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In terms of an intergeneration U(3) algebra, a numerical model is
constricted for quark mass matrices, predicting the top-quark mass around
170 GeV and the CP-violating phase around 75°. The CKM matrix is
nonsymmetric in moduli with |V,| being very small. All moduli are
consistent with their experimental limits. The model is motivated by the
author’s previous work on three replicas of the Dirac particle, presumably
resulting into three generations of leptons and quarks. The paper may
be also viewed as an introduction to a new method of intrinsic dynamical
description of lepton and quark mass matrices.

PACS numbers: 12.50.Ch

1. Introduction

It seems to be a common belief among theoreticians that the problem
of mass spectrum of leptons and quarks overflows the physical limits of the
standard model of electroweak and strong interactions. And it is, therefore,
reasonable to construct phenomenological models for lepton and quark mass
matrices in order to unveil the fundamental pattern of this spectrum. In
particular, Fritzsch and Plankl did a lot of work in this field [1,2] empha-
sizing the dynamical role of numerical dominance of lepton and quark mass
spectrum by the members of the third generation (i.e. 7 as well as t and b).
Such a dominance could be hopefully understood [2] by the introduction of

* An alternative version of the paper: W. Krdlikowski, Aachen report PITHA
90/11 (May 1990), (to appear in Nuovo Cimento), where the top-quark mass is
around 110 GeV. Supported in part by the Deutsche Forschungsgemeinschaft.

** On leave of absence from the Institute of Theoretical Physics, Warsaw Uni-
versity, Warsaw, Poland.
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“coherent states” (viz., equal superpositions of three generations) as simple
original states, subject to an (unfortunately strong) intergeneration mixing
that leads to complicated final “mass states”. Of course, the physical reason
for this strong mixing and its actual form are main points to be understood
(or, at least, accepted) in such an argument.

In the present paper we search directly for the mass pattern of leptons
and quarks, using as a tool an intergeneration U(3) algebra spanned on the
formal Gell-Mann 3 X 3 matrices A, W RN )s and i. It turns out that in
a reasonable approximation we are able to describe the mass spectrum in a
concise diagonal form, subject (in the quark case) to a weak effective inter-
generation mixing responsible for the Cabibbo-Kobayashi-Maskawa matrix.

The starting point of this approach is a recent work [3] where (motivated
by our previous results [4] concerning the existence of three replicas of the
Dirac particle) we found a semiempirical mass formula for charged leptons.
e, pand 7.

When basing on the results of Ref. [4] (for the Reader’s convenience
they are summarized in Appendix), it is natural to make use of the col-
umn wave functions ¥(*) and ¥{®) comprising the wave functions of three
generations of neutrinos (v, ,v,,v,) and charged leptons (e”, u~, 77), re-

spectively, with the generation weight factors 1/1/29, 1/4/29 and ,/24/29
(cf. Eq. (A.14)). Then, on the level of field theory, assuming the minimal
lepton-higgs coupling of the form

(70, 9) 7uip (%) + e (1)

with a Hermitian diagonal 3 x 3 strength matrix

. fl 0 0
f=(0 fa 0) (2)

0 0 f;
acting on three generations comprised in ¥’s, we conclude that
me :my me = fi] 2 4f] 24l f] (3)

and m,, = m,, = m,_ = 0 (the Dirac masses m,,m, and m, and, later on,
those for quarks are taken as positive-definite). Here, the mass matrix for
charged leptons is

) (4)

o~

M = vof

(
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where v =< ¢° > and
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(Tro? = 1). Here, M = vfp?.
* Since for experimental values of m,, m, and m, the numerical relations

me :m, ~1: 207~ 0.172: 4(9 - 1) (6)
and
m, tm,~1: 17> 4(9—3) : 24(26 - & (7)
hold, we may try the ansatz
1+4¢?
fi = const (N,-:l - ) , (8)

where 2 ~ 0.172,while
Ny=1, N;=3, Ng=5, (9)

are numbers of bispinor indices appearing originally in wave functions of
three generations (¢f. Eq. (A.12)). (These indices play here a role of alge-
braic “intrinsic partons” of leptons and quarks.) Then, from Eqs (3) and
(8) we obtain two mass relations

m, =m.3 (8 -1) (10)

and
m, =m,3 (8 1) . (11)

Hence, eliminating ¢ we come to the semiempirical mass formula for
charged leptons (3],

= (136m, + 351m,,) = m,, (12)

which is very well satisfied by experimental masses. Indeed, its lhs and rhs is
1783.47 MeV and 1784 27 MeV, respectively [5]. Our only free parameter
€?, when evaluated from experimental m, and m, by means of Eq. (10), is
equal to

2 320m,

= o 0.171590 = tan® =, (13)

so, it takes a magic value tan®(x/8) with a very good accuracy.

When turning from leptons to quarks, we face the problem of effective
intergeneration mixing (and, of course, the problem of less precisely defined
“experimental” masses). Also in this case we use the column wave func-
tions ¥(*) and ¥(%) comprising the wave functions of three generations of
up quarks (u,c,t) and down quarks (d,s,b), respectively, with the weights
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v1/29, 4/4/29 and 1/24/29. Then, on the level of field theory, we assume
the minimal quark-higgs coupling of the form

23 () e () e

with Hermitian nondiagonal 3 x 3 strength matrices

Fond) (f(u d)) (15)

Here, ¢~ = ¢*° and ¢°° are charge conjugates of ¢+ and ¢°. From Eq. (14)
we can conclude that the mass matrices for up and down quarks are

M(“vd) = véf(“ld)é, (16)

where v =< ¢° >=< ¢°¢ > and § is given in Eq. (5). Hence, up to signs

m 0 0
6(u)M\(u)fj(u)+ — ( 0“ m. 0 ) ,

0 0 m,

e mg 0 0

U(d)M(d)U(d)+ —_ ( 0 m, 0 ) , (17)
0 0 my

and the Cabibbo-Kobayashi-Maskawa mixing matrix is
V = go+g@, (18)
The unitary diagonalizing matrices 09 can be presented as

flud) = (Ui(;n,d)) _ (v'(u,d)(j)) , (19)

(“ d)

where v( ' )( ]) is the component j of the eigenvector v of Hermitian

mass matrix M9, Thus

= (V) = (Z vﬁ“’*(i)v.‘:"(j)) , (20)

k

<)

which is useful in practical calculations.
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2. Annihilation and creation operators
in an intergeneration U(3) algebra

Using a figurative language, the formal results summarized in Appendix
may be expressed by saying that leptons and quarks of three generations
consist of algebraic “intrinsic partons” with spins 1/2, namely of one “visible
parton” and n = 0, 1, 2 pairs of “hidden partons”. So, the total number of
“intrinsic partons” is N = 14-2n = 1, 3, 5 for the 1**, 2 and 39 generation,
respectively. Spins of “hidden partons” sum up to zero due to the interplay
of the theory of relativity, probability interpretation and “hidden exclusion
principle” (leading to only one Dirac particle of a given flavor and color in
each of three generations).

Since in the case of quarks of three generations there is an eflective
intergeneration mixing, a U(3) algebra should be a useful tool in describ-
ing their masses and mixing parameters. Thus, let us introduce (within
this intergeneration U(3) algebra) the (restricted) annihilation and creation

operators
0 1 0 0 0 o
a:(o 0 ﬁ) a+=(1 0 0), (21)
00 O 0 V2 0
such that
0 0 0
ﬁ:iﬁa:(o 1 0), @ =0=a" (22)
0 0 2
and
@, 4] =a, [A,a*]=at. (23)

i
10 0 100
[&,&+]=(0 1 0), {&,a+}=(o 3 0). (24)

0 0 -2 0 0 2
Note that
0 0 V2 0 00
a’:(oo 0), a“:(o 00),
00 0 v2 0 0
0 2 0 0 00
alat = (o 0 o), aat? = (2 0 o),
0 0 0 0 0 0
00 0 0 0 O
a%’:(ooﬂ), a“a:(o c 0},
00 0 0 V2 0
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0
2¢§) , ataat =
0

1 0
0 (1
0 0
000 2 00
a“a‘:(o 0 0), aat? (o 0 0),
0 00 0

0 2
0 0 0
aat?’a=[0 2 0| = a*a*at. (25)
0 0 0
Of course, all functions of & and a* can be expressed as linear combinations
of Gell-Mann matrices /\1, A,, )\8 and 1. For instance,
Ao+ i) < s Xe + i
Y A 5 aZad . At 22 6 7
@' = —— AT = A+, GTE s ——
\/5 3 1 r X3 \/i L)

[4, a*] = AsV3, {a&,a*}=21-1],,

[& y &+2] = ia + is\/g. (26)
In our figurative language, the matrix
- 1 00
N=i+2a=[0 3 0 (27)
0 0 5

is the operator of the number of all “intrinsic partons”, while # = a*a is
the operator of the number of pairs of “hidden partons”. So, @ and at
are the (restricted) annihilation and creation operators of a pair of “hidden
partons”. In the next two Sections we use these operators to construct both
a diagonal model and a non-diagonal model for quark mass matrices M M
and M), The first model may be considered as a diagonal approximation
of the second (in the limit, when the effective intergeneration mixing is
neglected).

3. A diagonal model for quark mass matrices

First, we will construct a diagonal model for quark mass matrices fol-
lowing the numerically successful model for charged-lepton mass matrix (4)
with the ansatz (8) for the strength matrix. This ansatz can be rewritten

a8 C 14 €?
..- Az_ £
I=a (N E ) (#8)
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where N = 1 4 2a+a is the operator of the number of “intrinsic partons”
whose eigenvalues are N; = 1, N; = 3 and N; = 5 for three generations
(cf. Eq. (27)).
When passing from leptons to quarks one can observe the following
qualitative features of quark mass spectrum:
(i) for up quarks
me: m, ~¥m,: m,,

mc>>mu9

MM D> Myt My, Myt My > ML M,

(i¢) for down quarks
m,: myg L my : me,

m, & My,
mp: My > MMy, Mpimy < M, M.

Additionally, m, < mq,m, » m, and m, > m,,.

In order to describe those features we will try an ansaiz analogical
to (28), but with the operator N replaced by an effective operator Nea
that should emphasize the numerical deminance of t and b (especially t)
over ¢ and s, respectively, in comparison with the dominance of T over pu.
Moreover, the value of &2 for down quarks is supposed to be much larger
than that for up quarks, the second value being expected similar to the
value ¢ = tan?(w/8) for leptons (the rest C' of the constant C/e? at the
front of f is presumed to be not very different in both cases). Thus, we take

the ansatz
N C(“vd) ~ 1 + 6(“td)2
u,d) _ (u,d)2
f( )= (v, d)2 Neg ™" - 5 (u,d)2 (29)
€ Neﬂ'

(with C™ and C® not very different) and consider for ezample the model
where

10 0
NGV =1+2a*a+™Vata = (0 3 0 ) (30)
0 0 5+ 26

with
=4, (D=1, (31)

The quartic term in Eq. (30) is intended to introduce a pairing interaction
between two pair of “hidden partons” in t and b. Its appearance for quarks
(in contrast to charged leptons) may be somehow related to their nonzero
baryon number B = 1/3. Note that formally ¢% = (B + Q™9 4 1)?,
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where Q) = 2/3 and Q¥ = — 1/3 are the quark electric charges. For
charged leptons a counterpart of such £(™ ) is zero because then B + Q 4 1
= 0.

The numerical results of the diagonal model defined by Egs (16), (5),
(29) and (30) with (31) are the following:
(i) for up quarks, taking as an input

5 MeV Sm, $8MeV, m,~1.5GeV, (32)
one gets
0.118 SeM™? $0.189, 171 GeV S my S 172 GeV (33)

(in particular for (*? = tan®(x/8) = 0.171573 and m, ~ 1.5 GeV one
obtains m, ~ 7.25 MeV and m; ~ 171 GeV),
(it) for down quarks, taking as an input

7TMeV S my $10 MeV, m, ~5 GeV, (34)
one gefs
1.64 S e? < 2.35, 148 MeV R m, R 147 MeV (35)
(in particular for e®? = 2 and my, ~ 5 GeV one obtains my ~ 8.5 MeV
and m, ~ 148 MeV).

Additionally, m, : mg = C® ;: C¥, 50 these constants are really not
very different.

4. A nondiagonal model for quark mass matrices

In order to switch on the effective intergeneration mixing we consider
for ezample the model where

. 1 A 1+ E(u,d)Z
( ,d — u,d) (u9d)2 —
fro=a (—-——5(,,,&)2 L
+n( V2(aexp(ip™ M) + &* exp(—ip* ) )) (36)
with
=4, sW=1 (37)

and ﬁe(;'a) as given in Eq. (30). Here, the previous diagonal strength matri-
ces (29) are perturbed by the simplest off-diagonal “hidden parton” Yukawa-
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-type interaction having a known factor (%) and two unknown phases (")
and ¢(%). Note that formally n"®) = (B4Q" 9 +1)% = ¢ d) (of. Eq. (31)).
The counterpart of such (™9 for charged leptons is zero.

The quark mass matrices (16) with the nondiagonal ansatz (36) take
explicitly the form

e - O
296(“' d)2
ll,?(u' 4 41](“0 d)g(“; d)zei‘P(“' . 0
X 41’(“1 d)s(“. d)ze—ﬁ’(“' 4 ”g(“' d) lﬁﬁn(u,d)e(u, d)2eip(“"”
0 16 \/3-,’](11, d)E(“' d)zc-—iw(“' R ”g(u, d)
(38)
where p?("' 9 are defined by the diagonal matrices

ez 1He®I?Y 1 e 0(9, d) 0
e\ New™ — = | é=55| 0 ™ 0 (39)

Ne(f‘;'d)2 0 0 o)

and so have readily calculable values (from Egs (5) and (30) with (31)).
They are -0.1716, 35.48, 4056 and -2, 34.67, 1175, respectively, if the values
(40) are used. The only parameters beside the vC{("%) /29 are here (™ 4?2
and (w9,

To set a numerical example let us put

eW? = gan? g =0.171573, @2 =2 (40)

(in the diagonal model of the previous Section these values correspond to
m, ~ 7.25 MeV and my ~ 8.5 MeV, if m, ~ 1.5 GeV, m,, ~ 5 GeV). Then,
carrying out numerically the exact diagonalization of the mass matrices
(38), we obtain (up to the overall constants vC(" %) /29¢(" 9?2 at the front)
the following eigenvalues:

u” = —0.3823, p{”=35.60, uf"=4056 (41)
and
= ~3.785, p” =33.76, i =1177 (42)

(independently of p(™ ). The corresponding unitary diagonalizing matrices
(cf. Eq. (17)) are

. 0.9971e™  0.0765¢**™  0.000003¢¢"”
o = | —0.0765 0.9971 0.0047 | S
0.00036e=*"  —0.0047¢~*"  1.0000e-**"

)
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and
R 0.9759¢'*'”  0.2180e*'”  0.00033¢%'”
U9 = | -0.2178 0.9748 0.0485 (44)
0.0102e~%"  —0.0474e~""  0.9988e-*""

They lead to the Cabibbo-Kobayashi-Maskawa matrix V (cf. Eq. (18))
involving one unknown phase ¢ = ¢ — (9,

In the extreme case of ¢ — 0°, when there were no CP violation caused
by V', one would get

N 0.990 0.143 -0.003
V= (——0.143 0.989 0.044 ) . (45)
0.009 —0.043 0.999
In the realistic case of ¢ fitted to the experimental |V,,| = 0.217 +0.223
[5] one obtains ¢ = F(79.8° + 84.5°) and then

0.217e%°16°°  0.975e*1°  0.048e*'®
0.010e¥86°  (.047e*95°  (.999 ¥80°

( 0.975e+i8¢°  (.223e*°194°  0,0036 717" )
—:_ b

. (0.976@,-,9, 0.217 e+100° o.ooaee*‘lsoo)
V =

022319 0.974e%1"  (.048e* (46)
0.010e¥i90°  0,047e%90° (0,999 ¢¥i85°

where the phases a;; satisfy the relations

Qi + a3+ aas =0, ayz+ag +asz==2180°, aztaztan= il?ﬂo .
a7)

We include the value
@ = F(80° + 85°), (48)

as an element of our numerical ezample. Note that this is a highly nontrivial
feature of our numerical model that in its framework ¢ can be fitted to
experimental |V,,|.

Performing in this case the rephasing for up and down quarks of three

generations
it il
w —uje¥ , dj - d;je¥i, (49)

> (o - ) =0, (50)

1

where

and putting

<P§u) - ‘Pgd) = gy
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‘Pgu) - ‘Pgd) = Qia,

0 — iV = os, (51)
we eliminate from the matrix (46) by means of Eq. (47) all phases but those
of V, and V4. The result is

R 0.976 0.217  0.0036 e**7®
V=| -0217 0.975 0.048
0.010e*'2°°  —0.047 0.999

0.975 0.223  0.0036 e*7°
—( -0.223 0.974 0.048 ) . (52)
0.010e*519°  —0,047 0.999

where due to the unitarity of ¥ we can write the triangle relation

_ 0.217x0.048 _ 0.9767/*
Va = 0.999 0.999Vub
. 0.223x0.048 _ 0.975yr*
-~ 0.999 T 0.9990 "ub* (53)

We can see from Eq. (52) that the magnitudes of all elements of v
are consistent with their experimental estimates [5] (|V,s| is close to its
lower experimental limit as given in Ref. [5], while |V,| lies nearly in the
middle of its experimental range). In Eq. (52) the CP-violating phase § [5]
(invariant under the equal rephasing of up and down quarks) is F(76° +
72°). Since sin § > 0 from measurements of the CP-violation parameter € [5]
(if the Bg parameter is really positive [6]), the positive value § = 76° + 72°
corresponding to ¢ = 80° + 85° should be chosen.

Of course, when switching on the effective intergeneration mixing, we
change the quark masses in comparison with the diagonal model of Section
3. The new masses are
(i) for up quarks (cf. Eq. (41))

(u)
my,=m |—&——l-Nl(iMeV,

u = M7~ =
0
(u)
my = mc% ~ 171 GeV, (54)
Ha

if e@? = tan?(r/8) = 0.171573 and m, =~ 1.5 GeV,
(i) for down quarks (cf. Eq. (42))

(d)
my = mbiﬁ(ld—)—{ ~ 16 MeV,
3

)
m, = mb% ~ 143 MeV, (55)
3
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if €2 = 2 and my, ~ 5 GeV.

Here, m, and my are approximately equal and probably too large

(though the problem is still open).

It is perhaps interesting to point out that the Cabibbo-Kobayashi-
~Maskawa matrix ¥ has in our model nonsyminetric moduli. As follows
from a recent analysis of the CP-violation parameters ¢, ¢’ /¢ and B — B mix-
ing within the standard model (and under the assumption that the ¥V matrix
is the only source of the observed CP violation) [8}, there seem to be two
favorable regions for my: m, = 0 (100 GeV) (iniliweak case: ¢'/e = 0(10~?))
and
my = 0 (200 GeV) (superweak case: €¢'/e ~ 0 and S 0). A Cabibbo-
-Kobayashi-Maskawa matrix with symmetric moduli may be consistent only
with the second region |[7]. This region is dynamically possible in a recently
proposed “minimal breaking scheme” for the standard model [9]. Our nu-
merical model favours rather the second region, but with [V,,| being very
small, though lying within its experimental limits [5,10].

5. Conclusions

We constructed an algebraic numerical model for quark mass matrices
defined by Egs (16), (5), (36) with (37) and (30) with (31). Then, we predict
the top-quark mass m, ~ 171 GeV and CP-violating phase § ~ 76° + 72°.
The CKM matrix comes out nonsymmetric in moduli with |V,,| being very
small. All moduli are consistent with their experimental limits [5,10].

In this model, the pattern of quark mass spectrum is coded in the for-
mulae (16) and (36). They are analogical to Eqs (4) and (28) appearing
in the numerically successful charged-lepton case, but in the quark case
Eq. (28) becomes perturbed by a diagonal intrinsic pairing force ~ at?a?
and an off-diagonal intrinsic Yukawa-type interaction ~ aexp (ip(™ V)
+ a*exp ( — ip=¥) (both are absent in the charged-lepton case). The
strength-matrix formula (36) provides kernel for the mass-matrix formula
(16).

Note that, except for £, ¢(¥) and ¢ — () our numerical exam-
ple contains no more parameters sensu siricto (i.e. fitted to experimental
data), since here other numerical factors are chosen a priori in Eqs (31)
and (37). The parameter £(*) is taken the same as for charged leptons
(e = tan(x/8)). The masses m, and my come out probably too large
(this is, however, still an open question)!.

1 Adding to the quark matrices (16) some corrections vz(% ) 1 proportional
to the unit matrix, we do not change the diagonalizing matrices f(ud)
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The main motivation of the model originates from a previous work of
the author on three replicas of Dirac particle, presumably resulting into
three generations of leptons and quarks.

The results of this paper may be also viewed as an introduction to a
new method of intrinsic dynamical description of lepton and quark mass
matrices.

I am grateful to all members of the RWTH Theoretische Elementar-
teilchenphysik Group for their warm hospitality extended to me in Aachen
in Spring and Summer 1990.

APPENDIX
Three replicas of the Dirac particle

In Ref. [4] three statements formulated below were proved.
(i) The Dirac algebra

{T*, I} = 2¢*¥, (A1)
admits the sequence of representations?
N
't = 71? 7 (N=1,2,3,...), (A.2)
=1
where G i=1,2 N
B aV) — 98 ghY LlI=44 ..
{7, 77} = 28,59 N=1,23 .) (A.3)

define a sequence of Clifford algebras. The representation (A.2) may be
realized in the form
MF=701®...01, (A.4)
N — 1 times
where 7# and 1 are the usual Dirac 4 X 4 matrices. Thus, the Dirac Equation

L (p—ed) —m]y =0, (A5)

nor the CKM matrix V, but we shift the quark masses:

mug = | — mya +v2" V|, me s = me o2 D, mp — my g + 029,
For instance, if vz(*) = 11 + 8 MeV, and va(9) = 9 + 6 MeV, the new masses
are: my ~ 5 + 8 MeV, m¢ o 1.6 GeV, my ~ 171 GeV and myq >~ 7+ 10 MeV,
m, ~ 152 + 149 MeV, my, ~ 5 GeV,

N N
3 All combinations Y c;7¥, where 3 ¢? = 1, are representations of (A.1). For
i=1 i=1

any fixed N they are unitary equivalent.
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leads to the sequence of wave functions

Y= (Yayasan) (N=1,2,3,...), (A.6)

where a; (i = 1, 2,...,N) .are bispinor indices (each a; = 1,2, 3, 4) of

which a; describes magnetically “visible” spin 1/2 coupled to A, and

a3, ..., oy are responsible for N = 1 magnetically “hidden” spins 1/2 de-

coupled from A, [11].

(i) If the relativistic Lorentz covariance is imposed on all bispinor indices
ay, 3, ..., 0y and, at the same time, the quantal probability interpre-
tation — on' each wave function of the sequence (A.6), then only odd
N’s are admissible,

N=13,5,..., (A7)

and N — 1 “hidden” spins 1/2 in each wave function (A.6) must add up
to zero. Otherwise both requirements cannot be reconciled. '

(i#i) If in addition each wave function (A.6) is required to be antisymmetric
in all “hidden” bispinor indices a3, ..., ay (what may be called the
“hidden exclusion principle”), then N must terminate at 5,

N =1,3,5, (A.8)

and, moreover, there ezist three and only three replicas of the Dirac
particle. They correspond to three nonzero bispinor wave functions
), ¥ and Y& (where o, is the “visible” bispinor index) involved
in three 9’s corresponding to N = 1, 3 and 5, respectively, viz.

¢ = (#’an) = ("pc(x];)) ] (A..())
0 1,&(.3‘) 0 0
—q(3)
b= @uee)=| 00 ¢‘(’3, (A.10)

0 0 -y¥® o

and

¢ - (d’a,a,a;a‘e;) = (ea:asa¢as¢¢(xsx)) . (A‘ll)
Then, with the notation

s )
V= ’\7—55( ¢a|a3a; ) ’ ( '12)

¢a,a,a;a.a;

one gets

Tt = L (p0ry1) 4 4@y 4 2494 | (A.13)
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where the “visible” bispinor index a; is supressed in %), ¥(® and
(%), Notice the weights 1/29, 4/29 and 24/29 appearing in the product
(A.13). Changing a bit the definition (A.12) of ¥ we may write

$®
= A ( \/‘/jf;fs))) (A.14)

also consistently with Eq. (A.13). It is tempting to conjecture that
the three replicas of Dirac particle should correspond to three observed
generations of leptons and quarks.
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