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The relationship between the “intermittent” increase of the scaled
factorial moments and the singularities in the correlation functions is dis-
cussed. It is shown that for the existing data, far from the asymptotic
region, the slopes measured from the increase of moments may be much
smaller than the corresponding exponents in the correlation functions.
Possible interpretations of some observed regularities of slope values for
different processes are considered.

PACS numbers: 13.85.Hb

1. Introduction

In the last few years the notion of intermittency in multiple production
became one of the main topics in investigating the final states of high energy
collisions. It has been widely popularized by the discovery that in many
processes the scaled factorial moments increase (approximately linearly) for
the decreasing size of the rapidity bins on double logarithmic scale. Such
a behaviour has been predicted [1] in a simple model based on the analogy
with the density fluctuations in a turbulent motion and is often addressed
as intermittency.

In this note we intend to discuss the possible origin of the linear in-
crease of moments in the context of corresponding singularities of the cor-
relation functions. In the next section we discuss the simplest case of one-
dimensional analysis with translational invariance for the second order mo-
ments. In Section 3 higher order moments are discussed. We conclude with
Section 4.
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2. Second order moments for one-dimensional analysis

Let us consider a kinematical variable z in which there is an approxi-
mate translational invariance of distributions in a range X. Such a variable
can be the (pseudo) rapidity y in the central region, or the angle & defining
the direction in a plane perpendicular to the collision (or jet) axis.

The scaled second factorial moment of the multiplicity distribution in
the bin of size § averaged over the bin position is given by

Fz(5)=(z_: @—A'-;-l-)ﬂ) / ( %) : ™

m=1

where M = X /6. This is so-called horizontal average, in which the numer-
ator and denominator expressions are averaged independently over the bin
position (and, in fact, this average can be performed before averaging over
events denoted here by a bar). For the case of exact translational invariance
this procedure is fully equivalent to the “vertical” averaging

F;, _ M Z (n(n— 1)) E(Fz)m) (2)

m-‘l

since fi,,, = fix /M and (F3;),, = F; for all values of m.
Obviously, for each bin the factorial moments can be expressed by the
integrals of inclusive distributions. Thus we have

f5 p2(z1,23)dz, dz, _ f6 cz(z1, 22)dz dz,
(fs p(z)dz)? (fa p(z)dz)?

Thus the “intermittent” behaviour of F; for § — 0

F,(8) =

(3)

Fy(6) ~ c6%, (4)

i.e.

corresponds to the singular behaviour of ¢; for |2, — z;] — 0
Cg(zl, zz) ~ 7|2:1 - 22|_¢’ . (6)
However, (5) is a good approximation of In F; for ¢; given by (6) only if

F-1>1. (7)
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so that the second term in (3) dominates. This is definitely not the case for
all the existing data. In fact, in most of the cases the reversed inequality
holds

F-1<1. (8)

Obviously, if (5) is valid down to § = 0, one must eventually enter the
range where (7) holds. However, one can easily show that for the real data
the increase of F; must saturate for the values of § below the experimental
resolution in z [2]. For finite statistics and finite average multiplicities the
maximal number of particles in bins is limited, which may also limit the real
increase of moments, although this effect is more relevant for higher order
moments [3]. Therefore, the singular term in F; may well never dominate.
Moreover, the correlation function may have other terms than (6). Thus in
all existing data the possible singular term in F, seems to be just a small
correction in all the available range of §. This is suggested most clearly by
the fact that both for (pseudo)rapidity and & distributions the observed
difference between the largest and smallest value of F, in the range of § in
which the linear form (5) is fitted is always much smaller than one.

Therefore, an interesting question arises: how can one obtain a good
linear fit of the form (5) even for the cases where (7) does not hold and the
observed increase of F, in the full range of § is very small, as is the case e.g.
for the UA1 data [4] for bins in & shown in Fig. 17?7
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Fig. 1. jolog F3 vs. bin size § & on log scale [4]. The broken line is a straight line
fit of the form (5) and solid line results from (11). Parameter values are quoted in
the text.
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Obviously, the simplest possibility is to assume that approximation (6)
works well not for the correlation function, but for the two-particle density
function p,(z,, ;). Then, however, one has to assume rather exotic form
of the correlation function with a big constant negative term to cancel the
product of single particle densities in the definition formula p; = p1p; + c;.
Since there seems to be no model predicting such a behaviour, we restrict
ourselves in the following to the more standard case of the correlation func-
tion dominated by the positive constant and singular terms.

I F, can be written as

F,=1+c+€(6), (9)

where €'(6) € 1+ ¢ in the full range of § considered, one can obviously use
the approximation

€(6)
1nF,~1n(1+c)+(1+c) (10
If
ca(z1,23) = ¢ + €|y — 24| (0<axk1), (11)
we find

56 -

(12)

and there seems to be no good reason for the good fit of the form (5). In
fact, to get such a good fit it seems necessary to assume rather a logarithmic
singularity in the correlation function [5]. However, if a < 1 and the range
of é is limited, one can approximate further (12) by

c ,
c = ;{, (6)

e""‘” e(l——alné)
p?

€(6) ~ (13)

and thus
€ aeclné

p(1+c) p(L+c)

Thus the power-like singularity in ¢, may result in the linear dependence
of In F; on Iné even in the range of § for which the singular term is only
a small correction to F,. However, the experimentally observed slope ¢, in
(5) is then not equal to the exponent a of the singular term in ¢, (and, in
fact, it should be much smaller). This opens quite new possibilities of the
interpretation of the experimentally observed intermittency parameters. For
example, the UA1 data for the ¢ bins mentioned above, for which ¢, = 0.01
was fitted, can be equally well described with ¢ = 0.42, ¢/p? = 0.15 and
a = 0.1, as seen in Fig. 1.

InF; = In(1+¢)+

(14)
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Obviously, any realistic phenomenological model of multiple production
with singular correlation functions (and thus with intermittency) should
provide us with the values of parameters like a,¢ or ¢, and no approx-
imations should be used to calculate F; to be compared with data. In
the following, however, we will just consider further the results of a toy
model with arbitrarily chosen values of these parameters compatible with
one-dimensional data for F3.

Let us stress here that our results do not depend crucially on the real
presence of singularity in the correlation function. If we replace (11) by the
non-singular form approximating (11) well for |z, — z,| bigger than some
small scale A (well below the available range of §), e.g.

c2(21,22) = ¢’ + (A + |21 — 2,) 7" (15)
then F; may be still satisfactorily approximated by (14) in the available
range of § > A.

3. Higher order moments

Obviously, the higher order moments depend on the assumed higher
order correlation functions, for which no data and no reliable theoretical
predictions exist. However, it is easy to see that large (and probably leading)
terms in them result from the second order correlations. Using the notation

/dzl / ch(z;,q&q )—fq (16)

we have well known relations

F,=1+f,, (17)

F;=14+3f,+ f5, (18)
Fo=1+46f+3f; +4fs + fu, (19)
Fs=1+10f,+15f; +10f2fs + 10fs +5fs + fs. (20)

In general, the coeflicient of the term linear in f; in F, is equal to g(¢—1)/2.
Thus, for ¢ = 0 and neglecting all f, for ¢ > 2 we find in the first order in €
a simple relation

¢ _glg—1)

¢2 = “_2"_", (21)

where ¢, are defined analogously to ¢,
InF, % a, —Iné. (22)
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In the real data ¢ # 0 (and, in fact, ¢ > €/p?). It is easy to see that
it should decrease the value of ¢,/¢,. On the other hand, however, from
the higher powers of f; and higher correlation terms f, we expect terms
increasing as =3, §~3* etc., for which the approximation (13) may be
rather poor. This would increase the effective slopes ¢,. The final result is
not easy to guess as it depends on the detailed values of parameters, and
in particular on the assumed parametrization of f, for ¢ > 2. Nevertheless,
it seems quite natural to expect (20) to be approximately valid, as is the
case for most of the data (e.g. for the UA1 data mentioned above, we have
bo/b2 = 2.7+0.5, 7.7+ 1.2 and 15.2 + 3.5 for ¢ = 3,4, 5, respectively, to be
compared with 3, 6,10 from formula (20)). More detailed phenomenological
considerations will be given elsewhere.

4. Conclusions

We have investigated the relationship between the slope parameters
determining the increase of scaled factorial moments for small bins of kine-
matical variables and the exponents of the corresponding singularities in
the correlation functions. We have shown that it is quite natural to obtain
good linear fits for the log-log plots of moments as the functions of bin size
even though the terms resulting from singular parts of correlation functions
are only a small part of each moment in the investigated range of bin sizes.
However, the fitted values of slopes are then not expected to reflect the
values of exponents for singularities of the correlation functions, as should
be the case for the limit of vanishing bin size. In general, the fitted slope
values may be much smaller then the corresponding exponents.

This result opens quite new possibilities in interpreting the observed
regularities in the intermittency parameter values. Let us mention here few
of them:

(i) It is no longer necessary to assume extremely small scales for correla-
tions in the kinematical variables, (and thus, via the uncertainty rela-
tion, to expect unusually large distances in space-time development of
the final hadronic state).

(#) It is natural to relate the observed differences of slope values for dif-
ferent processes and collision energies to the differences of the relative
strengths of correlations, and not to the exponents of singular terms,
which may be universal.

(iii) For the higher order moments and for processes where the correla-
tions are large our approximations may start to break down for very
small bins. Thus, if the experimental resolution and statistics are good
enough, we should see the upward curvature of the log-log plots, and
at least the saturation due to final resolution and statistics may be
postponed.
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These and other effects will be considered in more detail elsewhere. One
may hope that such investigations will help in constructing more realistic
phenomenological models of multiple production.
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