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Motion of a charged test particle in the field of an infinitely long
massive charged filament is investigated. It is shown that the electric
repulsion cannot prevent its fall on the filament. Hence, it follows that the
Coulomb force cannot prevent the formation of naked linear singularity
by collapse of charged matter.

PACS numbers: 04.20.Jb

The space-time around a massive infinitely long filament with a constant
mass linear density C is described by the metric [1, 2]

ds* = 2?1 F(z)72dt? — F(z)? (dz? + 2P2d4* + z?P2d5?) (1)

PL+Patps=pi+pi+pi=1, F(z)=1-C%™. (2)

We use the units with ¢ = G = 1. The electric field is described by the
potential
A; = (A0,0,0,0), Ao =Cz F(z)™! 4 const. (3)

Let us consider motion of a test particle with charge e and mass m in this
field. This problem is of importance in connection with the cosmic censor-
ship principle, as it will be discussed further on. In addition it is interesting
to examine a possibility of total compensation of gravitational and electric
forces everywhere, which may take place in the Newtonian theory.

Solving the Hamilton-Jacobi equation we obtain for action the expres-
sion

§S=—-Et+M¢+Pz+ / {:t:"“"F(z)2 [F(z)E - eC’:t:”’*]2
- m*F(z)* — M?z~%: _ P’z"”}% dz (4)

(367)
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From this expression one can easily obtain the equation of motion. For
their qualitative consideration let us rewrite the integral (4) in the form

[ F(z)*2~7 ((E — Uy(2))(E — Us(2)))* dz;
Uy2(z) = z7* F(z)™! [eC:c" + (m? + F(z) }(M?z~%2 4 p*z~?rs)) %] . (5)

Particle’s motion can take place in the region E > U,(z); the region
E < U,(z) corresponds to the Dirac sea. The behaviour of function U,(z)
defining the character of motion is plotted in Fig. 1 for different values of pa-
rameters e, m, p;, C, M and P. In diagrams 1b—e this curve is represented
for eC > 0, which corresponds to the electric attraction to the filament. In
the case of electric repulsion the boundaries of motion are defined by the
curve U,(z) represented in the same figure, taken with the opposite sign.

Fig. 1. Functions U, (z) and U,(z) for different values of e, M, P and p,. Curves
with sign I correspond here to the case p; > 2/3 or M = 0 and with sign II to the
case 0 < p1 < 2/3, M £ 0. (a) e =0, Uy(z) = =Usz(z) = U(z); (b) le|] € m;
(c) charge increasing; (d) |e| > m, an arrow indicates a possible tunneling; (e)
M=P=0,le]>m.

The particle motion for C = 0 was considered in [3]. The curve U(z)
= Uy(z) = —U,(z) for e = 0 is represented in Fig. la. At z = z, the
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function F(z) turns into zero and the space-time (1) has a real singularity.
If the field source is situated at z = 0, this singularity arises due to field
self-gravitation [1]. There is another possible treatment of (1) when just this
singularity at z, is considered as the source of electric and gravitational field
which in this case has an infinite negative mass density partly compensated
by an infinite positive energy density of electric field [1]. The space-time is
then described by (1) for zo < 2z < co.

As one can see from Fig. 1a the centrifugal force can forbid particle’s fall
on the source at z = 0 only if 0 < p, < 2/3 (linear singularity) and cannot
do it if p; > 2/3 (paradoxical singularity [4, 5]. The point singularity at
z = 2z, (its type has been obtained by a diagram method proposed in [4])
can be reached only by particles with M = P = 0. The source at z = 2
repulses particles.

Fig. 1b represents the curves U;(z),U,(z) in the case of small particle
charge |e| € m,eC > 0. Their difference from Fig. 1a is not big. At the
region 0 < z < z, the curve U;(2) is slightly shifted to the left in comparison
with U(z) and U,(z) to the right in comparison with (-U(z)). At z > z,
both curves approach, as z — oo, the value U, = —eC~!. The increasing
of charge e makes a maximum at the curve U,(z) evenif p, > 2/30or M =0
(Fig. 1c). It means that there is a region where the electric repulsive force
(together with a centrifugal at p; > 2/3) exceeds the gravitational one.
Nevertheless, near the singularity the last force becomes a prevailing one
and the particle begins to move to the source. At p; > 2/3 or M = 0, the
same particle with the same energy can move near the filament falling on
it.

By further increasing of particle charge the function U,(z) becomes
positive on a certain interval of z (Fig. 1d). A condition of its positivity
has a complicated form, but the inequality |e| > m must be satisfied. There
can be a tunneling from the Dirac sea in this case and hence a quantum
creation of pairs in the strong electric field. This process leads to a decrease
of filament’s charge.

Since for the electron one has |e| > m, this creation occurs for each
charge density C of filament, but in a very different rate. Electric repulsion
at M = 0 and also at p; > 2/3 cannot prevent a fall of particle moving near
the singularity into it.

The case M = P = 0 needs a special consideration. At |e] < m the
form of curves U;(z) and U;(z) does not differ qualitatively from the same
in Fig. 1b. For |e|] > m it is shown in Fig. le. A particle in the region
0 < z < z¢ due to the electric repulsion must move away from the filament
to the singularity at z,. Considering the motion in the region z > z, one can
see that the electric attraction can force a particle to fall in the singularity
z = o despite of the gravitational repulsion. The case |e| = m corresponds
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in the Newtonian theory to the total compensation of gravitational and
electric repulsive force in the whole space. From (5) we obtain that U, ,(z) =
m(+z~?1 — 2,7)~1. Therefore, the function U(z) is regular at z = z,.
There is no nonrelativistic force compensation in this case. It arises only as
a limit z — oo.

From the above consideration we see that the electric repulsion cannot
prevent a fall of charged particle on a charged filament. It is easy to see
that this result is valid also for the case of the most general form of linear
naked singularities, which has been obtained and investigated in [4]. Thus
the Coulomb force cannot prevent the formation of naked linear singularity
by collapse of charged matter.
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