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The interaction of the notivarg with an external current is discussed.
The “continuity” equations for the external current are obtained.

PACS numbers: 03.50.Kk

There exist gauge theories of the scalar massless particle. The earliest

one is the theory of the Ogievetsky—Polubarinov notoph [1]. Deser, Siegel
and Townsend [2] and Tybor [3, 4] have given other examples of the free
scalar gauge theory — the theory of the notivarg.

(i)

(#)

(iii)

Let us recall some facts about the notoph:

its description is complementary to the one of the photon: in the
Maxwell theory the potential is the 4-vector A#* and the strength tensor
is the antisymmetric tensor F#** = 9*A¥ — §¥ A*, while in the notoph
theory we have the reverse situation: the potential is the antisymmetric
tensor and the strength is the 4-vector;

as in every gauge theory, additional degrees of freedom (except the
physical ones in the free case) are needed to describe interactions in the
consistent way. In the case of the notoph except the scalar state two
additional (transversal) degrees of freedom must be taken into account
[5);

the theory of the selfinteracting notoph is equivalent to the nonlinear o
— model [6].

In comparison with the notoph theory, the theory of notivarg is on

an opening stage: the classical descriptions of the free notivarg are known
only {2, 4]. In the present paper we make the first step to investigate the
notivarg interactions, namely we introduce the interaction of the notivarg
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with an external source. The conditions on the source protecting us from
inconsistency of the theory are analysed.

Let us start with recalling the most essential points of the description
of the free notivarg [3, 4]. The action integral has the form

I= / d'z (~(0.K°") + (3, K°,)’) (1)
and the Lagrangian density reads

L=-(8,K"*)" + (8,K°,)". (2)

The 20-component field K#**? has the symmetry of the Riemann tensor,
t.e. KHab = Kobw = _Kmbe ¢ s KHeP =,

The action (1) has been obtained (by the m? — 0 limit) from the action
describing a massive spin 2 particle with the help of the 4-th rank tensor
[3, 4]. The description in the massive case is equivalent to the well known
theory of Pauli and Fierz for a spin 2 particle.

The physical contents of the theory given by the action (1) have been
analysed in Ref. [4] and it has been proved that there is only one physical
degree of freedom: the state with helicity 0.

The action (1) is invariant under the gauge transformation

SKHveP = e""""s""""‘@,@ww,\,‘
+ ¢ (8"n° + 8°n*) + g"P(6*n* + 8°9*)
- guﬂ (31',70 + 6“17") _ gva(aﬂﬂﬂ + 35,,&)
—2(g**g"? — g"Pg"*)8,1" , (3)

where w,s = wp, and 7, are gauge tensors. Two remarks are necessary:

(i) not all components w®® and n* act effectively in the gauge transforma-
tion. It is connected with the invariance of Eq. (3) under the transfor-
mations

§w™ = NP + 8P,

bw*P = g°PA, b9~ = -30°4,

where A® and A are arbitrary functions;

(ii) in the papers [3, 4] we have discussed another form of the gauge trans-
formation. Instead of the part with w®?, the transformation with the
3-rd rank tensor w®?” has been used. The tensor w®?” obeys the sym-
metry relations w®” = —wP*, ¢,,,5w0*" = 0 and the constraint
OawP” = 0. The gauge transformation (3) corresponds to the solution
of this constraint.
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While the action (1) is invariant, the Lagrangian (2) changes by 4 —
divergence under the gauge transformation (3). So, the Lagrangian (2)
cannot be written in terms of 4he strength tensor (see Appendix D)

H* = 1(e¥00p0" 0 K™P + £,050° 0. K"+°F) (4)

2

only. The strength tensor (4) is invariant under the gauge transformation
(3) and obeys the relations H#** = H**, H% = 0, §,H*” = 0. We see that
the description of the free notivarg is complementary to the massless theory
of Pauli and Fierz, where the symmetric tensor h*¥ is the potential and the
(linearized) Riemann tensor

RHvoB — %(6vaah;xﬁ + 6}laﬁhva — §*9°hP — avaﬁh#a)

(invariant under the gauge transformation §h*¥ = O#£” + 0¥€*) is the
strength tensor.

We introduce the external source j#***# with the symmetry properties
of a Riemann tensor. The standard form of the action is assumed

I= [ @2 (~(Em) 4 (B,K%) 4 1K Piuag) . (5)

In the case of the 20-component current j#**# the action (5) is the most
general one (up to the transformation

F*P — 4P 4 A(g5*P + g*PjH — g*Pie — g¥oj*P)
+B(g"*g"* - ¢"%¢*)j,
where jk = j#ve,, j=j4 and 14+ 24 #0, 1+ 644 12B #0).

The action (5) is invariant under the gauge transformation (3) if the
current j#**P obeys the following relations

auaa:j“ww3 = Djvp - _;_avaﬁ] ’ (66.)
8,i* = 10%]. (6b)
It is not hard to prove that the field equations following from the action (5)

O K" P — 9V K P 4 87 KP — PR
— L (g"*(0"K" + 8°K”) + g*P (0" K" + 8°K¥)
_guﬁ (avKa + BaK") - gva (anKﬁ + aﬁKﬂ)) —- j#vaﬁ
(K*** = 9,K**", K*=K*,) (7)
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are consistent if the relations (6) are fulfilled. We note that the conditions

(6) restrict to 11 the number of the independent components of the current
jﬂw—‘ﬁ.

Let us perform a reduction of the gauge freedom imposing a gauge
condition. We must care for consistency of the gauge condition with the
field equations. The gauge conditions must not be too strong. For example,
the following ones [3, 4]

K*e, =0, 8,8,K" =0 (8)

are consistent with the free equations, but they lead to the undesirable
constraint 7#* = 0 on the current.
The gauge condition

K~ 1g*K = 0 9)

(where K#* = K#®, and K = K/) is consistent with the field equation
(7). It restricts to 11 the number of the independent components of the
field K#¥P, In this gauge we can rewrite the field equations in the form

D owves — jnvaﬁ_§(g#ajl'ﬁ + gVﬁjua _ g#ﬂjva _ gvaj#ﬂ)
+3(g"°g"® — 9°9"%)7,
LK = -2j,
20,8,C** P + L(Lg** 0 -8#0%) K = j»* - 1¢"*j,
where C**? is the Weyl part of K#***#, (To prove that we use the dual
properties of the tensor K#**# — see Appendix A). The gauge freedom is
not removed completely but only restricted according to §K** = 1g#*§K.
Let us finish with the following remark. In the free case the physical
degree of freedom is described by a component of the Weyl part of K**=P.

Therefore it is attractive to restrict the consideration to the Weyl current
(7#* = 0) only. The current conditions have now the form

8,0,3""F =0 (10)

and the gauge conditions (8) do not contradict the equations of motion (7).
For further applications it is convenient to rewrite Eq. (10) in terms of
current components. Using the decomposition of the Weyl tensor

e = (', oY),

where 0i0i .
3 — ot
=1,

.0ijk _ _jkm i
j =" "ay, ,
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rmnab __ ma_nb nd_ma mbd_na

Jm = = (gme ™ 4 gt — g™t — gner™)
and .. .. . .. .. .
T":H’,T.‘:O,o‘":a", a::o, (i,m,a,:1,2,3)

we get

On0,v™" =0,

%8, T™ — £™*9,,8,07 =0,

((8°)* + A) 77 + 8'0pt™ + 8 0,u7™

~8°(£™* 8] + ™ B0t = 0.

Using the helicity decomposition (Appendix C) we obtain

=0,

8%ty — ™ o =0,

((8°) + &) 7¥(2) - 8° (™ B (2) + €™ 0,00} (£2)) = 0.
We observe that there is no restriction on ;. Inspecting the interaction

term
LE* P pap = (T*° = K**) Ty — 20,45

we note that current oy, is coupled to the field Sy, (i.e. to the field describing
the physical degree of freedom in the free case — see Appendix D).

The “continuity” equations (6) (or (10)) are necessary for hamiltoniza-
tion and quantization of the theory. Qur investigations in that directions
will be presented in the next papers.

We thank Drs M. Majewski and L.C. Papaloucas for their interest in
this work.

APPENDIX A
The decomposition of the tensor K#¥*# = K°f#v — _ K#¥Pa gheying
EuvapK#**® = 0 in the irreducible Lorentz parts is:
K#vab — quvaB + Epvep + Gnvaﬂ ,
where
Qpvep — grved _ %(g#aKVﬂ + gVﬂKl“' _ g#ﬂKva — gvaKuﬁ)
+3(9"°9"" — ¢"¢**) K,
Epves — %(g#a K*P + gVﬁ KB _ g#ﬁ Kve — gvu K#ﬁ)
~1(9"°¢” - ¢*¢")K ,
GHveP — 11_2 (gﬂc gVﬁ — gp#gva) K.
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The dual properties of these parts are:
~Q#veB — ~pvap ,
~Epvab — _ E~waﬁ,
~GrreB = Gravas
where left-handed and right-handed dual tensors are respectively
~Auvap = %E“V,AA"M"B ,

A~yvaﬁ = isaﬁokA;waA .

APPENDIX B

Let us consider the tensor K#*®# = KoPr = _K#“Pe gheying the
condition ¢,,,s K***? = 0. We introduce the new variables

T =T#H, K9 =K¥* A, S5 =87 8§=0 (4,7=1,2,3)
defined by

K% = %

K™ = ™k Ky + L(g™ g™ - g™ ™) K],

KOk = gikmgi 1 gt AR g AT
So, we get the following decomposition of K*¥*#

K*e = (T, K%, 5%, AY).

APPENDIX C

The well known decomposition of a vector into transversal and longitu-
dinal parts is . ' .
Vi=Ve+ V.,
where
VrI‘\ - V‘ 4+ %B‘BjVj ) VI: = ——2-3‘6,-Vj ) 4= —'3,‘6‘. .

The analogous decomposition of a symmetric traceless tensor a'/ is

a’ = a"(£2) + a¥(£1) + a¥(0),



Ezternal Current in Theory of Notivarg 445

where . .
a9(£1) = — % (0%} + D),
a’(0) = 3(30'¢7 + Lg'7)ay,
ah=d + 500;a7, ap= L0,
a = ajaﬁ .

APPENDIX D

To construct the strength tensor H#* (Eq. (4)) we have used the deriva-
tives of the field K* of the lowest (as it is possible) order.

Using the duality properties of K#“*# (Appendix A) we see that the
strength tensor depends only on the Weyl part of the field K#¥?

H®W = ¢#,,50°0,C"°F,

The components of H*¥ are (i = 1, 2, 3)

HOO = 26"31'5,-,- Y

H® = -28°9,,5™ — £™3,,0'(T,, — K,,),

HY =2((8%° + 4] § ~ 2¢4'8,,8,5™

+2(8°0,5™ + 070, 5™) + 8° [¢°0, (T — Ki) + /%0, (T} - K3})] ,

where the tensors S* and T% — K% — 1g7(T¥ — K}) are the components
of the Weyl tensor C#**f (Appendix B).

If the gauge is fixed completely (for example, by imposing the nonco-
variant gauge conditions

T - 1g9Tm =0, 0.A™ =0, KI=0, %85 +e™55i=0)
we obtain
HOO = 2ASL 3
HO‘. = 2300‘51,,
HY = (8°)(¢" +322) Su - (60 + g% ) 51,

where the field Sy, is the helicity 0 part of S*/ (see Appendix C) and it
describes the physical degree of freedom.
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