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A general Weyl’s recipe concerning studies on structural properties of
physical models, has been applied to the case of a finite polymer chain,
where translational symmetry is described by a cyclic growp — the group
of the obvious symmetry of the model. It has been shown that the hidden
symmetry, imposed by this recipe as the group of all automorphisms of
the cyclic group, involves some scaling operations, in addition to simple
geometric transformations. Invariance of structure of the chain under non-
trivial scaling operations allows us to interpret the chain as a self-shmilar
object, with some fractal-like properties. A model of helical scaling has
been proposed as a hypothetical possibility of realization of fractal scaling
symmetry for polymer chains in constrained areas of three-dimensional
space. General considerations are illustrated on an example of a chain
composed of twelve elementary Bravais cells, imitating the clock dial plate.

PACS numbers: 02.20.+b, 61.41.+e, 61.50.Ks, 63.75.4+2
1. Introduction

In the present paper we investigate syminetry properties of a polymer,
imposed by the structure of a finite closed linear chain, in a spirit of “actions
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of groups on sets” (Michel [1]). We apply a general recipe of Weyl 2] (c.f.
also [3-6]) in order to determine all symmetries resulting from the structural
assumptions. As a result, we find that a linear chain displays the structure
which is self-similar under some scalings. This feature of self-similarity is
characteristic to a class of fractals (Mandelbrot [7]), so that a linear chain
can be looked at — at least to some extent — as a finite analog of a fractal.
Correspondingly the appropriate scaling operations can be referred to as
fractal symimetries.

In Section 2 we give some physical and structural arguments, motivating
the assumptions of the model. The mathematical formulation of the model,
based on an elementary number theory, is given in Section 3. In Section 4
we discuss a possibility of physical realization of fractal scaling. All these
general structures are demonstrated in Section 5 for the case of a chain
consisting of twelve polymer units, corresponding to commonly known clock
dial plate. Some final conclusions and remarks are given in Section 6.

2. Physical and structural motivation

When proposing a model of structure of a condensed matter, one usually
assumes a rigid solid, i.e. Euclidean metrics. Thus the only symmetries,
admissible for an infinite rigid body by the Euclidean metrics, are transla-
tions and orthogonal transformations (rotations, reflections, etc.), whereas,
e.g. scaling operations are forbiden. However, it seems plausible that the
requirement of a rigid Euclidean metrics is sometimes too restrictive for an
adequate description of symmetry. In the case of molecular vibrations in
quantum chemistry, this observation is a starting point for introducing the
notion of symmetry groups for non-rigid (floppy) molecules [8-11]. Such a
molecular symmetry group encloses, besides point isometries (which form
a subgroup of the group O(3,R) of three-dimensional orthogonal transfor-
mations), also some permutations of identical objects, which are forbidden
by the rigid Euclidean metrics, but become admissible in presence of tun-
neling through some potential barriers. Such permutations are referred to
as “feasible operations”, for which any transition between two symmetry
configurations involves a crowding through a barrier, and thus breaks the
Euclidean metrics (this breaking is, in a sense, small). Molecular motions
in such description are strongly anharmonic.

Similar considerations can be applied to the case of molecular crystals,
which constitute a condensed phase of matter, but do not exhibit a geometri-
cally closed packing. In several cases, complicated structure of such crystals
can be approximately described in terms of linear chains or rings [12-14].
In these cases, complex molecular interactions exhibit an anisotropy which
leads to a strong coupling of molecules into linear chains, and relatively weak
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interactions between the chains. Evidently, an exact description of molec-
ular interactions is very complicated and practically impossible. Instead,
one can consider a simplified description within a model, whose principal
assumption consists in the observed fact that molecules formn the structure
of the linear chain. The main aim of the present paper is a full exploitation
of an apparently evident assumption that the polymer realises the structure
of a finite, closed lirrear chain. In a spirit of “actions of groups on sets”
(Michel [1]) we identify the polymer with a regular orbit of an action of the
cyclic group Cy. Our goal is to find such “feasible” symunetry operations
which preserve the assumed structure.

The method of a systematic solution of this problem is already known
as a general recipe of Weyl [2]. According to this recipe, the invariant
properties of a given structure, characterized by a group G (the group of the
obvious syminetry in the terminology of Weyl), can be derived by a careful
investigation of the group Aut G of all automorphisms of the group G (the
group of the hidden symmetry). In particular, one has to discuss the role
of every automorphism in its action on the given structure.

In our case, the role of the group G of obvious symmetry is played by
the cyclic group Cy, which has a simple structural meaning as the “dis-
tributing group”, which distributes the polymer units in appropriate nodes
of the chain, putting them in a definite cyclic order. The hidden symine-
try group in the Weyl’s recipe is therefore the group Aut Cy, well known
from an elementary number theory ([15]). We show in the sequel that such
a formulation yields, somehow surprisingly, symmetries under some scaling
operations.

3. The mathematical formulation of the model

Let

N={lj=12,...,N} (1)

be the set of all positive integers not larger than N, and

Cy = {N,” + " mod N} (2)

the cyclic group in the additive notation, i.e. the group with the addition
modulo N as the group multiplication. The set N constitutes an orbit
of the regular representation of the group Cy. In our model the set NV
represents a polymer chain, whose one-dimensional elementary Bravais cells
are labelled by the index j. )

The scaling operation on the chain NN, or, equivalently, on the group
Cy, is an endomorphism 9, : Cy — Cy, given by the formula
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AR
= (:, mied z‘v) : 3)

Each endomorphism vy ¢onsists therefore in the I-fold magnification of the
lattice constant of the ¢thain iV in agreement with the modular condition
(3). The set of all inequivalent endotnorphisms of the group Cy,

Bnd Cy = {m |1 € N}, (4)
has a natural mathematical structure of a commutative ring over the group
C N

An important characteristics of a single scaling n; is its kernel
Ket iy = {j € Oy | {; mod N = N mod N}, (5)
consisting of all those elements of the group Cy which are mapped onto the
unit element j' = N under this scaling, and its image
Imp = {lj mod N |j e Cy}. (6)

It is easy to observe that these sets are both normal subgroups of the group
Cy, namely

Ker iy = C, =< & >= {R,2&,...,k&k} < Cy, (7
and
Im g = Cz =< k >= {K,2K,...,kx} < Cy, (8)
where
& = led{l, N) (9)

is the largest common divisor of integers [ and N,

K= k/N (10)

is the divisot tomplementary to x with respect to N, e.g. < & > denotes
the cytlic group, generated from the element « € Cy (so that, in particular,
Cy =< 1 >»). The mathematical description of scaling as given above
is accompanied by an evident structural interpretation. As the result of
a scaling m, | € &V, the initial chain N is transformed to a new chain &,
consisting of & elementary Bravais cells. Each elementary cell j' of the new
chain R(§' = 1,2,...,R) corresponds to x elementary cells of the initial
chain N, namely to those cells j € N which satisfy the modular equation
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ljmod&=j,jeN. (11)

We proceed to point out some analogies between scaling of finite linear
chains and similar symunetry operatipns on {ractals. The term “fractal”
has been introduced by Mandelbrot [7] to describe a class of irregular sub-
sets of an Euclidean space, for which various mathematical definitions of
set-theoretic and topological dimension yield different results. An impor-
tant feature, characteristic for the most of fractal structures considered in
physical and chemical applications [16-21], is self-similarity under scalings.
Just this feature is shared by finite polymer rings, subjected to scalings by
automorphisms 1 € Aut Cy. Thus the polymer ring can be looked at as
a finite analogy of a self-similar fractal, which possesses only a finite number
of different cyclic orders, obtained by a repeated application of a given scal-
ing m;, and imitating an infinity of fractal configurations. For this reason,
nonrigid scalings imposed by automorphisms 75, € Aut Cy can be inter-
preted as fractal symmetries of the structure of a linear chain. In cases,
when the elementary cell of the chain N consists of a single structural ele-
ment, such a scaling can be interpreted as a condensation of x elementary
cells of the initial chain N into a complex elementary cell of the new chain
k. It is important to observe, however, that such a condensation, defined
by the modular condition (11), exhibits global (non-local) character since
it implies that a collection of & initial structural elements distributed uni-
formly over N (separated by « lattice constants) concentrates into a single
cell of the new chain . Such kind of condensation differs therefore from an
ordinary, local phase transition where the elementary cell of a chain is, e.g.
doubled as the result of mutual alternate displacemnents (towards and apart)
of neighbor structural units (dimerization [12-14], Peierls phase transitions
[22-25].

In cases, when the elementary cell of the initial chain encloses two or
more structural units, the scaling n; distributes these units over different
units of the new chain g (c.f. an example in Section 5).

We thus conclude that, from the structural point of view, ea.ch scaling
m € End Cy carries the initial polymer chain N into a new chain £ K, where
x and K are divisors of N, given by Fqs (9) and (10). New chains can differ
mutually either by the length, i.e. the number R of elementary Bravals cells,
or by the cyclic order. It is therefore reasonable to divide the set End Cy
of all scalmgs into subsets yielding the chains of the same length R, In this
way the ring End Cy, or, equivalently, the set N, decomposes into disjoint
subsets

ﬁ"-" U ﬁnv (12)

neK(N)
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given by

N.={le N |led(l, N) =} (13)

and the set-theoretic sum in Eq. (12) runs over elements of the set

K(N)={x e N|lcd(N,x) = &} (14)

of all divisors of N. All scalings ;1 € N, yield chains with the same length
& = N/k, and differ mutually by a cyclic order.

The set K(N), providing the classification (12) of scalings of the chain
N , constitues a mathematical structure called lattice ([15, 5]), i.e. a par-
tially ordered set (by the relation of divisibility), with unique maximal
(%maz = N) and minimal (Kpnin = 1) elements. According to an elementary
number theory, Eq. (12) implies the sum rule

N = Z o(R), (15)
x€K(N)
where (&) is the value of the Euler function, i.e. the number of elements
of the class N, given by Eq. (13), or, equivalently, the number of all such
elements of the new chain &, which are relatively prime with &. In general,
the Euler function is given by the formula

1 for N =1,

¢(N)=1{ N H (p—1)/p for N> 1, (16)

pEX(N)

where 7(N) C K(N) is the socle of N, i.e. the set of all prime divisors of
N (c.f. [5] and references therein for detail).

The case of minimal divisor k = 1 is of particular importance since
then each scaling 7, yields a new chain with the same length /N as the initial
chain. All such scalings form the group

Aut Cy = {m € End Cy | led (I, N) =1} (17)

of the hidden symmetry of the structure of linear chain in the terminology
of the Weyl’s recipe. Scalings belonging to this group yield only a change
of cyclic order of a polymer chain, but preserve its structure. All images
m(N), led (I, N) = 1, are mutually similar configurations, so that they are
finite analogies of fractals.

We proceed to evaluate the number of essentially different fractal vari-
ants of a given chain N. It is easy to observe that the group Aut Cy contains
for N > 2 a subgroup
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Clh = {7?1’ nN—l} q Aut CN s (18)

consisting of the unit element 7, (the trivial scaling 1 : 1) and the scaling

- j _ ] L~
w1 = ((N—l)j mod N) = (—-—j mod N)’ jeN, (19

corresponding to the one-dimensional inversion of the chain N in the node
j = N. The group C;; has the evident meaning of the geometric point
symmetry group of the one-dimensional chain. All non-trivial, 7.e. non-
geometric fractal symmetry operations are therefore given by the quotient
group

Q = Aut Cy/Cis. (20)

Each non-trivial element of the group Q determines (with the accuracy up
to the one-dimensional inversion ny_;) a “fractal” cyclic order, essentially
different from that imposed by the natural order in the set N. Thus the
required number of fractal variants of the chain N is given by the formula

1 for N =1 or 2,
{ (21)

®(N)/2 for N > 2.

Appropriate values for N < 12 are listed in Table I. A scaling g, [ € ﬁ,‘, K>
1, is no longer fractal symmetry operation, but it imposes a breaking of
translational symmetry of the distributing group Cy to its subgroup Ciz. In
particular, for k = N we have & = 1, i.e. the absolute destruction of the
translational symmetry of the chain.

TABLE 1
Values of the Euler funciion ¢(N) and of the number |Q] of essentially different
fractal variants of the chain N for N < 15.

N {112(3(4|5(6([7|8|9|10]11 12|13 }14}15

oM 1f1|2]2]|a|2]|6|a|6| af10| 4|12 6] 8

Q] |1 |1}1|1}2|2{3|2|3| 2| 5| 2| 6| 3| 4
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4. Helical scaling in limited areas of space

A finite linear chain N can be looked at as the set of N points, dis-
tributed regularly over a circle. In this picture the set V is embedded into a
covering space — a two-dimensional Euclidean space. The scaling operation
T, | € N, corresponds in this picture to the angular magnification, so that
an arbitrary point A on the circle, having the angle a with a fixed point
N = 0 with respect to the center of the circle (c.f. Fig. 1), is transformed
to the point determined by the angle la modulo 2x. A more transparent
interpretation of such a scaling can be obtained by introducing the third
dimension. The scaling 7; can be then treated as a transformation of the
circle of the length Na into a regular closed helix of the length [Na, con-
sisting of N convolutions, scrolled over a torus. The position of a point
on helix is determined by the angle a, 0 < a < 27, and by the number of
the convolutions, i.e. the winding number. The final result of the operation
7 is obtained as the result of reduction of the helix to a single circle, by
neglecting the winding number. This procedure will be referred hereafter
to as the helix scaling.

nlA)

Fig. 1. Scaling on a circle (here | = 3).

It is easy to propose a possibility of physical realization of helix scaling.
We assume that our chain is placed in a limited area of space, and that
the volume of this area undergoes some fluctuations, e.g. as a result of
complex motions of the surrounding matter. We also assume that the main
structure of the linear chain is assured by strong short-range interactions,
e.g. attraction between nearest structural units of the chain, and repulsing
between next-nearest ones, whereas the interaction between third, fourth,
etc. units has a tendency — in the presence of a fairly large free volume —
to scroll the chain into a helix. Then in the case of presence of a volume
large enough to form a torus the chain becomes a helix, and under lowering
of the free volume this helix- collapses to a new chain, with a new cyclic
order. Such a kind of helix scaling provides a channel for virtual transitions
between different equivalent fractal configurations, or for phase transitions,
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associated with a global breaking of the translational symmetry of the chain
— from the initial group Cy to one of its subgroups Cy, given by the lattice
K(N).

5. An example: the clock dial plate

We proceed now to demonstrate all possible fractal configurations, as
well as symmetry-breaking helical scalings for the case N = 12, i.e. for a
chain corresponding to the clock dial plate. All scalings #; for this case,
determined by means of Eq. (3), are collected in Table II. They all form the
ring End C,,.

TABLE II
Scalings on the clock dial plate.

j 1 2 3 4 5 6 7 8 9 10 11 12

I
1 1 2 3 4 5 6 7 8 9 10 11 12
2 2 4 6 8 10 12 2 4 6 8 10 12
3 3 6 9 12 3 6 9 12 3 6 9 12
4 4 8 12 4 8 12 4 8 12 4 8 12
5 5 10 3 8 1 6 11 4 9 2 T 12
6 6 12 6 12 6 12 6 12 6 12 6 12
7 7 2 9 4 11 6 1 8 3 10 5 12
8 8 4 12 8 4 12 8 4 12 8 4 12
9 9 6 312 9 6 3 12 9 6 3 12
10 10 8 6 4 2 12 10 8 6 4 2 12
11 i1 10 9 8 7 6 5 4 3 2 1 12
12 12 12 12 12 12 12 12 12 12 12 12 12
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Fig. 2 presents the lattice K (12) of divisors of the integer 12. We observe
that the partial order, imposed by the divisibility relations (arrows in Fig.2)
is not consistent with the linear order. The lattice K(12) classifies scalings
of the ring End C,; according to Egs (12)-(13). This classification is given
in Table III, together with kernels Ker 7, and images Im 7, for each class
k € K(12) of scalings (c.f. Eqs (5)-(10)).

Fig. 2. The lattice k(12) of divisors of the number 12. The minimal and maximal
elements are respectively Kpmin = 1 and Kmqe, = 12. Arrows indicate the partial
order.

TABLE 111
Classification of scalings of the clock dial plate.
k| R N, Ker 15 = Cx = (R) Im 9, = C, = (k)
112 |{1,5,7,11} = {&1,45} | C; = {12} Cia
2] 6 {2,10} = {2} C, ={6,12} Cs
3| 4 3,9} = {+3} Cs = {4,8,12} Cs
41 3 {4,8} = {4} Cy =1{3,6,9,12} Cs
6] 2 {6} Cs = {2,4,6,8,10,12} C,
1211 {12} Cia=1{1,2,...,12} Cy

In particular, the set N, for N = 12, k = 1, labels the elements of the
group

Aut Cyp = {7)1,775, N7y 7711} (22)
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of reversible scalings, i.e. the group of the hidden symmetry of the clock dial
plate according to the recipe of Weyl. The group multiplication for Aut C,,
is given in Table IV. We find that Aut C,, is an abelian group, isomorphic
with the dihedral point group D,.

TABLE IV
The multiplication table for the group Aut C;,.

™M s M M

M M T N7

M M M s

Ty M7 s "h

Fig. 3. The action of the group Aut Cy; of the hidden symmetry on the clock dial
plate.

The action of the group Aut C,; on the clock dial plate is given in Fig. 3
(c.f. also Table II). This figure shows us that 7, is the unit scaling 1:1, and
7y, corresponds to the one-dimensional inversion in the fixed point j = 12,
which is equivalent to the reversal of cyclic order of the plate (c.f. Eq. (19)).
These two scalings are trivial in a sense, since they constitue the group

Cin = {Mm,71} 9 Aut Cy, (23)
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of operation of geometric symmetry of the chain (c.f. Eq. (18)). Thus the
first row in the Fig. 3 presents the geometric symmetries of the dial plate.
The corresponding quotient group, t.e.

Q = Aut Clz/clh = {{nlﬂhl}a {775a7]7}} = {{nﬂ:l}a {77:{:5}} (24)

consists of two elements, corresponding to two essentially different fractal
configurations on the clock dial plate (the first and second row in Fig. 3).
Transitions between these two configurations are realized either by the scal-
ing 75, t.e. 5:1, or by 1, i.e. T: 1 = (—5): 1. These scalings provide a non-
trivial, fractal symmetry of the clock dial plate. We observe in Fig. 3 that
these scalings change essentially the cyclic order, but preserve the structure
of the dial plate.

Fig. 4. Helical scaling on the clock dial plate for divisors of 12. Arrows on arc
denote the projection of the orientation of the helix onto the initial circle. Direct
arrows between clocks point out the partial order in the lattice K(12).

The remaining scalings of EndC,; (c.f. Table II) break the translational
symmetry of the clock dial plate. The scalings 7., & € K(12), i.e. scalings
representing each class of Table III, are presented in Fig. 4, with the loca-
tion (of each scaling) consistent with the structure of the lattice K(12) (c.f.
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Fig. 2). We can observe that each scaling 7., £ € K(12), x # 1, yields a new
chain &, in which the clock figures 1,2,...,12, are no longer distributed uni-
formly over the dial plate, but they are grouped on & places, each group
having « figures. In particular, for k = 12 we obtain a total “chaos”, i.e.
the complete lack of any translational symunetry. We also observe that the
transition from the full translational symmetry C;, of the clock dial plate
to the full chaos C; can be performed by intermediate stages on different,
inequivalent ways, defined by the structure of the lattice &(12). The min-
imal element %,,;, = 1 and maximal K,,,, = 12 of this lattice correspond
respectively to the maximal and minimal translational syimnmetry, whereas
intermediate symunetries are described by subgroups of C,,.

Fig. 5. The elementary cell of a polyethylene crystal. Structural units CHy lay in
planes parallel to zy.

Fig. 6. The fractal scalings 35 for the (CzH,),, polyethilene chain.

Each figure of the clock represents an elementary cell of the chain. As
an example of a chain with composite elementary Bravais chain, we consider
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the polyethylene chain (C;Hy),, [24]. Each cell of this chain consists of two
structural units CH, (Fig. 5). The center of the cell in Fig. 5 coincides with
the center of the carbon bond, whereas the hydrogen scissors are placed in
the plane perpendicular to the figure and to the chain. The helix scaling
n yields [-fold magnification along the axis of the chain (assumed to be
the z-axis), whereas the perpendicular dimensions (z along), in particular
the hydrogen scissors, remain unchanged. The effect of the helix scaling
75 (fractal symmetry) is given in Fig. 6. The figures 1, 2, ..., 24 inside
the dial plate denote the labels of consecutive structural units CH; in the
initial cyclic order, and outside — those after scaling. This example clearly
shows that the fractal symmetry provides — contrary to a purely geometric
symmetry — an essential structural reconstruction of the chain. Let us,
e.g. consider the structural units with labels 1 and 2, which constitute the
first elementary cell of the initial polyethylene chain. After the helix scaling
ns we find the unit 1 in the fourth elementary cell, together with the unit
6 from the third cell of the initial chain, whereas the unit 2 constitutes,
together with the unit 21 from eleventh cell, the sixth cell of the new chain.
We like to stress at this point that the picture outside the dial plate in
Fig. 6 is exactly determined by the procedure of helix scaling 75, despite an
apparent impression of a chaotic mixture.

6. Final remarks and conclusions

We have considered the structural properties of a finite polymer linear
chain [11-14,25], using the recipe of Weyl [15-19]. The role of the obvious
symmetry of the chain is played by the cyclic group Cy, the distributing
group for elementary cells of the chain. According to recipe of Weyl, the
hidden symmetry is given by the group Aut Cy of all automorphisms of
the group Cy, which is well known from elementary number theory [15].
We have proposed in the present paper a physical interpretation of these
automorphisms as structural symmetries of a linear chain. This group is
composed of geometric symmetries, combined with some new symmetry
operations involving scalings. In particular, for the case of a helical scaling,
we obtain some new, non-geometric symmetries which preserve the structure
of the linear chain, but imply its strong reconstruction. It involves a global
(i.e. non-local) exchange of structural units, followed by an essential change
of the cyclic order. Invariance of structure of the chain under the scalings
of the group Aut Cy allows us to interpret this chain as a finite analog of
a fractal, i.e. a structure which is self-similar under such operations.

Fractal symmetries imposed by the group Aut Cy are candidates for
the description of generalized symmetry of finite linear chains in an analogy
to molecular symmetry groups for non-rigid, floppy molecules [8-11], since
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they preserve the structure of the chain. Evidently, a practical realization
of a particular fractal symmetry operations is associated with such dynamic
parameters as the height of the potential barrier between two cyclic orders.
One has to expect that within some appropriate energy scales only some
subgroups of the group Aut Cy will be important, in accordance with the
dynamics of the chain.

The purely fractal symmetry is — contrary to the geometric one —
highly non-local, for reason of an essential change of the cyclic order, which
yields a shuflling of structural units of the chain. As a result, a non-rigid
linear chain cannot be dynamically treated as a solid body even approxi-
mately, but one has to take into account the “floppy” degrees of freedom,
realizing admissible permutations of structural elements.

Not every scaling of a linear chain is reversible. We have shown that
irreversible scalings lead to breaking of translational symmetry of the chain.
All possible ways of breaking are classified by the lattice K' (V) of subgroups
of the group Cy, i.e. of divisors of the number N of elementary cells of the
chain.

It is worth to notice an important role of the dimension of the space in
our finite analogons of fractals, which is quite different than in the case of
the “fractal” dimension (Mandelbrot [7]). We observe that (i) a line crystal
is, by definition, a finite or discrete subset of a one-dimensional space; (i)
a linear chain is treated as a subset of a circle, i.e. a figure associated with
a two-dimensional space; (iii) fractal symmetries can be realized by helical
scalings, i.e. transformations of a circle to a helix, which involve the third
dimension for virtual intermediate stages in realization of the scaling. The
one-dimensional linear chain “engages” therefore at least three dimensions
for realization of a fractal symmetry.
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