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GEOMETRICAL QUANTIZATION
IN DYNAMICAL VARIATIONAL APPROACH
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The dynamical variational approach based on geometrical quantiza-
tion is demonstrated to be capable in describing the most important quan-
tum mechanical quantities. In particular, the consistent prescription for
calculating the transition probabilities is presented. For several reasons,
the method is expected to be better under control than the semiclassical
methods in treating the systems whose classical counterparts are chaotic.
The formal considerations are illustrated using an exactly solvable SU(3)-
-spin system.

PACS numbers: 12.38.Mh

The quantum mechanical problems are rarely exactly solvable and one
is forced to deal with approximate solutions. The semiclassical methods are
of central importance in this connection but their applicability encounters
serious technical difficulties when the phase-space displays stochastic struc-
ture [1]. The other kind of approach which we wish to advocate in this
paper, is based on the time-dependent variational principle (TDVP):

6 [ twtas elinau - Blw(a: ¢ =0, (1)
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where H is the Hamiltonian operator. The idea is to reduce the infinite
dimensional Hamiltonian problem by restricting the number of degrees of
freedom to a most relevant few, parametrized by a vector 2(t). The resulting
equations of motion for y(z; t) are in general nonlinear and the stationary
solutions cannot be found. The wave packet-type solutions of (1) for bound
states (z; t) = ¥(z; 2(t)) have to be localized in space. Then the time-
evolution generates an additional phase and the full solution becomes:

Wo(zi 1) = ¥ (s 2) = Wies 2)exp (5 [ o (wlindul))

x exp (=i(y|Hlw)t/A) , (2)

where z(t) = (z1(t),..., zzm(t)). The first exponent in (2) depends solely
on the geometry of a trajectory in the parametric space and can be identi-
fied with the geometrical phase. Phases of this type were appreciated first
by the College Park group [2] in connection with the quantization of time-
-dependent Hartree-Fock (TDHF) solutions. The resulting method is known
as the Gauge Invariant Periodic Quantization (GIPQ). Later on, the method
was generalized to variational approaches based on any parametric space [3].
The most general formulation of the geometrical phase is due to Aharonov
and Anandan [4] and in the adiabatic approximation it is known as the
Berry phase [5]. Because of the gauge-invariance of the geometrical phase
it is natural to extract from ¥°(z, t) = ¢%(z; z) exp(—i(t|H|¥)t/h), the
gauge-invariant component %€ which is given by the product of ¥(z; z) and
the geometrical phase. ¥€ is a natural analog of a stationary-state wave
function. The principle of regularity and single-valuedness (RSV) [6] is then
imposed on %€ and provides a consistent prescription for selecting energies
of quantized states. For periodic solutions %*(z; z), associated with inde-
pendent closed orbits C,(2) in the parameter space, the RSV quantization
condition reads

L(C.) = (27)" / (% (25 2()) i Ay [y (=5 2)(¥)))dt
=n.h 0(a=1,...,m), (3)

where m refers to the number of independent directions “a” and T, is the
oscillation period. By now there exist several methods to find those time-
periodic solutions [7, 8].

The Eqs of motion in 2 can always be transformed into the Hamilton
Egs. in pairwise canonical variables {(p;, ¢;), ({ = 1,...,m)} [9]. The RSV
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conditions (3) become then particularly simple:
= (27().‘1 fp(a) dq(a) =Ny h o (4)

In that sense the geometrical quantization may become technically equiva-
lent to the semiclassical quantization, even though, p, g are labels of the
time-evolving phase-determined wave packet and not merely the classical
momenta and coordinates. Such a wave packet is supposed to approximate
the exact Schrodinger wave packet. These, however, evolve regularly in time
even for classically chaotic systems. Therefore, the possible onset of chaos
does not mean that the above quantization prescription is inapplicable but
instead that the approximation fails and the parametric space has to be en-
larged to include further quantum corrections in such a way that the regular
time evolution in 2(t) is recovered.

This geometrical type of quantization has been extensively used to cal-
culate the energies of nuclear vibrational states. Recently, based on the
relationship between TDVP and the generator coordinate method [6], it
has been successfully adopted to the calculation of transition probabilities
between different quantized states [10].

The purpose of this paper is to address various aspects of the geometri-
cal quantization and to demonstrate its efficiency on the example of SU(3) -
quantum spin system [11] whose classical large-N limit [12] given by TDHF
is non-integrable. The advantage of this quantum system lies both in its
ability to mimic essential ingredients of the shell model and in the fact
that it is exactly solvable. The SU(3) model consist of N distinguishable
fermions, labeled by index n, each of which can be in three, N-time degen-
erate single-particle levels having energies ¢ = — ¢, ¢ = 0, ¢ = €. The
Hamilton operator is:

- K=3 . K=2 -
H= Z & Nie + 3 E VN, (5)
k=0 k,1=0

where Viy = V(1 -6u), V <0, and Ny = Ea want( Z N = const) are

SU(3) — generators which form basis for the L1e algebra of the coherent group
G acting irreducibly on the Hilbert space of the SU(3) system. Finding the
large- N limit of SU(3) quantum theory is associated with the construction
of the corresponding coherent states. This can be achieved by applying each
of the elements of the coherence group G to the noninteracting ground state
of the system with all particles in the lowest level. The resulting states:

[¥(21(2), 22(t))) = exp (21 (t)N1o + 22(t)N2o) |21 = 0, 2, = 0)  (6)
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are Slater determinants labelled by two complex particle-hole (p-h) ampli-
tudes z; and 2,. The classical Hamiltonian H can now be identified with
(Y(2)|H|¥(2))/(¥(2*)|¥(z)). Working with the normalized states, it is con-

1

venient to change to the parameters §; = z;/(1+ 212} + 2,23)* and separate
out their real (¢ = [q1, ¢2]) and imaginary (p = [p1, p;]) parts which are the
canonical conjugate variables [11]. The time-evolution of the classical SU(3)
system is governed by the scaled Hamiltonian H|q, p] = " /Ne which, for
a fixed, normalized strength of the two-body interaction x = NV/e, does
not depend on the particle number. N appears only in the quantization
condition.

Putting p = 0 in H, one defines a static part V of this Hamilto-
nian. V(q, ¢2) at x > 3 has four degenerate minima separated by the
saddle points. For large N, the quantum motion is restricted to the nar-
row region in the phase space around each of the minima of V. The high
barriers between them prohibit strong mixing and the description of a
quantum system using a single, time-evolving Slater determinant around
each minimum of V separately can be justified. However, for small num-
ber of particles even the lowest excited state appears close to the saddle
point and, therefore, mixing of the Slater determinants in the quantum
wave function cannot be excluded. These quantum correlations are ab-
sent in the TDHF-field. One could approximate them by introducing pro-

jected manifolds {¥,, 0,(B1, ﬂ:)l {P(ol, a2)¥ (b, ﬂ,)}, where the pro-
jection operator is defined as P(oy, 03) = (1 + alIIp‘)(l + azl'Ip,) with
1, 4(6:, B;) = ¥( - B, B;) and o; (i = 1, 2) can take values +1 or — 1 for
the positive and negative parity states respectively. Hence, in each of the
variational manifolds {¥, .}, {¥._-}, {¥-+}, {¢¥__} separately, the time-
-evolving wave-packet is a superposition of Slater determinants around each
of the four minima of V.. Obviously, ¢ and p are no longer canonical conju-
gate variables. With this form of variational manifolds, Eqs of motion take
the form:

8 -~
Z S:'J'atﬁj = 55?('[’010:}'3[1![)010:) (i’ j = 1’ 2) ’ (7)

where S;; are the Poisson brackets:

- 0vYss0 311)« o - 3% o Yose )
g 1 193 193\ 1 102 193
S‘J na,a, (( aﬂ.. l ) a;vz( I¢0163)(¢010:| aﬂ] ) (8)
and nﬂ:’z (¢0102I¢0102)
Time-periodic solutions for B(t) are selected to construct %¢ , and,

then, the RSV quantization condition (3) is employed to select physical
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states and their excitation energy. A stationary state wave function can be
projected out by constructing [13] [6] the time-averaged wave function for
a given quantized state |a):

Ta

¥55, () =2 [ 095, (i Pa®)

(4]
Bay(t")

xewp (§ [ (uzlindolus,)ar). (9)
Ba)(0)

The index “a” distinguishes among different periodic trajectories corre-
sponding to different states. Each state is presented by the single stable
trajectory so long as they can be defined uniquely. In the fully chaotic case,
the individual families of periodic tarjectories proliferate exponentially and
obviously the TDVP + RSV method cannot and ought not to be applied
because at that moment the chosen approximation for the wave-packet does
not make sense anymore. Using (9) one can calculate the transition proba-
bilities between any two states |a) and |a') and for any operator F.

Fig. 1 shows the results for diagonal and off-diagonal matrix elements of
§= Nn Noo and £ = N22+Nu -2 Noo between the first two excited states
|1}, |2) and the ground state |0). The calculations are performed for various
particle numbers in the manifolds {¥,,}, {¥._-} at x = 10. Solid lines
exhibit results of RSV calculations in the projected manifolds, whereas dots
show exact quantum results for each given N. The upper most plots in Fig. 1
exhibit the excitation energies (1|H|1) and (2|H|2) (in units of ¢) for states
with (+ +) and (— —) parities. The dashed line in the upper figure for 1,4
denotes results of random phase approximation (RPA) for energies of the
one-phonon states. Notice, that until N ~ 50, the agreement between RPA
and exact results is very good. Dashed~dotted line in the upper right figure
for 1__ presents results of the quantized TDHF. This is an improvement
over RPA in the region 40 < N < 50. For smaller number of particles
(N < 40) one finds deviations mainly for the negative parity states. The
positive parity states in turn, are still well described by TDHF for all N. In
general, the agreement between exact SU(3) results and the large-N limit
of SU(3) is excellent until N =~ 40 for all diagonal matrix elements including
those of § and {. Below N ~~ 40 this good agreement deteriorates but can
be recovered after the quantum correlations due to the parity projection
are added. The agreement for the off-diagonal matrix elements of § and
operators is less spectacular. This is mainly due to the absence of quantum
correlations in the ground state and reflects the strong sensitivity of the
off-diagonal matrix elements to details of the wave function. For large-N,
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these correlations are the familiar 2p — 2h, RPA correlations which do not
influence the excitation spectrum or diagonal matrix elements but may have
a strong effect upon the off-diagonal matrix elements for operators which
connect to the ground state.
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Fig. 1. The matrix elements for operators big , 8§ = Nt — Noo and £ = Nas
+ Ny1 — 2Noo as calculated exactly in SU(3) (dots) and in the projected mani-
folds {¢4+}, {¥—-} for the first two excited states |1), |2) and the ground state
[0) at x = 10. For more details see the description in text.

Fig. 2 shows the (g, p1) surfaces of section at ¢; = 0, at the energy
corresponding to the first excited state in the manifold {#,,} at x = 10
and for various number of particles. In our case, a surface of section is
given by set of points which are obtained by intersecting a trajectory with
a plane g; = 0 in the three dimensional phase space ( p, is fixed by the
energy conservation). In the integrable system only closed curves are seen
in the surface of section. For chaotic systems, on the contrary, the surface
of section is evenly covered with the points in the whole energetically avail-
able phase space. It might seem paradoxical that the particle motion in
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the phase space is more organized for large N. This, however, illustrates
our introductory remark concerning the meaning of chaos in the variational
dynamical approach. Here, decreasing the particle number, i.e. deviating
more and more from the validity of the mean field approach, one sees an
increase in the chaotic volume of the phase-space. Similar observations has
been made recently in Ref. [14]. Finally, the chaotic trajectories fill the
whole available phase-space (N =~ 12). The stable periodic trajectories for
quantized states of each parity could be found only until N = 12. For
N < 12 the stable orbits disappear which signals the importance of fur-
ther quantum corrections. Therefore, we did not continue calculations for
N < 12 using unstable orbits. Notice however, that as long as we are able
to localize the stable orbits in the parametric space, the agreement between
results of SU(3)-quantum spin model and its classical, Large-N limit ex-
tended to include quantum correlations due to the parity projection, is very
good.

N= 30

N=16 Nz= 12

Fig. 2. (q1, p1)-surface of section at g3 = 0 for different particle numbers as calcu-
lated for the state |1;;). For more details see the description in the text.

In conclusion, TDVP supplemented with the geometrical quantization
condition, appears suitable for reproducing various quantum mechanical
quantities. This method seems to be more efficient than the semiclassical
method, particularly for the chaotic systems, in which the latter method re-
quires many classical trajectories to built the wave function [1]. This is due
to the fact that in variational approach the majority of quantum mechani-
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cal effects is incorporated already from the beginning while the semiclassi-
cal methods aim at reconstructing the wave function from purely classical
trajectories. In the above analysis, which relates properties of the wave
function with the behaviour of periodic orbits in the subspace of phase-
-determined wave functions, the onset of chaos has no dramatic conse-
quences and seems rather to indicate a gradually increasing importance
of quantum corrections and, hence, a demand for revision of the variational
manifold. Such a conclusion sounds consistent with the linearity of the
Schrodinger equation which leads to the regular propagation of an exact
wave packet in its multidimensional phase-space. Thus one would expect
that its right approximant should behave similarly. Of course, the contrary
is not necessarily true. A drastic reduction of the variational problem to
one degree of freedom will always result in a regular motion although such
an approach may be inadequate. Since on the level of stationary variational
approach there exists no correctness criterion, the above aspect of the dy-
namical variational approach is particularly interesting and calls further
clarification.
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