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It is shown that for every one-sided type-D Euclidean HH-space with
A # 0 for which the local fundamental 2-form ¢ is nowhere vanishing,
the Einstein equations can be locally reduced to a single, second-order
nonlinear partial differential equation for one real function of three real
variables.

PACS numbers: 04.20.-q

1. Introduction

Recently there has been a large amount of interest in “non-Lorentzian
relativities” (= “non-hyperbolic relativities” [1-4]). In particular “Eucli-
dean relativity” (ER) plays an important role in the path-integral formu-
lation of quantum gravity [5-8]. “Complex relativity” (CR) appears in the
natural manner in the twistor program of Penrose [9-12] and in the H-space
theory of Newman [13,14] and Plebaiiski [15]. Then CR has been intensively
explored by Plebariski and co-workers [2], [15-31], [58-63]). One of the fun-
damental results in this subject has been found by Plebanski and Robinson
[20] and it states that for every vacuum complex space-time of an alge-
braically degenerate self-dual or/and anti-self-dual part of the Weyl tensor
(= HH-space), Einstein’s vacuum equations can be locally, almost every-
where reduced to a single, second-order nonlinear partial differential equa-
tion for one holomorphic function. Analogous statement has been proved
to hold true in the case of any HH-space with A [21]. One can expect
that a better insight into the structure of HH-space with A and also into
more general complex space-times enables us to obtain new results in the
“Lorentzian relativity” (= the “hyperbolic relativity” or HR). This is the
Plebaiiski program (see Refs [32-34]).
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It is well known that CR plays a distinguished role in the generation
technics (compare the “complex coordinate transformations” of Newman
[35-37]).

Very recently CR and ER have found their important applications in
Ashtekar’s Hamiltonian formulation of general relativity [38-44]. As it has
been shown by Capovilla, Jacobson and Dell [44], the Ashtekar’s Hamil-
tonian formalism is closely related to a separation of complex Einsteinian
substructures given by Plebanski in his pioneer work published in 1977
[30]. Also very recently an unexpected relation has been found between
some result in CR or ER [22,45-48] and sl(c0)-Toda equations or (2 +
1)-dimensional Einstein-Weyl geometry [49,50].

Main results of the HH-space theory can be easily specialized to be true
in the “ultrahyperbolic relativity” (UR), i.e., for the case of a real metric
of the signature (+ + ——). To this end one deals with real coordinates and
real functions instead of complex coordinates and holomorphic functions.
But an analogous transition from CR to ER is not so automatic and the
natural question arises whether for every Euclidean HH-space with A one
can locally reduce ten Einstein equations to a single, second-order nonlinear
partial differential equation for one real function.

First it has been shown that every Euclidean HH-space with A appears
to be a locally Hermite-Einstein space [51,52,58]. (Notice that in the case
of Euclidean H-space with A # 0 we are able to prove this fact under the
assumption that the space is of the class C“, i.e. real analytic, rather than
C*>. Nevertheless we expect that the proof can be given for the space of
class C*.)

Conversely, given a four-dimensional locally Hermite-Einstein space
with a metric ds?, and a point p of this space, there exist a neighbour-
hood U of p and a complex structure J on U such that (U,ds?,J) is a
Hermite-Finstein space and then, the anti-self-dual part (with respect to
the natural orientation determined by J [63]) of the Weyl tensor at p is
algebraically degenerate. We consider two distinct cases:

A. There exists a neighbourhood U’ C U of p such that (U’,ds?,J)
appears to be Kghler—FEinstein space.

B. There exists a neighbourhood V' C U of p such that the exterior
derivative of the fundamental 2-form on V is nowhere vanishing. (The
fundamental 2-form & on V is defined by [51,53]

&(X,Y) = ds*(X,JY) (1.1)

for any vector fields X,Y on V). Then, for the case A, the anti-self-dual
part of the Weyl tensor appears to be of the following types on U':
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(A1) [-] if 4 = 0 (Euclidean H-space, the hyper-Kahler space [40]),
or

(A2) Dif A #£0.
For the case B the anti-self-dual part of the Weyl tensor takes the following
formon V:

(B1) It is of the type D if A = 0.
or

(B2) If A # 0 then on some open set V' C V it is of the type D
and on the set V — V' it is of the type [-]. As it has been shown the
Einstein equations for the cases (A1), (A2), (B1) and (B2) with V' = ¢ can
be locally reduced to a single, second-order nonlinear partial differential
equation for one real function {51,54-57). The aim of this note is to execute
the similar reduction for the case (B2) with V' = V' (Sect. 2). Thus one
arrives at the conclusion that for every non-Lorentzian HH-space with A
the Einstein equations can be locally, almost everywhere reduced to a single
second-order nonlinear partial differential equation for one real (for ER or
UR) or complez (for CR) function.

2. The reduction of the Einstein equations

Let M be a 4-dimensional differentiable manifold endowed with a pos-
itive definite metric ds®. Then (M, ds?) is said to be a locally Hermite-
Einstein space if (M, ds?) is an Einstein space and for each point p € M
there exist a neighbourhood U of p and a complex structure J on U such
that (U, ds?, J) is a Hermitian space [51]. Consequently, (M, ds?) is a locally
Hermite-Einstein space iff for each point p € M there exist a neighbourhood
U, of p and complex coordinates z!, 22 on U, such that

ds* = 9oj (dz" ®dzf +df ® dz") on U,,
a,8=1,2; dz? = d2P; 9of = Upa s (2.1)
where the bar stands for the complex conjugation, and

Rog=0=Rs5, Ro5=—A4g,5 on Uy, (2.2)

wh_ere A is assumed to be constant on M, and R,sd2* @ dzf + Ry5d2% @
dz? + R.5 (dz" Q@dP +dP ® dz") is the Ricci tensor field on U;. Assume
that there exists a neighbourhood V;, C U; of p such that for each point
gEN

d (gagdz“ A dzﬁ) #0 at q. (2.3)
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Thus we deal with the case B (see the Introduction).

Now from the Einstein equations (2.2) with (2.3) one infers {56] that
there exist a neighbourhood V C V; of p, complex coordinates 2!, 22 on V
and a function F = F (29, z%) such that

11 = F,I y i3 = F,i s ga1 = F,z (2-4)
and
(am), = (30 +4) F, (2.50)
2 . A

(nH) 5~ 26385 = - (0(3’ - g) Jap s (2.5b)
ga3,1) = %, (2.5¢)

where
H:= F—;?—, (2.6)

g = det ||g,5]l; C®) is the only identically nonvanishing component of the
anti-self-dual part (thh respect to the natural orientation of V defined by
the 4-form dz! A dz! A dz? A dz?) of the Weyl tensor; 62 and 6; are the
Kronecker deltas; the coma ”, ” denotes the partial denvatxve, and the
square bracket [...] stands for the antisymmetrization.

We start with an unexpected and important result. Namely, we prove
that Eq. (2.5c) appears to be a consequence of (2.4), (2.5a) and (2.5b) with
H defined by (2.6). To this end one finds that from (2.5a) and (2.5b) for
a =1, with (2.4), it follows

F(nH), - gps = (), (2.7)

where f = f(z°) is some holomorphic function. Then from (2.5a) and (2.7)
one gets

: 2f
C(a) = -ﬁ; . (2.8)
Substitute now (2.8) into (2.5a) and (2.5b) for = 2, ,B = 2. Differentiating
the first equation (i.e., (2.5a)) with respect to 2 a.nd 2% and the second one
(i.e., (2.5b) for a = 2, B = 2) with respect to 2!, and then subtracting the
results we obtain
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29 (f 4 2f 4
_FT%_ (F.i + _gF) = — (—1-:,—5- - -5) (yz§,1 - 912,2)
F,

As g,3 is a real positive function from (2.5b) for a = 2 and § = 2 it follows
that C®) is a real function i.e.,

(2.10)

2~

I _
F&
Hence
2 F, _ 6f 4
75 (35 - 1) = FasFe (1)

Then from (2.9), (2.11) and (2.4) (remember that g,1 is also a real positive
function, and consequently Fi1 = F; > 0) one gets

g
9eim = F - (2.12)

Finally, the complex conjugation of (2.12) yields (2.5¢). Thus we have
proved that Eq. (2.5c) is a consequence of (2.4), (2.5a) and (2.5b) with
H defined by (2.6).

It is also evident that Eqs (2.5b) for a =1 and # = 1,2 or @ = 2 and
B = 1, with (2.8) assumed, follow from (2.4) and (2.5a).
Consider now the case:

C®£0on V. (2.13)

Then without any loss of generality, for sufficiently small V', one can put
(compare with Ref. [56])

f=1 (2.14)
and
F=F. (2.15)

As F1 = F; = gi1 the relation (2.15) yields F; = F1 and, consequently,
the function F is of the following form

F=F (zl + 21, 22, z’) =F. (2.16)
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With (2.14) and (2.15) fixed, only the following coordinate transformations
()~ (+m (zz) ,n (zz)) » Ba#£0, (2.17)

are admitted, where m = m(z?) and n = n(2?) are any holomorphic func-

tions of z3.

Define
K=K (z1 + zI,zz,zi) :=InH. (2.18)

From Eqs (2.5b) with (2.6), (2.8), (2.14), (2.15) and (2.18) one infers that

2 1
) + g‘F = ee3® [K 11 (K 25 —2¢7%) - K,uK,u]% , e=%£1. (2.19)

Consequently, from (2.7), (2.14), (2.18) and (2.19) we get

AF = 2K,1 + EC%K [K,ll (K'zj - 2e_K) - K,ng'lj]% . (2.20)
If A = 0 (the case (B1)) then (2.20) leads to the well known equation
KJIKJ} - K,lZK,li - 2e'"K [K,ll + (K'1)2] =0. (2.21)

In this case (2.19) and (2.20) give
- 1
e=-1, Ki=7;>0. (2.22)

(For further details see Ref. [56]).

Assume now that 4 # 0. Thus we deal with the case (B2) (see the
Introduction) for V’/ = V. Then one can find F from (2.20), and substituting
the result into (2.19) one gets the final equation for K

(2K 1 +€eL)* (K, —eL) - 342 =0,

L:= G%K [K,n_ (K,gj - 2e_K) - K,IZK,li]% . (2.23)

From (2.5b), (2.8), (2.14), (2.18)—(2.20) one finds the metric (2.1) in terms
of K. Namely, one has
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1 2K
g1 = Z’K,n (1 +¢€ L’l) N

1 2K
g1z = ZK,ﬁ (1 + €-L—1) )

1 2K
ga=01z= K, (1+€ L'l) s

=

1 2K
93= 7 (K 23 — 2e7%) (1 + e—-L’l) . (2.24)

From (2.18) and (2.24) it follows that

[ 0 a
i ( i BzI) (2.25)
is the Killing vector field on V.

Evidently one can obtain the similar results in CR or UR. To this end
one should merely treat the objects with bar as complex (for CR) or real
(for UR) quantities a priori independent of the ones without bar. Notice
that in CR (and analogously in UR) the cases A or B as defined in our
introduction correspond exactly to the nonexpanding or expanding spaces,
respectively [20, 21]. (It is worth pointing out that by (2.8) the subset of
V for which C® = 0, i.e., the Weyl tensor is self-dual, is determined by
an analytic set in C? defined by f(z*) = 0). As yet we have been unable
to find any solution of Eq. (2.23). A further analysis of this equation is
needed.
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