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The distribution of quantum states of a finite one-dimensional Heisen-
berg ferromagnet, consisting of N spins s, over the discrete Brillouin zone
has been analysed by means of stratification of the action of the transla-
tion group on the set of all (2s+ 1)V magnetic configurations. It is shown
that the rarefied bands are associated — through a secular eigenprob-
lem — with irregular orbits, i.e. those on which the action is not free.
An orthonormal complete basis, involving three exact quantum numbers:
quasimomentum, the generalized star in the Brillouin zone, and the total
magnetization, has been proposed.

PACS numbers: 02.20.4+b, 05.50.+q, 75.10.Jm, 75.30.Ds

1. Introduction

Solid state theory is deeply associated with the picture of band struc-
ture of energy levels of the system. According to this picture, energy levels
of interest (e.g. for electrons, phonons, polarons, or other elementary ex-
citations) can be arranged into bands; and each wavevector from the first
Brillouin zone, admissible by cyclic Born-von Kidrman quantization condi-
tions, is associated within a single non-degenerate band with exactly one
quantum state. In the present paper we discuss a feature which is somehow
surprising from such a point of view, namely the so called rarefied bands
within the Heisenberg model of magnetism in solids, pointed out by Lulek
[1]. He considered a one-dimensional magnetic crystal, consisting of N spins

* The work has been performed as a part of the research program CPBP 01.04
coordinated by the Institute of Physics of the Polish Academy of Science;
Warsaw.
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s, and determined the distribution of all the (2s 4+ 1)¥ quantum states of
the model over the first Brillouin zone. It results that this distribution is
inhomogeneous, which yields rarefied bands, ¢.e. such bands for which only
some distinguished vectors from those allowed by quantization conditions
correspond to some states of the system, whereas all other vectors are not
realized, i.e. yield some “vacancies” in the space of quantum states. The
symmetry of this distribution has been discussed by Florek and Lulek [2]
in the light of a general recipe of Weyl ([3], p.138; cf. also Florek et al.
[4]). They pointed out that this distribution is constant on the so called
generalized stars, i.e. on orbits of the action of the group AutCy of all
automorphisms of the translation group C) of the crystal on the Brillouin
zone.

Within the approach used in papers cited above, rarefied bands emerge
rather indirectly, as one of consequences of inhomogeneity of the distribution
of quantum states of the magnet over the Brillouin zone. This distribution
has been determined globally, as the decomposition of the linear represen-
tation P, which realizes the action of the translation group Cy . In the
present paper we demonstrate existence and origin of rarefied bands in an
immediate way, as an obvious result of permutational structure of the ac-
tion P on the set of all (2s + 1) magnetic configurations. To this aim, we
perform the stratification (Michel [5]; cf. also KuZma et al. [6]) of the repre-
sentation P, treated as the permutational representation of the symmetric
group XYy , then take into account the subduction P | Cy corresponding
to embedding Cx C Y5 , and only in the last step we invoke to the linear
structure of the space of quantum states of the magnet. In this way, we
are able to account each orbit of the action P separately, and to associate
rarefied bands with irregular orbits.

The orbit structure, determined by means of stratification and hierarchy
imposed by embedding Cy C Ly, allows us also to determine an orthonor-
mal basis in the space of quantum states of the model, which can be useful
in some quantum and statistical calculations.

2. Distribution of quantum states of the magnet
over the Brillouin zone

Let _ _
N={j|j=112,°-"N} (1)

be the set of nodes of a finite one-dimensional crystal in a form of a ring,
so that IV is a regular orbit of the cyclic group C , playing the role of the
translation group of the system. Let

a={ilt=1,2,...,n} (2)
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be the set of labels of z-projections of the single-node spin s, so that i € 72
corresponds to the projection m; = ¢ — s — 1. Then

a¥={f: N} (3)

is the set of all magnetic configurations, and its linear closure over the field of
complex numbers constitutes the space of quantum states of the Heisenberg
magnet. The unitary structure of this space is imposed by the condition
that the set (3) forms an orthonormal complete basis, i.e.

(FIF'Y = (iry e esinlity ooy i) = Bigiy v Bigin, Hfea, (4)

where

lf)EIih"-7iN> (5)

is a detailed notation for the configuration f € A" . The action of the
symmetric group Ly on the set N can be lifted in a natural way to the

action P on the set iV by putting

F ~~
P(”)z(foa-—l)’ fen", oeZy, (6)
where
1f00™h) = lig-2ays -+ s i-1(m)) (7)

is the image of the configuration f under the permutation

o= (ag'j)), je . (8)

P is therefore a permutation representation of Xy on the set 7 . It can be
also looked at as a linear representation in the space of states of the magnet,
which allows us to write down the decomposition

PlCx=) @p(k)Tx (9)

keB

of the subduction P | Cy of the representation P to the subgroup Cy C Iy
into irreducible representations I'; of the group Cy . The decomposition
(9) establishes the distribution p : B — Z of states of the magnet over the
Brillouin zone

:t—"— ¥ for N even (10)

N-1
B={k=0,:|:1,:l:2,..., {i 2 for N °dd}
2
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i.e. over the set of all irreducible representations of the translation group
Cx (Z is the set of all integers).

Eqgs (9)—(10) demonstrate the role of the Brillouin zone as the set of
irreducible representations of the translation group. This group is abelian,
so that B

|B| = N =N,

and the difference in labelling in Eq. (1) compared with (10) results merely
from a shift in the reciprocal space providing that the wavenumber £k = 0 =
N modN constitutes the center of the Brillouin zone. Equality |[B] = N
can be also interpreted as a consequence of the fact that the action of the
abelian group Cy on the set N is free, i.e. that the nodes generated by
different translations are mutually different. The situation changes in the
case of the action P | Cy of Cy on the set #¥. In this case there arise some
orbits which are not regular, i.e. the action on these orbits is not free. In
general, an arbitrary orbit of the group Cy is characterized by the epikernel

C. = {R,2k,...,kk} aCy, (11)

where & is a divisor of the integer N, i.e. an element of the lattice K(N)
of all divisors of N, and thus of the lattice of subgroups of the translation
group Cy , and

i

=T ke, (12)

is the divisor complementary to « in the lattice K (V). The orbit with the
epikernel C,,x € K(N), is thus a carrier of the transitive representation
RN:* of the group Cy, and contains K elements. In particular, the case
k = 1 corresponds to the regular orbit, which contains & = N elements.
The other extreme case is kK = N, i.e. the orbit consisting of the ¥ = 1
element, or, in other words, an invariant of the permutation representation
P | Cy (a configuration |ii...i), i € 7). Other cases correspond to orbits
with intermediate number 1 < & < N of elements, which can be arranged
into the partially ordered set according to the lattice K(N) (Lulek and
Lulek [7]). Evidently, the space spanned on an irregular orbit, i.e. that
with the epikernel C., k # 1, has the dimension k < N, so that it cannot
cover all wavenumbers k of the Brillouin zone (10). It encloses only those
values of k € B which correspond to a “rarefied zone”

B/k ={k=¢xrmodN|¢ € K} C B, (13)

where
k={cl¢=1,2,...,r} (14)
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is a non-symmetric analogue of the Brillouin zone for the quotient groups
Cr = Cn/Cs (15)

acting effectively, i.e. freely, on the orbit with the epikernel C, (note that
C. = Ker RN*; ¢f. also Sect. 4). Thus the homogeneous component of
the distribution p emerges from regular orbits (x = 1), whereas all the
inhomogeneities originate from irregular orbits (x # 1).

3. Structure of orbits of the cyclic group on the
set of magnetic configurations

A simple relation between inhomogeneity of the distribution p and epik-

ernels C, k € K(N), of orbits of the group Cy on the set ¥ of magnetic
configurations suggests us to perform a stratification of this set, in order to
achieve a detail recognition of nature of this inhomogeneity. To this aim, it
is also convenient to introduce a hierarchy of orbits based on the embedding

Cny C Xy, (16)

t.e. to determine splitting of an orbit of the symmetric group Xy into those
of the cyclic subgroup Cy .

We thus first determine the stratification of the set 74" under the action
P of the symmetric group Ly . Let p : i — Z be a partition of the integer
N into n nonnegative integers p(z),7 € #, so that

> u(@)=N, p@)>o0. (17)

iER

Let v : (N) — Z denote the cyclic structure of the partition u, i.e.
the sequence

v=(V1,V2,...,UN), (18)
with v, le N, denoting the number of parts of the length [, so that

> iu=N, (19)

1eN

Vo + Z vp=n (20)
1eN

and v, is the number of parts of the length 0, i.e. such single-node states
i € f, for which u(i) = 0. Let M be the set of all those partitions u
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which satisfy the condition (17), and N — the corresponding set of cyclic
structures. Then (a) orbits of the action P of the symmetric group Xy on

the set A% are classified by partitions u € M, so that yu labels the orbit
0, ={P(o) folo € Zn}, (21)
where
[fo)=]11...1 22...2 ... nn...n)
w1 w2 ... u(n). (22)

(b) Strata of this action, i.e. sets of all orbits with the same epikernel, are
classified by cyclic structures v € N, so that v labels the stratum

S, = {Oulu € M(v)}, (23)

where M(v) C M is the set of all partitions with the cyclic structure .
Usually, the structure v is replaced by the “standard partition” from the
set M(v), i.e. such a partition u, € M(v),all parts of which are arranged
in the non-increasing order, so that

Be(i+1) S (i), i€ (24)
Correspondingly, the set N of cyclic structures can be replaced equivalently

by the subset M, C M of all standard partitions, which is a travers of the

action P of the group Xy on the set A% . The epikernel v is determined by
the class of all subgroups, conjugated in the symmetric group Ty with the
Young subgroup of the configuration f; , i.e.

Z(w, fo) = [[ X By (25)
€A

the outer direct product of symmetric groups on parts of the set N with
identical single-node states, as imposed by the partition x.Thus the strati-

fication of the set ¥ under the action P of the group Xx can be written

as -
av/P=|] 5. (26)
veEN
Simple combinatoric arguments (Lulek and Biel [8]) yield
10,] = — M (21)
= [TRS ’
g [Liea #(i)! ’
S = —er N 28
IVl_VO!HzeﬁVl!, VELN, (28)
N N+4+n-1
== (VT (29)
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respectively for the number of elements of the orbit O, , the number of
orbits in the stratum S, , and the total number of orbits. They also yield

the sum rule
> 15104 =¥, (30)

veEN

where the partition x4 has the cyclic structure v.

Now we proceed to perform the subduction of the full permutational
symmetry Ly to the translational symmetry Cy . Each orbit O, , given
by Eq. (21), splits into orbits of the subgroup Cy C Xy according to the
decomposition

R)JN:E(I-‘) lCN — Z @m(#, n)RN:n (31)

x€EK(N)

of the transitive representation R¥~E(#) of the group Zy with the Young
subgroup X(u) into transitive representations R¥* of the group Cy . Mul-
tiplicities m(u, k) can be deduced from some combinatoric considerations
on “cyclic words” (cf. e.g. Hall [9], Eq. (2.1.21)) as

a ()! . .
— Z A(K") =28 if p(i)/k € Z,i € 7,
N x'€K(led(pu/n)) HiEﬁ (%&')')! (32)
0 otherwise,

m(p, k) =

where the symbol lcd(y/x) denotes the largest common divisor of all integers
u(2)/k, i € 71, and fi(x') is the standard Mébius function of number theory.
The total number of orbits of the group Cx , arising from the orbit O, of
the group Ly, i.e. the quantity

0./(PLCx)l= D mlu,x), (33)

x€K(N)

can be evaluated using the cycle index (James and Kerber [10], p. 170).
The cycle index Ci(Cy) for the group Cy is a polynom of variables z,, x €
K(N), given by

Ci(Cy)=Ci(Cn;zs, s € K(N)) = JLV Z e(r)zk, (34)
K€K (N)

where (k) is the standard Euler function of number theory. The quantity
(33) is the coefficient of the monomial

77(&“) = wa({)a peEM, (35)
1€R
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in the polynomial w(Cy) of variables w;, i € i, given by

w(Cy) = Ci (on;zwf, neK(N)> o L ONCD

S€ER BEM

The polynom w(Cy) is thus obtained from the cycle index Ci(Cy) by the

Polya insertion
=Y wf, xe€K(N). (37)
ieh
Putting w, = 1, ¢ € K(N), we obtain the total number of all orbits of the
group Cy as

N

l(PlC ] =w(Cy;11...1) = %r— Z p(r)n®. (38)

x€K(N)

The number of orbits of the group C with an epikernel C, in the set Al
is given by

m(P, k) = Z m(p, k) = 2 m(p, k)|S,| = % Z A()n*=. (39)

BEM BEM, KEK(R)

By the arguments of Sect. 4, it is also the total number of x-tuply rarefied
bands.
In particular, the number of regular orbits (k = 1), t.e. full bands, is

m(1r>,1)=1lv 3 () (40)

K'EK(N)
For the other extreme case x = N we obtain
m(P,N) =n, (41)

so that the number of ” N-tuply rarefied bands”, consisting of merely one
point — the center k = 0 = N mod N of the Brillouin zone, coincides with
the number of permutational invariants of P, i.e. configurations |ii...%),
1€ f.

In this way, we have described in detail the stratification of orbits of the
representation P | Cy on the set A" of all configurations of our Heisenberg
magnet, with taking advantage from the embedding (16).
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4. The decomposition of transitive representations
of the cyclic group into its irreducible
representations

Up to this point, we have exploited essentially only the permutational
structure of the representation P | Cy,without resorting to its linear struc-
ture (with the exception of a general notion of the Brillouin zone). Now
we proceed to use the unitary structure of the space of quantum states of
the magnet, imposed by the orthogonality condition (4) of the basis AV .
The key observation is that we can consider separately the linear subspace
spanned on each orbit of the group Cy . The decomposition of each such
linear space into subspaces irreducible under Cy provides an elementary
contribution to the total distribution p of quantum states of the magnet
over the Brillouin zone. We can thus write down such an elementary con-
tribution, resulting from an orbit with the epikernel C,, x € K(N), in a
form

RY* 2N @m(x.k)I%, (42)

keB

where the multiplicity m(«, k) is given by
1 if led(x,k) = &,

m(x, k) = { 0 in other case, (43)
as an immediate consequence of the Burnside’s theorem for the effective
translation group Ci of Eq. (15). According to Egs (13) and (42), each
element of an orbit with epikernel Cy, has the crystallographic interpretation
of a configuration composed from « identical cycles, or “elementary Bravais
cells”, each of the length . As the result, each orbit of the transitive
representation RVN* of Cy yields a x-tuply rarefied band, containing & =
N/k states instead of N. Such a band corresponds to s-tuply enlarged
elementary cell of the crystal.

5. A classification scheme for the states of
a Heisenberg magnet

The considerations given above suggest the following complete orthonor-
mal basis set of states in the space of quantum states of the Heisenberg
model of a magnet

b= {|lucak) |u € M,k € K(N),a € m(p,x),k = €k, £ € K}, (44)

where u is a partition of N into n parts satisfying Eq. (17), x is an element
of the lattice K (V) of divisors of N, (u, &) is the set of orbits of Cy within
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the orbit O, of Xy, i.e. the set of repetition indices associated with the
multiplicity m(pu, £) given by Eqs (31)-(32), and k = £« is an element of the
Brillouin zone, admissible for the orbit with epikernel C, along Eqs (13),
(14), and (43). The set B/x of admissible values of k for a given x (Eq. (13))
constitutes the base for a x-tuply rarefied band, enclosing & states, where
R is the divisor complementary to x in the lattice K(N) (Eq. (12)). We
proceed to describe the physical meaning of quantum numbers of the basis
(44) in the Heisenberg model of magnetism.

The partition g originates from the symmetric group Ly on the set of
nodes of the crystal. Even though Xy is not the symmetry group of the
model, nevertheless the partition g imposes a convenient quantum number

M=) p(i-s-1) (45)
ied
the projection of the total spin of the system. It is an exact quantum number
in the model assuming isotropic exchange interactions, as well as in models
admitting single-axis anisotropies. It is worth to observe, however, that
a given value of M originates, in general, from various orbits and various
strata (23). The minimal value

Mpyin=-Ns=-N(n-1)/2 (46)

corresponds to the partition g = (N0...0), i.e. to the full saturation of the
ferromagnet. The corresponding orbit consists from a single configuration
|11...1), i.e. yields an “extremely rarefied” band, consisting merely of the
centre of the Brillouin zone. The value M,;, +1 is associated with the single
orbit, corresponding to the partition g = (N —1,10...). This orbit encloses,
according to Eq. (27), N elements and yields thus a regular band — the very
well known spin waves (Dyson [11], Mattis [12], Morrish [13]). The case of
Miin + 2 corresponds (for s > !/,) to two orbits: yu, = (N -2, 200...0) and
g2 = (N-1,0,10...). The orbit O, consists of N(N —1)/2 configurations,
describing two spin deviations at different nodes, whereas the orbit O,,
consists of N configurations, each with two deviations on a single node.
Evidently, the orbit O,, appears only for s > '/, and corresponds to “deep
spin waves”, which are energetically unstable. We can proceed, in principle,
to describe further types of configurations, with increasing combinatoric
complications.

The divisor £ € K(N) is also an exact quantum number of the model,
and denotes the generalized star of the wavenumber & € B, i.e. the set

B, ={k€ B|lcd(k,N)=x}, &€ K(N), (47)

of all elements of the Brillouin zone B, generated from x € K(N) C B
by the group AutCy of all automorphism of the translation group Cy.
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According to a general recipe of Weyl ([3], p. 138; ¢f. also Florek and Lulek
[2], Florek et al. [4]), the group Aut Cy is related to a “hidden” symmetry
of the Heisenberg model. In order to explain the physical implications of
this symmetry, we first observe that the natural action of the group Aut Cy
on the Brillouin zone B (cf. Florek and Lulek [2] for detail) yields the
decomposition

B = U B,, Bnan’=0 for k#£«, (48)

KEK(N)

which, in turn, imposes a crystallographic interpretation to Aut Cy as a gen-
eralized point group for the one-dimensional crystal. The generalized star
B, is a regular orbit of Aut Cy, which corresponds to the generic stratum,
or, in the language of crystallography, to the “general position”, whereas
the other stars B, £ # 1, correspond to various “special positions”, char-
acterized by epikernels C, . As shown by Florek and Lulek [2], lifting of the
action of the group Aut Cy to the space of quantum states of the system
yields a conclusion that the distribution p of Eq. (9) is constant on each
generalized star B, , i.e.

p(k) = const, ke B, CB. (49)

This result becomes also evident within the picture of orbits of magnetic
configurations, described in Sect. 3. Namely, the action of Aut Cy can be
also restricted to the space spanned by an arbitrary orbit of Cx. Each
regular orbit of the group Cy is associated with the decomposition (48),
with each generalized star B, £ € K(N), occurring exactly once. It yields
the homogeneous component of the distribution p, equal to m(P, 1), as given
by Eq. (40). On the other hand, each irregular orbit, i.e. & # 1, corresponds
to the rarefied Brillouin zone B/k, given by Eq. (13), for which

B
—= |J Ben- (50)
K

&'€K(R)

In other words, the rarefied Brillouin zone B/« consists of only those gen-
eralized stars B,., k" = k', for which £' is an element of the quotient
lattice K(N

_(;_) ~ K(R).

Evidently, B, is the generic star in the rarefied zone B/k (then &' = 1 €
K(&)). Therefore, each orbit with the epikernel C, contributes once to
every generalized star of the form B,,:, k' € K(&), and does not contribute
(t.e. yields “vacancies”) to other stars. The global form of the distribution
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p determined by Lulek [1] is just the sum of such contributions from each
orbit. All the symmetry properties of the distribution p, discussed by Florek
and Lulek [2], in particular the homogeneity (49) on each generalized star,
become also evident in the picture of orbits. It is, e.g. , evident that
each orbit yields once the zeroth star By = {N = 0mod N}, so that the
distribution p achieves the maximal value at the centre of the Brillouin zone.
This value is equal to the total number of all orbits, i.e. all elementary
bands, given by

ﬁN

P | Cn

p(0) = (51)

(cf. Eq. (38)). Similarly, the generic star B, enters only regular orbits, so
that

p(1) = m(P,1) (52)

(¢f. Eq. (40)), the minimal value. Intermediate stars B,, 1 < £ < N, have,
in addition to the homogeneous component (52), also contributions from
appropriate rarefiedd bands, so that the general distribution p is given by
the formula

p(k)= Y m(P,xx') for k€ B.CB, (53)

&'€K(R)

where m(P, k) is given by Eq. (39).

Evidently, k is also an exact quantum number of the model, for reason
of the translational symmetry of Cy — the group of “obvious” symmetry
in the terminology of Weyl’s recipe. The classification (44) emphasizes the
fact that for k # 1 the wavenumber k does not run over the whole Brillouin
zone B (Egs (10) and (48)), but only the rarefied zone B/x, Eqs (13) and
(50).

The meaning of the label a@ € m(u, k) consists in a classification of
various orbits of the translation group Cy within the orbit O, of the group
Xy. In general, it is not exact quantum number but merely an index for
classification of orthonormal basis states. Hence, each subspace with a given
total magnetization M, generalized star B, C B, x € K(N), and k € B,,
yields a secular equation for the Heisenberg Hamiltonian. Let L(M, &, k) be
such a subspace. Its dimension is

dimL(M,x, k)= > Y m(u«'), (54)

{ul(48)} n'€ K (x)

where the first sum runs over all those partitions u € M which satisfy the
condition (45), and m(u, k) is given by Eq. (32). The set of all solutions
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of secular eigenproblems for all possible M, x, k determines the structure of
energy bands of the model.

6. An example

We consider as an example the ring consisting of N = 12 nodes, each
with the spin !/;. The set N resembles thus the set of figures on a clock dial
plate. The number of magnetic configurations, i.e. the dimension of the
space of quantum states is

™ = 2'? = 4096. (55)

The stratification of the set ¥ of magnetic configurations under the action
P of the symmetric group Ly is given in Table I. Each stratum S, given by
the cyclic structure v of Eq. (18), satisfying conditions (19)—(20), is uniquely
determined by the standard bipartition

p=(p(1),1(2)), pQ)+p(2)=12, p(1)2u(2) (56)
(cf. (24)), and consists of |5, | orbits, each enclosing |O,| configurations.

TABLE 1

Stratification of the set of all magnetic configurations for N = 12, s = 1/, under
the action P of the symmetric group Ly;.

The cyclic The standard | Magnet—
structure v partition p ization |Sy| [O4] [S,110,]
w(1) w2 M
Vo = 1 Viz2 = 1 12 0 +6 2 1 2
vi=1 vy=1 11 1 +5 2 12 24
=1 ro=1 10 2 +4 2 66 132
v3=1 vy =1 9 3 +3 2 220 440
ve=1 vg =1 8 4 +2 2 495 990
vs=1 1y =1 7 5 +1 2 792 1584
vg =2 6 6 0 1 924 924
13 = (12 ‘:: - 1), 4096 = 212

Each orbit O, is characterized by a definite value of magnetization

= (D=0 -
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3 6 12

[3] | (338) {1} 1 (348) [2] | (352)

[335] | (335) (9] | (344) [2] | (346)

1 2 4

Fig. 1. The lattice K(12) of divisors of the integer 12. Arrows indicate the partial
order imposed by the inclusion Cx < Cy;. Integers without brackets, in square
brackets and parentheses are respectively divisors x, multiplicities m(P, k) giv-
ing number of orbits with the epikernel Cx, and numbers of states px for the
generalized star Bg.

TABLE II

Multiplicities m(u, x) in the decomposition (31) of an orbit O, of the symmetric
group Xj. into orbits of the cyclic subgroup Cy;. Each entry of the last column
is the sum of the corresponding row in accordance with Eq. (33), and the last
row exhibits the multiplicity m(P, k), i.e. the number of x-tuply rarefied bands,
evaluated according to Eq. (39) — using the column [S,| of Table I. The right

bottom corner gives the total number of orbits 1(7’%'—)-3

u K
u(1) u(2) 1 2 3 4 6 12 Favem

12 0 - - - - - - 1
11 1 1T - - = - - 1
10 2 5 1 - - - - 6
9 2 8 - 1 - - - 19

8 4 0 2 - 1 - - 43

7 5 66  — - - 66

6 6 75 3 1 - 1 - 80
m(P, k) 33 9 3 2 1 2 352

and the two orbits within each stratum for M # 0 differ mutually by the
sign of M (this feature holds only for s = 1/5; for s > !/, there appear various
absolute values of M within a stratum).

The lattice K(12) of divisors of the integer 12 is given in Fig. 1. The
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Brillouin zone for our dial plate is given by
B = {£1,+5}u {2} u {£3} U {4} U {6} U {12}, (58)

where each subset is a generalized star B, , generated from the first element
— the divisor £ € K(12). In particular, the first star B, = {1 +£5}
{1,5,7,11} is the generic one. Splitting of each orbit O, of the group X,
into orbits of the group C;; (Eq. (31)) is given in Table II. As seen from
this table (cf. also Fig. 1), there are 335 regular orbits, i.e. full bands, and
17 irregular orbits, leading to rarefied bands.E. g. the orbit of the group
X2, corresponding to the partition g = (9, 3) splits under the subduction
to Cy; into 18 regular orbits and one irregular orbit, the latter presented
in Fig. 2. One can observe from this figure that the irregular orbit has too
small number of configurations in order to realize phase shifts of 27 /12,
corresponding to k = +1 in the Brillouin zone (58). There are only possible
the multiplicities of 2x /4, according to the decomposition (42)

j= 1 2 3 4 5 6 7 8 9 10 11 12
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—_— — + — —_— —_—
- - - + - —

R=4 K=13
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Fig. 2. An irregular orbit of the group Ci,, arising from the orbit O, of the
group Xy, for the partition u = (9,3). The epikernel of this orbit is the subgroup
C3 = {4,8,12} a C13. The orbit consists of K = 4 magnetic configurations (the
rows in the figure). Each configuration can be decomposed into x = 3 “elementary
cells”, each of the period & = 4.

R 2T,®T30T_3® . (59)

This orbit yields thus the four-fold rarefied band B/4, with k = 0,+3,6,
t.e. with the generalized stars B3, Bg, and B,;, but without B,, B,, B,.

The full list of orbits of the group C;; on the set of configurations is
given in the last column of Table II and in Fig. 1, the decompositions (50)
of rarefied zones B/« into generalized stars B, is given in Table III, and the
resulting distribution p of quantum states of the magnet is given in terms of
generalized stars (cf. Eqs (48)-(49)) in Fig. 1, and explicitly in the Brillouin
zone B (cf. Egs (9) and (51)—(53)) — in Fig. 3.

Our example demonstrates that the global distribution given in Fig. 3 is
the result of a simple summations of elementary contributions from particu-
lar orbits of the group Cy;. Values of p(k) are constant on each generalized
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TABLE III

The decomposition of a rarefied Brillouin zone B/x, x € K(12) (corresponding to
an orbit with the epikernel C,) into generalized stars Bx, x € K(12).

'cl
K 1 2 3 4 6 12
1 1 1 1 1 1 1
2 - 1 0 1 1 1
3 - - 1 0 1 1
4 - - - 1 0 1
6 - - - - 1 1
12 - - - - - 1

p @~
350 _

345 _

340

335 _|

330
-5 -4-3-2-101 2 3 4 5 6 k
Fig. 3. Distribution p of states of the Heisenberg magnet for N = 12, s = 1/;, over
the Brillouin zone.

stars By, i.e. on the subsets distinguished in Eq. (58), and the values p(x)
increase according to the partial order for the lattice K(12), denoted by
arrows in Fig. 1. N. b. the partial order in K (V) is not necessary consistent
with the order of the real axis, so that, e.g. , p(3) < p(2).

The dimensions (54) of secular equations are listed in Table IV. The
last row of this table corresponds to saturation states of the ferromagnet
(M = 16), and the next to the last — to states with a single spin wave
(M = 15). These are the only cases of one-dimensional secular equations.
A relatively small size of secular matrices occurs for the case of two spin
waves (M = +£4): five full bands B and one doubly rarefied B/2. The
highest size appears for M = 0, i.e. for the antiferromagnetic ground state:
75 full bands B, 3 doubly rarefied bands B/2, one B/3 and one B/6. In
particular, the orbit with the epikernel Cy yielding the band B/6 can be
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readily recognized as that corresponding to two Neel configurations:

|+ ~-4...=)and |-+ —...4),
used as the starting point in searching for the antiferromagnetic ground
state.

TABLE IV
Dimensions of secular equations. The table gives the value of dim L(M, k, k), k €
B, C B (c¢f. Eq.(54)).

M 1 2 3 4 6 12

0 75 78 76 78 80 80
+1 66 66 66 66 66 66
+2 40 42 40 43 42 43
+3 18 18 19 18 19 19
+4 5 6 5 6 6 6
+5 1 1 1 1 1 1
+6 0 0 0 0 0 1

7. Final remarks and conclusions

We have discussed the origin of rarefied bands in the model of a finite
one-dimensional periodic Heisenberg magnet. Existence of such bands is a
natural consequence of irregular orbits of the action P | Cy of the transla-
tion group Cy on the set of all (2s + 1)¥ magnetic configurations. Orbits of
the action P | Cx yield — through an appropriate secular eigenproblem —
to a definite band structure. Each regular orbit, i.e. an orbit consisting of
N different configurations, yields one full band B, whereas each orbit with
a non-trivial epikernel C, « Cy, consisting of £ = L:' < N configurations,
yields a s-tuply rarefied band B/k. In other words, the component of the
action P | Cy which acts freely on #¥ yields full bands, whereas all inho-
mogeneities of the distribution p, associated with rarefied bands, originate
from those orbits of configurations, where the group Cy does not act freely.
The global distribution p of quantum states of the magnet over the Brillouin
zone can be uniquely decomposed into elementary contributions from indi-
vidual orbits. As a result, generalized stars B, , labelled by elements x of
the lattice K(N) of divisors of the integer N, are elementary subsets of the
Brillouin zone with the constant values of the distribution p, in agreement
with the predictions derived by Florek and Lulek [2] from the general recipe
of Weyl [3], in a spirit of “action of a group on a set” (Michel {5]).
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We have also pointed out that the extension of the translation group
C to the full symmetric group Yy on the set of nodes of the crystal proves
to be convenient in quantum and statistical calculations concerning the
Heisenberg model. The stratification of the action P | C implied by the
embedding Cy C Xy provides an additional important quantum number,
the total magnetization M. We are thus able to propose an orthonormal
complete basis in the space of quantum states of the magnet, involving
altogether three exact quantum numbers: the generalized star B, C B, the
quasimomentum k € B,, and the magnetization M. Rows and columns of
appropriate secular eigenmatrices of the model Hamiltonian in this basis
are labelled by the following pairs of quantum numbers: the partition u of
N into n = 2s + 1 parts, and the multiplicity label a for repeated orbits
of the translation group Cy in the orbit O, of the symmetric groups Xy .
In particular, this basis is well adjusted to discuss interactions between ¢
ideal spin waves (Dyson [11], Mattis [12], Morrish [13]) in the subspace with
M = Ns — g . In this context, the rarefied bands can be looked at as a
specific effect of “kinematic interactions” of ideal spin waves, which results
in “vacancies” of quantum states for some generalized stars in the Brillouin
zone.
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