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We prove that the concentration of matter in a small volume is suf-
ficient for the formation of trapped surfaces in a class of initial data for
the Einstein equations. We consider momentarily static nonspherical ini-
tial data and formulate a condition for the existence of averaged trapped
surfaces. The results are obtained in terms of the total rest mass M and
the largest proper radius sup L of a smallest convex equipotential surface
that encloses a nonspherical body.

PACS numbers: 04.20.Cv, 97.60.L{

1. Introduction

There were several attempts to justify the folk belief that if a finite
amount of matter is squeezed into a sufficiently small volume, then a black
hole should form. This informal statement can be expressed in precise terms
as the trapped surface conjecture (TSC) which states: ”Any mass that is
concentrated in a region of sufficiently small diameter can be surrounded
by a trapped surface” [1]. The existence of a trapped surface would imply
the existence of a black hole, as suggested by the famous Penrose-Hawking
singularity theorems [2].

The TSC was recently precisely formulated and proved for particular
simple geometries of initial data [3, 4]. It happens that in spherically sym-
metric case the appropriate measure of the degree of concentration of matter
inside a two-sphere is the ratio M/L where M is the total rest mass and L
is the proper radius of the sphere [3].
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The first step towards the generalization of the above results to non-
spherical systems was done in [4). For a momentarily static conformally
flat ellipsoidal 3-geometry the total rest mass M and the proper (largest)
radius sup L of a configuration remain good characteristics. If the ratio
M/ sup L exceeds certain critical value, then the existence of an averaged
trapped surface (ATS; to be defined below) is inevitable. More information
was required to make statements about point-wise trapped surfaces.

In this paper we continue the investigation of formation of ATS’s in
material systems with no gravitational waves. The absence of gravitational
waves is understood in the sense that the geometry of space-time becomes
flat if there is no matter in a system. There are two classes of interest:

(i) spherically symmetric geometries;
(ii) conformally flat geometries with time symmetry.

The first case has been already solved (3], hence we will restrict our inves-
tigation to the second case, of time-symmetric and conformally flat initial
data of Einstein equations. Below we will show that if to pack enough
matter in a small convex volume, then trapped surfaces will occur.

From the technical point of view, there are two new ideas in comparison
to the previous research [3, 4]. The main trick is to employ a special foliation
(Eq. (10)), to allow for the use of ordinary differential inequalities. This
point is discussed in Section 3. The aforementioned convexity condition
would be related to the global existence of the foliation. The second input
is the Gauss-Bonnet theorem.

The notation of this paper is literally taken from [4]. Let ¥ be a three-
manifold with a Riemannian metric g,,. Let § be a closed two-surface the
embedding of which in ¥ is described by the induced metric h,, and the
extrinsic curvature p,;. The first derivative of the area of § with respect to

the uniform normal deformation is equal to the total mean curvature of S,
denoted here by H(S):

H(S) = / pdS, 1)

s

where p = pashet.

Let us consider ¥ as the time-symmetric Cauchy surface for the Einstein
equations. Then the sign of H(S) says whether the area of the light front
outgoing orthogonally from § is decreasing or increasing. A surface of non-
positive H(S) is called the averaged trapped surface, as distinct from the
trapped surface for which the mean curvature p is non-positive pointwise.
The metric g,; must satisfy the Hamiltonian, constraint

@R = 167p, (2)
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where as usual we assume that the matter density p is non-negative. We
assume also that the metric g,; is in some sense asymptotically Euclidean.
Following Lichnerowicz—-York approach we introduce another asymptotically
Euclidean metric §,; conformally related to g,

9ab = G- (3)

Since from (2) we have )R > 0, it is always possible to choose g,; so that
the scalar curvature of §,; vanishes. Then the conformal factor f satisfies
the Lichnerowicz equation

Af=-2npf° (4)

with the boundary condition f = 1 at infinity, where A is the laplacian with
respect to §,; and we have replaced (®)R by p using (2). Let us multiply Eq.
(4) by f and integrate over the volume V enclosed by the closed two-surface
S. Using Stokes’ theorem we obtain

/ fA*V,fdS = / (Vo£)*dV — 2eM(S), (5)
v S

where dS = f~*dS and dvV = f~8dV are surface and volume elements with
respect to g,p; 7 is a unit normal (in g,;) to S. By M(S) we have denoted
the rest mass enclosed by §

M(S) = / pdV . (6)

\4

It is easy to check that

p=f P +4F 7V, 5), (7)

where p denotes the mean curvature of S as embedded in (X,d,;). Putting
this into the Lh.s. of (5) and dividing by 2= we finally obtain

1/(8x)H(S) = D(S) - M(S), (8)
where

2xD(S) = / (Vof)d? + 1 [ f2pas. 9)
s
\4

Identity (8), which is the central point of our analysis, expresses the total
mean curvature of a closed two-surface S in terms of the total mass inside
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S and a quantity D(S), the interpretation of which is the main difficulty.
In spherically symmetric geometry a quantity D(S) can be easily related
to the proper radius L(S) of the two-sphere S [3]. In [4] D(S) has been
interpreted in terms of the ”size” for a class of conformally flat geometries.
In what follows I will deal with a more general geometry.

2. Main results

Suppose that the metric g,; is conformally flat and the level surfaces of
the conformal factor f (i.e. the equipotential surfaces of the gravitational
field) are homeomorphic to a sphere. The line element reads

ds® = f*(0) [Goedo?® + Grrdr® + 2§, 4dTdd + Gpedd?] , (10)

where o > 0, o foliates levels of the conformal factor f, g, is a flat metric
and the quasi-angle variables 7 and ¢ are of finite range. The metric g,; is
supposed to be flat to guarantee the absence of gravitational waves; in the
case without matter fields, Eq. (4) possesses only the flat solution f = 1,
while for nonflat g,; it would admit nontrivial solutions f.

Now let S(o) = {z:0(z) = const.}. We will need an inequality that
bounds from below the largest geodesic radius of the surface S. We state it
in the form of a conjecture.

Conjecture 1
t(o,0,7) L o L
sup L(S) = sup / ds f*(s) ('g\ikuiuk)5 2 /ds f2(s)sup (oo)? , (11)
(r:9)
0

[o]

where u' = 8z'/0t is tangent to a geodesic whose (flat) length is equal to ¢,
{=*} = (0,7, ). At present I am not able to prove the estimation (11), but
it is necessary to point out that (11) holds in a few specific nonspherical
geometries [4]. Moreover, it is easy to show that the inequality (11) follows
from another conjecture which refers to a property of convex foliations in
the flat space.

Conjecture 2

Define a set I', = |J[z € S(o):n'8; f(¢) = min] (in which g,, achieves its

maximal values for each fixed value of the coordinate o). Let surfaces S(o)
be convex and f be a solution of Eq. (5) with a nonnegative matter density
p. Then T', contains a geodesic that starts from the set $(0).



Condensation of Matier ... 351

The validity of the above statements is under investigation. In (11) the
equality may be attained in cases when this particular level surface of f
which corresponds to ¢ = 0, §(0), is a single point. (This is the case of
spherical symmetry, for instance.)

Lemma. Assume the geometry (10), with level surfaces of f being convex
(in the flat metric §) and homeomorphic to a sphere. Assume also that 5(0)
consists of a single point. Let S be a level surface of the conformal factor.
If all levels of the conformal factor f inside S are not ATS then

sup L(o) > D(0); (12)
D(o) is defined by (9).

Proof

At ¢ = 0, we need sup L(¢ = 0) > D(o = 0); in the case when S(o = 0)
is a single point, it is trivial since then both sides vanish. Now, assuming
Conjecture 1, it is sufficient to prove that

3. / ds £2(s)sup (5.0)3 > 8,D(c). (13)

Since the left hand side of (13) is equal to f?(o) sup(ﬁ,,)% we have to show
the inequality

£2(0)sup(3.0)3 2 8,D(c)
=5 [ [arasvia @1y + - [ [ arasa, (f’ﬁ(.ifﬁ")%)
= %//drd¢2(6,f)(§“)§ ((35”)% 3. f+ f0, (?5"")% /4)
o / / drd$(§)33°° (8,1)' + C(0) < H(c)d, /(4 f) + C(0); (14)
here H(o) is defined in formula (1) and C(c) reads
Clo)= gor(@) [ [araso, (@ho.@™3) . (9

The right hand side of (14) is smaller or equal to C (o) since by assumption
H(o is positive inside § (this is equivalent to saying that ATS’s are absent
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inside S') while 8, f < 0 (this is because of the definition of o and also of the
fact that f satisfies an elliptic equation (4) with a positive matter density p).
A lengthy but straightforward calculation and the Gauss—Bonnet theorem
allow us to get the desired estimation

C(0) < F(0) sup(§ue)? - (16)

In that place it is necessary to make use of the fact that level surfaces of
f are convex, i.e. their Gauss curvature is nonnegative. A more detailed
calculation is presented in the Appendix.

The above lemma and the identity (8) allow us to conclude that if inside
a surface S (which is a level surface of the conformal factor f) ATS’s are
absent, then sup L(S) > M(S). By contradiction, if at S the inequality

sup L(S§) < M(S) (17)

holds, then inside § do exist ATS’s. Thus, the following is true.

Theorem 1. Assume the conditions of Lemma. Then if the total rest mass
M(S) is greater than the largest proper radius sup L(S), there must exist
ATS inside a level surface S.

This result becomes more transparent in case of geometries generated
by compact bodies whose outer boundary is a level surface of the conformal
factor. Then the above theorem says that in conformally flat convex geome-
tries (10), (¢.e. with nonnegative Gauss curvature of levels of the conformal
factor), the inequality (17) at the outer boundary of a compact body is
sufficient to guarantee the existence of ATS’s inside the body.

The sufficient condition is an analogue of the result proved in [3], with
the important exception that in spherical geometries all results are formu-
lated in terms of pointwise trapped surfaces. Now, similarly as in [4] we
cannot conclude that if M > sup L(o) then a black hole has to develop; the
existence of an ATS is not sufficient to make use of the Hawking—Penrose
singularity theorems [2]. In [4] were formulated certain additional conditions
which guaranteed that a nonspherical ATS is a trapped surface. A similar
analysis would be done also for the geometry (10), with the expected result
that if the ratio of the total rest mass to the largest proper radius is large
enough and the ATS is not too nonspherical, then it must be pointwise
trapped. However, let us remark that even if an ATS is not a trapped sur-
face, then still the geometry could contain trapped surfaces of a different
shape. The point is that in our case the shape of an apparent horizon is not
necessarily compatible with the shape of the level surface of the conformal
factor.
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3. Generalizations

Let us comment on some of the assumptions in the above investigation.
I conjecture that the metric (10) is generic in the class of conformally flat
metrices. One meets the following problem: is it possible to find the back-
ground foliation (o, 7, ¢) to transform (Eq. (4)) into an ordinary differential
equation? That the answer is affirmative, follows from the Mini~Max prin-
ciple, since the matter density p was assumed to be nonnegative. Thus the
analysis leading to the inequality (14) can be done, at least locally. More
restrictive is the condition that the Gauss curvature of level surfaces of f
is nonnegative (i.e. they are convex). Intuitively, this seems to imply even
the global existence of foliation (10) and I do not expect that generic flat
geometries would satisfy it.

A new difficulty, which appears now, is that in the generic case the
set S(0) (i.e. the set of which the conformal factor f achieves its maximal
values) is not a single point. If one assumes the convexity condition, then
5(0) would be a flat deformed disc or a rod with a convex boundary. The
inspection of the proof of the Lemma shows that we need a bound

.1 an_ oy 1 SN SN
l‘i%é‘;//dsl’=}‘_‘}5§;//dfd¢(g )20, (33°°)3
S(o) s{o)
< Asupl(5(0)), (18)

where sup I(S) is the largest flat radius of the volume enclosed by § and A
is a constant. The inequality (18)is given in [5] with the value of a constant
equal to A = 7 /4.

The next step of the proof of Lemma requires, however, a modification.
As demonstrated in an explicit example [4] the rate of growth of supL(o)
can be smaller than the rate of growth of the geodesic contained in I', (see
the definition below the formula (11)), i.e. we cannot claim any longer that

8, sup L(0) > f*(¢) sup(§oo)3 , (19)

if §(0) is not a single point. An obvious modification is to prove the in-
equality

sup L(o) + = f(0) sup {(0)/4 = sup L(o) + xsupL(0)/4 > D(o)  (20)

instead of (12); using (11) we reduce our task to the already proven inequal-
ity (14). As the conclusion, we may infer the following:
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Theorem 2. Assume a conformally flat and convex geometry (10). Then
if

sup L(S) + wsup L(0)/4 < M(S), (21)

there must exist ATS inside a level surface §. Theorem 2 may be formulated
in a more elegant way noticing that sup L(S) > supL(0):

Theorem 2°. Under conditions as in Theorem 2, if
M(S) 2 (1+/4)sup L(5), (22)

there is ATS inside S.

The primary intention of this work is to prove that the concentration of
matter alone is sufficient to form ATS (and perhaps TS); the last theorem is
entirely satisfactory from this point of view. Nevertheless, I do not regard
it sufficient for reasons which are explained below. First, a specific case
of nonspherical geometries elaborated in [4] gave precisely the same crite-
rion as in Theorem 1, although it was a situation with 5(0) being a disc.
This gives incentive to conjectured that the statement of Theorem 1 should
be true also in general geometries. Next, more serious reservation is that
there would exist an upper limit on the degree of condensation of matter.
Arnowitt, Deser and Misner [6] conjecture that the largest value of the ra-
tio M(S)/sup L(S) cannot exceed 2. This was proven in [7] for spherically
symmetric geometries and in [4] for a class of nonspherical geometries. The
number 1 4+ 7 /4 is smaller than 2, so that certainly the content of Theorem
2’ is not empty, but my feeling is that the coefficients need improvement.

4. Summary

This paper gives a criterion for the formation of trapped surfaces for
a large class of nonspherical geometries whose metrics are conformal to
convex and flat matrics. It is given in terms of the total rest mass and the
largest proper radius of a body. The set of time-symmetry and conformally
flat geometries is likely to be the largest one in which the notion of the
total rest mass remains a good characteristic. In general geometries the
result analogous to the presented above would presumably use a different
quasilocal measure of the gravitational energy.

Let us point out that a different criterion for trapped surfaces has been
proven by Schoen and Yau [8]. Their analysis does not use any symmetry
assumptions but it is not quite satisfying [3] because of a nonstandard def-
inition of the measure of the size of bodies.
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Appendix

We shall show that
C(o) < a f(o), (A1)
1
where C(0) is defined in formula (15)-and a = a(o) = sup(go.(o, 7, 9))2.
In fact, since the background geometry is flat and R,, = 0, the integrand

of the expression (15) can be written as follows, after a lengthy but simple
calculation

o, (@30.(a57)} ) = 2% (P73, - (B2,)°)

+o. (@37°tz. )+, (@312 ) (42)

where Ts denote the Christoffel’s symbols. The divergence term in (A2)
does not contribute to C(c), so we are left with the integral of the first term

1
in (A1), which is just the Gauss curvature K multiplied by 2 (§)2. Thus
the integral of the right hand side of (A2) is equal to

[ [ drastar-ayixaG.)s

which in turn can be estimated from above by
1
2 / / drdg(357°)1 K = 81la

if K is nonnegative and §,,(0) < a, as assumed in Lemma in the main text.
The last equality is the content of the Gauss—Bonnet theorem for surfaces
homeomorphic to a sphere.
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