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1. Introduction

To describe, in the simplest way, the free Maxwell theory we choose the
Coulomb gauge (i.e. the transversal one). Then, from the very beginning,
we can put in some Lorentz frame the scalar potential and the longitudinal
part of the vector potential equal to zero, and, therefore, we deal with the
transversal vector potential only. It describes two independent states of
polarization. Of course, the description is not explicitly Lorentz covariant.
This necessitates proving the Lorentz covariance, but it does not seem to
be too high price for simplicity of the physical picture.

It is interesting to investigate a simple theory of the free notoph (i.e. the
scalar particle described by the antysymmetric tensor field B#” = —BY# =
(E, H) [1-3]). It is well known that quantization of the free notoph in the
covariant Ogievetsky—Polubarinov gauge [1] presents subtleties (i.e. ghosts
for ghosts) [3-5]. A possible way to avoid such complications is giving up the
explicit Lorentz covariance [5]. Then we show that there exists the simple
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description of the free notoph. It corresponds to the longitudinal gauge: we
deal with the longitudinal part of the vector £ only (the other components
of B*¥ vanish).

The plan of the paper is as follows. In Section 2 we recall the notoph
theory in the Ogievetsky—Polubarinov gauge. The description of the free
notoph in the longitudinal gauge is given in Section 3. In Section 4 this gauge
is used to obtain the Feynman path integral and the notoph propagators
are calculated.

2. Free notoph in the Ogievetsky—Polubarinov gauge

The notoph [1] is described by the antysymmetric (six component) ten-
sor field B,, = —B,,. The Lagrangian of the free notoph theory is

L=-1G,G*, (1)
where G* = é,B"" is a strength vector. The equations of motion are
8,G, - 8,G, =0. (2)
The theory is invariant under the gauge transformation
§B* = e"*Pg, 2, (3)

where AP = (o, X) is an arbitrary 4-vector function.
For further discussion it is convenient to introduce the 3-dimensional
notation
Bko — Ek ’ Bk” - eknjHj .

Then the equation of motion and the gauge transformations take the form

DE‘—}-%rotﬁ—rotrotﬁ:O, (4a)
d " -

&-rotE +rot rot H =0, (4b)

§E =rot X, (5a)

6 = -:%X — grad ). (5b)

The Ogievetsky—Polubarinov gauge condition has the form [1]

e"*P9,B,5 = 0. (6)
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We point out that Eq. (6), owing to the Bianchi identity, imposes only three
independent conditions. In the 3-dimensional notation we get

%ﬁ -rotE =0, (7a)

divA =o. (7b)
In this gauge the field equation are

DE:O, OF=o0

and they remain invariant under the transformations (5) with A, and X
obeying now the Maxwell equations

9 .. -
7 div X+ Ax =0,

ot

So, three independent gauge conditions do not fix two degrees of freedom
of A#*. Therefore the notoph has only one polarization degree of freedom
(6-3-2=1).

Two remarks on the covariant gauge (6) are in order.

(i) It seems unusual that the condition (7b) is a restriction imposed on
the nondynamical variable H (see Section 4). Nevertheless the gauge
condition (6) is acceptable: three independent conditions are imposed
on three dynamical variables E.

(i) Eqs (8) are invariant under the gauge transformation

- i)
§A =grada, §Ao = —aa,
where a(Z,t) is an arbitrary function. This is why, when quantizing in
the gauge (6), the second generation of ghosts arises.

Dx+grad(divx+ é)‘o)zﬂ. (8)

3. Noncovariant gauge

Let us give up the explicit covariance of the notoph description. We
discuss Eqgs (4) and (5) in some fixed Lorentz frame. Then a decomposition
of £ and H can be performed
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where L (ll) indicates transversal (longitudinal) part of vector. The field
equations may be rewritten in the form

DE.“ =0,
OE, + %rotfﬁ —~rtotrot E; =0,
Aﬁl—%rotﬁlzﬂ. (9)

We observe that the variable H, does not occur in these equations. The
field equations (9) are invariant under the gauge transformations

6.@.":0, 6E’J_=1'0tx_1_, 6.ﬁl=-"“xl, (10)

where X 1 is the transversal part of X
Let us give two examples of noncovariant gauge conditions.
1. The gauge condition

a — -
EH_L—I'OtE—-O. (11)

Its from is prompted by covariant condition (7). The field equations are
D E =90 3 E] fi 1= 0.

They remain invariant under the gauge transformations (10) with X, obey-

ing the wave equation [(1X, = 0.
2. The gauge condition

rot E=0. (12)

This longitudinal gauge fixes the gauge freedom (10) completely: X, =0.
The field equations are

DE—{-%rotﬁl:O, AH, =0. (13)

If the fields vanish when |Z| — oo, then one gets H, = 0. So, in the
longitudinal gauge (12) we get actually

H_L =0 y (14&)
E, =0, (14b)
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and the strength vector is

G* = (div E,, —iE‘”) . (15)
ot
The gauge condition (12) and the resulting one (14a) are not Lorentz in-
variant conditions. Therefore, to preserve them in the other Lorentz frame,
we must allow the field B#” to transform to the new frame as the Lorentz
tensor except for the gauge transformation [6]. In the momentum space we
have infinitesimally

- - — -

E(k) —»E(k) + 6 x E(k) - # x H(k)

iR (v x E, + vJ_(kH)) ’

ikg ik
H(k) - H(k)+ 8 x H(k) + 7 x E(k)

—

. [(#xE, #.(kH)\ . =
zk(,( e + i ika(k), (16)

=]

1

where 6(%) are the rotation (boost) parameters and a(lz) is an arbitrary
function. Then the strength field (15) transforms covariantly to the new
frame (as a Lorentz four vector).

It is worth to compare Eqs (14) and (15) with the description of the
Maxwell equations in the transversal gauge:
the electric and magnetic fields are

S5 Borotid,.

£=-%

4. Free notoph propagators in longitudinal gauge

The Lagrangian (1) may be rewritten in the form

L:-%(divﬁ)2+§(§zﬁ+rotﬁ)z. (17)

The standard procedure [7] leads to the Hamiltonian

H:%ﬁ’-{-%(divﬁ)’—{»}frotﬁ, (18)
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where

oL
88 E
is the momentum conjugated to E, and A is the Lagrange multiplier. So,
we deal with a constrained system with E and IT as dynamical variables.

The variable H does not appear in the canonical formalism. The constraint
is

3 d
=a +rotH (8= at) (19)

I =

rotIf = 0. (20)

The Hamiltonian is invariant under the gauge transformations
§E =rot X, §IT =0. (21)

They are generated by the constraint (20) and are consistent with Eqs (10)
(see Eq. (19)).

The further analysis is performed in the longitudinal gauge (12). We
know (see Section 3) that this condition fixes the gauge. In the canonical
formalism the possibility to fix a gauge is equivalent to (see, e.g. [8])

det {(rot E(%, t)),» (rot (7, t))j} #0, (22)

where {..., ...} denotes the Poisson bracket.
Let us verify the condition (22) because its validity is crucial for writing
down the Feynman path integral. The calculation gives

{(rot E(#,1),, (rot (4, t))j} ASE(Z-1), (23)

where the transversal §-function
. 0;0; .
5@ = (8- 22) s

appears because the Poisson bracket is calculated for values depending on
the variables E; and I, from the transversal part of a phase space

{Eu(3, t) ) nij(i’ t)} 6“ (z - 3;")

The Laplace operator A is reversible, and, therefore, the condition (22) is
satisfied.

It is now a simple task to write down the path integral in the longitu-
dinal gauge. We start with the physical degree of freedom only
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and we obtain as result
W~ / DB* §(rot E)§(div H) exp (i / dz( - %G“G")) s (25)

where DB** ~ DEDH. While the first 4-function represents the gauge
condition, the second one arises to integrate over the complete vector H,
not only over its transversal part. The last formula can be rewritten in the
form

W~ / DB""GXP{ / dz (- 3(6.6*)
+2—“;(rotE‘)2+',1;(di"ﬁ)2)} (26)

and the longitudinal gauge corresponds to a — 0 and 8 — 0 limits. This can
be verified analyzing the field equations resulting from the new Lagrangian

Loew = ~1G,G* + & (rot B)* + ga(divﬁ)z. (27)

To obtain the notoph propagators we follow the standard way:
1. We rewrite the action integral in the form

/dzﬁn“ = %/d:c (E,'A,‘jEj + H,'D,'jHj + E,'B"jHj + H,'C,'J'Ej) ’

where

Ay = =60+ +2)(3:9; - 6,;4)
Cij = —Bij = €460,

D.'j = —5,'1'A -+ (1 + %)6,8] .

2. We calculate the propagators using the formula

(DSf’ 0 ) hm(A B)-‘
H [ g *
0 D§j) =22 C D

In the momentum space we get

il

DP(k) = S5 L (282)

s ()5 o
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where k? = w? — |E|2.
Some comments on the form of the propagators are needed.
(i) If the coupling of the notoph has the form }B,,J*”, then the field
equation
o*G¥ - §*G* = J*
leads to the conservation low for the current J#*¥ = —J*#
s#vaﬁaujap =0,

t.e.

0
-é—t-j'(l) —rotj® =0,
divy =0

in the 3-dimensional notation J%* — j; (2) y JYU > Eiindy ), Consequently,
in the chosen Lorentz frame, in the longltudmal gauge, the notoph
coupling is

.70+ E (.

This is in agreement with Eqs (28) because adding the source term
1B,,J* to the Lagrangian (27) we obtain the path integral

W[J‘“‘]:W[O}exp{—% / k[ (k)DED (k) 1 (—k)

+ iOE)DE k)}} .

(ii) While the free notoph has only one polarization degree of freedom (he-
licity 0 described by E,), two additional degrees of freedom (helicities
+1 described by H,) arise in notoph interactions. The situation is
complementary to that in the Maxwell theory: the free photon has two
transversal polarization states, while in interactions the third polariza-
tion (helicity 0) arises. The fact that the same number of interacting po-
larization states arises in both cases is easy to understand: the Maxwell
and notoph theories are zero mass limits of two equivalent theories of
spin 1 [1].

5. Final remarks

The formulation of the notoph theory in the longitudinal gauge seems to
be economic and clear, at least in the free case. Investigations of interacting
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notoph theories and their Lorentz covariance in the longitudinal gauge are
being carried on.

We are grateful to Dr M. Majewski and particularly to Dr P. Kosinski
for illuminating discussions.
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