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An integrable hamiltonian system in 2V dimensions is constructed. It
describes N interacting particles on a plane. Solutions to the equations
of motion are also presented.
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1. Introduction

Integrable classical hamiltonian systems are very important since it is
possible to obtain the solutions of the equations of motion for such systems
by quadrature. Practically all systems for which the equations of motion
have been solved explicitly are integrable hamiltonian systems.

Let us recall the definition of the classical integrable system [1, 2]. A
hamiltonian system with n degrees of freedom, Poisson bracket { , } and
Hamiltonian H is said to be integrable if it possesses n independent integrals
of motion K; (i = 1,2,...,n) in involution, i.e. :

{H, K}=0,
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{K,-, KJ'} =0,

where H is not independent of K's.

Liouville’s theorem states that the solution of the equations of motion
of an integrable system is obtained by quadrature [1, 2].

In this paper we present an example of the classical integrable systemn
with 2V degrees of freedom. The example is nontrivial, since it describes N
interacting particles on a plane. The interaction is described by a N-body
potential, which is an arbitrary function of a variable characterizing the
spatial size of the system of particles. The geometrical interpretation of the
variable depends on IV and is discussed in the next Section. The examnple
we are going to present is also interesting from the formal point of view. It
illustrates all important features of integrable hamiltonian systems. Let us
add that the case N = 3 was considered earlier in paper [3]. Our example
generalizes these considerations.

The paper is organized as follows. In Section 2 we define our systemn
in the lagrangian formulation and find integrals of motion. In Section 3
we present the hamiltonian formulation of the dynamics in order to define
the hamiltonian system in our example and check whether the integrals of
motion from Section 2 are im inxolution. In Section 4 we integrate the equa-
tions of motion of the system, wiheneas in the last Section we present another
simple example of the inkegrable system with the potential proportional to
the area spanned by IN' particles oxx the plane.

2.. hagrangian formulation

Let us represent the positions of IV particles on the plane by the complex
numbers
r;‘-_-a:,,+iy;, k:1,2,...,N, (1)

where the pairs (z;,yx) are the Cartesian coordinates of the particles. We
treat formally the r,’s and their complex conjugate r; = z;, — ty; as inde-
pendent variables.

With the help of these coordinates we define the following Lagrangian
leading to the integrable hamiltonian system

m ., .
L= —5—{[1'1|’+...+|rN|2}-V(R), (2)
where the potential V' is an arbitrary function of the variable

1
R=Flrl+€7‘2+€2r3+"'+6N—1r"] (3)
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and ¢ = exp(2xi/N). The symbol |---| denotes the complex modulus, the
dots above the r’s mean the differentiation with respect to time and m is
the mass of the particles.

The kinetic energy in the Lagrangian written in terms of the Cartesian
coordinates z and y has the usual form. The variable R needs clarification.
It has a clear geometrical interpretation for N equal 2 and 3, being propor-
tional to the shortest distance between two or three particles on the plane
[3]. For N greater then 3 the R is less then the size of the system (r)

R < {r),

where (r) is defined as the minimal radius of a sphere which contains all
particles. The proof of this statement bases on the Schwartz inequality and
observation that the R does not depend on a position of the coordinate
system with respect to which the coordinates r’s are defined. Thus, the
origin of the coordinate system can be placed in the origin of the minimal
sphere containing all particles.

Let us stress that the system described by the Lagrangian (2) is inte-
grable for any form of the potential V' = V(R). The specific form of the
variable R allows for sufficiently enough symmetries to produce integrals of
motion via Noether’s theorem. Recall that if the infinitesimal coordinate
transformation

rn=rmto, k=12,...,N, (4)

where a;’s are infinitesimal variations, does not change the Lagrangian L,

then the quantity
arL oL
K= ( + Yy a') ( 5)
Z O ary *

is an integral of motion.
In our case the variable R transforms under the transformation (4) as
follows:

R =R+ ——-{(a; t+eaz ...+ ay)
x (r} +ery +...+ €' r}) + complex conjugate},

up to terms linear in the variations a’s.
It is easy to see that the infinitesimal rotation

o = ¢/2)r, k=1,2,...,N, (6)

where the real parameter ¢ is an infinitesimal angle, does not change the,
R and the kinetic part of the Lagrangian (2). Thus, the transformation (6)
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is a symmetry of our system which leads to the angular momentum with
respect to the center of coordinates system

N

.m » % * e
J =i D (re#h = i), (7)

k=1

as a conserved quantity.
All other symmetries can be obtained assuming that the functions a’s
are constant numbers which fulfill the equation

asteazs+...+e¥tay =0. (8)

These transformations are infinitesimal translations of the particles of our
system.

It is easy to prove that there exist N —1 linearly independent solutions
of Eq. (8). We write down the solutions in the form of the vector a/) whose
components are the variations a;’s

al) = (aﬁ”,u? . ,af,i,)) ,
where the upper index j enumerates the solutions. Let us define the unitary
N x N matrix

where j, k=1, 2,...,N. The first N — 1 rows of the matrix a;; form the
solutions of Eq. (8):

aij) = Qg (gb)
where j =1, 2,...,N~land k=1, 2,..., N, since substituting (9b) into
(8) and keeping in mind that ¢¥ = 1 we have

N
1__ JN

The last equality was written provided ¢ # 1, which holds true for
i=12,...,N-1.

The solutions (9b) are linearly independent because the determinant of
the unitary matrix a;y is different from zero. Thus, we have found the N -1
independent translations in the complex plane which are symmetries of the
Lagrangian (2).

Formula (5) gives independent integrals of motion generated by these
translations

N
Ki=m) opty, j=1,2,...,N-1. (10a)

k=1
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The complex conjugate of K’s

N
Kj=m) aj,-f, j=1,2,...,N-1. (101)
k=1

are also independent integrals of motion. Thus, Eqs (10a) and (10b) de-
fine 2(N — 1) linearly independent integrals of motion generated by the
infinitesimal translations.

We end the discussion on the integrals of motion of our system writing
probably the most obvious one: the energy

E= —'g—{|r'1|’+...+|r'N|’}+V(R), (11)

which is conserved since the potential V' does not depend on time.

In the next Section we will define the hamiltonian system for our exam-
ple in order to discuss the problemn of its integrability. The 2NV algebraically
independent integrals of motion (7), (10a), (10b) and (11) will play a crucial
role in the discussion.

3. Hamiltonian formulation

In order to define the hamiltonian system we must pass from the la-
grangian to the hamiltonian formulation of the dynamics of our systemn.
Applying the Legendre transformnation to the Lagrangian (2) we obtain the
following canonical momenta:

Pr = Par + ipyk = Tnf’k ’
pl: = P2k — ipyk = 1711"; y (12)
(k=1,2,...,N) and the Hamiltonian

1

H=2—,;{p1pi+---+p~p}«}+V(R)- (13)

The fundamental Poisson brackets (FPB) for the canonical variables
(rx s7% ,Px , p;) are of the form

{re 0} = {ri,p;} = 2&;, (14a)
while all other FPB are equal to zero

{re,ri} ={ri,rj}=...=0. (14b)
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The Hamiltonian (13) and the fundamental Poisson brackets (14) define
the hamiltonian system in our case. In the previous Section we have found
2N independent integrals of motion. We express them in terms of canonical
momenta instead of velocities and check whether they are in involution.

The Hamiltonian (13) (equal to the energy (11) expressed in terms of
momenta) and the integrals of motion

N N
Kj=) app, and K;=) ojpm (15)
k=1 k=1
(7 =1,2,...,N —1) are in involution :
{H,K;} = {ll,K;} = {K;, K]} =0.

The only problem arises with the angular momentum

, N
1 * *
J= 5 Z("H’k — TyPx)- (16)
k=1

Its Poisson brackets with K;’s and K}’s are different from zero :
{J,Kj} = lI() 3
{/,K;} = —iK].

However, it is possible to define a new independent integral of motion which
replaces the angular momentum (16)

., N-1 N

M=J+ év— Z Z {aj;.r,‘, If; —-C!;&?'k.K‘j} , (17)

=1 k=1
and is in involution with the other integrals of motion :
{M,d}={M,K;} ={M,K;}=0.

Summarizing, the hamiltonian system in our example is integrable since
there exist the 2NV independent integrals of motion in involution (13), (15)
and (17).

4. Solutions to the equations of motion

The integrals of motion from the previous Sections suffice to integrate
the equations of motion of our system. In order to facilitate this procedure
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let us perform the transformation leading from the old variables (7, r}) to
new ones (z;, z}) ,

N
Pr = Zakj Zj, (18)
j=1

where k = 1,2,..., N and aj; is defined by Eq. (9a). The equations for the
73’s and z}’s are obtained by taking the complex conjugate of Eq. (18). It
is important for the later considerations that the inverse relation

N
zi= ) Tk, (19)
k=1

written for j = N gives:

N N
N = N-3 ze-—(N—l)(k—l) e = N—xlzth—x = N1/2R e .

k=1 k=1

where R is defined by Eq. (3) and ¢ is the argument of the complex number
ZN «

Expressing the constants of motion (7), (10a, b) and (11) in terms of
the new coordinates we get

. N
im o as :
.—.-é-\; (w2 — 2t ), (20)
k=t
K5=7n2; ’ -K; =mz, (21)

where in the last row j = 1,2,...,N -1 and

I 5

5 Z 4z + V(R). (22)

We can immediately integrate FEqs (21)
zi(t) = (K /m)t + 20, (23a)

z(t) = (K;/m)t + 25, (23b)

for j =1,2,...,N-—1.

Now we are left with the integration of the variable zy (R and ¢ equiv-
alently). The most convenient way to do this is to make use of the integral
of motion M (Eg. (17)) instead of J, since in the new coordinates

M=%71(3N£&—z;vi~)=mNR’$- - (29)
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Substituting relations (19) and (21) into formula (22) we obtain

N-1
E= 1 E K|+ ———~(R2+R2 )+ V(R). (25)

Computing ¢ from Eq. (24): ¢ = (M/mN)R-?, and inserting this into the
formula for the energy (25) we obtain the final equation

(M/ ;;N)z + mzNV(R) =K, (26)

which can be solved by quadrature. The constant x denotes

R4

=

Hence we get the relation R = R(t) and also the solution for ¢

M dt
9(t) = mN J R%(t) + o (27)
We have integrated the equations of motion for z; and zj. This was
possible since we constructed 2N integrals of motion in involution. The
solutions for 7, = 7,(t) and r; = r;(t) can be obtained from relation (18),
whereas the trajectories of motion (zx(t) , yx(¢)) for N particles on the plane
are defined by the relations resulting from Eq. (1):

T = %(rk +7) and y, = ——%(rk -r).

5. The area-interaction

This interaction is proportional to the area of a polygon defined by the
N order points ry,73,...,7x5, where the positive ordering on the plane is
defined. It is easy to prove that in this case the system is described by the
Lagrangian (2) with the potential:

., N
i
V= kZ E P Popq + C.Co (28)
m=1
where x4y = 7, and k is some real constant. The potential does not

depend on the orientation and position of the coordinate system in the
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plane, thus, the angular momentumn and the total momentum of the systein
are conserved. In fact, in this case we do not need symetries in order to
integrate the equations of motion of the system since the potential (28) is
a hermitian bilinear form which can always be diagonalized.

The transformation which diagonalizes V is defined by Eq. (18). Thus,
in the new coordinates z; the Lagrangian L has the form:

N »
m . es k. 27r(_7 - 1) *
L= ..2_. {zj zZ; — (;); Slll*‘—ﬁ——') Z5 zj} . (29)

=1

The Euler-Lagrange equations are very simple

ko 2m(j-1
5+ (7—n- sinL’N——)-) 2z =0, (30)

for j =1, 2,...,N and can be solved immediately.
The 2N integrals of motion in involution can be written without any
difficulty looking on the Lagrangian (28). They are of the form:

. E ., 2m(j—1
Ej = Ichlz + (—'n; sin '—Ef—-—)) Ichiz,

forj =1, 2,...,N and ¢ = z, y, where 2; = z;, + i 2;,. The total energy
of the system is the sum of these integrals of motion.
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