Eq. (25) is formally
neglected by putting p. equal to zero, one obtains the “approximate” Hamil-

tonian .
]IPT — %p: + 9.7(22 tanz (wﬁC(O)qc) Py (26)
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where C(0) = 4/1 — w{/2. Here a static potential appears that is essentially
the (symmetric) Péschl-Teller potential [7):

VET(g) = 0—2(22 tan? (w\/:: c (O)flc)

v c’(o) { ( \[ C(0)g. %)
+ cos™? (g\/f c(0)g. - 5) } - Q((O—). (27)

For { — 0 it approaches the potential of the “classical” harmonic oscillator:
VFT(g.) - w?q?/2. If £ > 0 and C(0) is real and # 0 (t.e. wl/2 < 1), this
potential is periodic in g. with the period 7/ (w+/£/2C(0)) and singular at
the equidistant poles

o) = 2v +1

w+/L[20(0)

(corresponding to the period and the pales of ¢ = f(q.,pc), Eq. (21), with
p. formally put equal to zero). In this case the exact spectrum of H*T,
calculated e.g. in the range —7/2 < “’F C&O)qc < n /2 between the poles
¢t~ and g/ (the harriers around the noles ¢{*) are impenetrable), is given
by formula

EfT = it’.ff%i(_‘_’_.}( 4 +1m)?__q’e@_)_

(n=0,1,2,...). (29)

T (v=0,41,42,...) (28)

For { — ( it tends to the spectrum of the “classical” harmonic oscillator:
EM 5 (n+1/ 2)w. We can see, hawever, that for a considerable £ > O
the spectrum (29) is qualitatively different from the spectrum (16) of the
Hamiltonian H of our deformed harmonic oscillator with A? > 1 (although
for £ — 0 the spectrum of H also tends to the spectrun of the “classical”
harmopic oscillator). The reasan is that the potential in Eq. (25) for H is
then highly nonstatic.

A free deformed particle can be defined as the limit of w — @ af the
deformed harmonic oscillator described by its cauomcal variables p and ¢.
Then H — Hpeer P — Picee a0d ¢ = oo, Where due to Eqgs. (12) and (18)

.0
Htree = %P?m sy Ptree = Pe = _taq s Qree = f&ee(?cgpc) (30)
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and from Eqs (21) and(22)

Iree = ffree(chpc) =4qc (1 + %P:) . (31)

Here, Eq. (14) holds in the limiting form

[ptreey Q&ee] = "i(l + %p;ee) (32)

(cf. Eq. (20) and assume that X* = (1 + wl/2)/(1 — w{/2) depends on w,
while £ = 2(A? — 1}/w(A? + 1) does not). Evidently, the spectruns of Hy.. is
E(p.) = p?/2, where p. denotes an eigenvalue of the operator p.. We can see
that in this case the deformation of the Heisenberg “classical” commutation
relation (19) is trivial.

Let us mention that the mathematical question may be asked, if our
“Bose-type” commutation relation (6), where ) is real (i.e. A? > 0, can
be extended to complex A, giving, a “Fermi-type” commutation relation for
imaginary A (i.e. A? < 0).

Finally, we would like to call the Reader’s attention to a paper by Saave-
dra and Utreras [8], where (several years ago) an extreme conjecture was
formulated that, generally, the Heisenberg “classical” comnutation relation

[Pa Q] =-i (33)

should be (slightly) deformed by multiplication of its zhs by 1 + {H. Here,
H is a proper Hamiltonian and £ stands for a very distance scale. In the
case of our Eq. (14), H is H — w/2 (with H as given in Eq. (12) and
£=2(A - 1)/w(A? +1).

Note added in proof: the deformed commutation relation (6) was
considered previously, ¢f. Jannusis et al, Leltera al Nuoro Cimento 34,
375 (1982) and references therein; I am indebted to Jerzy Lukierski for his
calling iy attention to this paper.
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