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The canonical analysis of (i) the free notivarg theory and (ii) the
theory of the notivarg interacting with the external Weyl current is per-
formed.

PACS numbers: 03.50.Kk

1. Introduction

In the previous paper [1] we have investigated the conditions providing
consistency of the theory of the notivarg interacting with the external cur-
rent. The conditions, that the external current must obey, have been found.
In the present paper we carry out, with details, the canonical analysis of

(i) the free notivarg theory,
(%) the theory of the notivarg interacting with the Weyl external current.

Let us recall that the canonical analysis performed in Ref. [2] has been
aimed at explanation of the physical contents of the theory of the free noti-
varg. The present analysis can be regarded as arrangements for quantization
of the free notivarg theory as well as the theory of the notivarg interacting
with the classical current.

2. Free notivarg
2.1. Constraints

We discuss the free notivarg theory described by the action [2,3]

I= / d'z (- (0, K=)" + (a,xm,)’) , 1)
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where the potential K#¥ has the symmetry properties of the Riemann ten-
sor: K#veP = KoPw = _KmBa ¢ s K*P = 0. Using the decomposition
(see Ref. [1])

vaaﬁ — (Tij, St’j, Kl’j’ At)

we can rewrite the action (1) in the form
I= / d=L(T%, §9, K9, &, 8°T5, 8°5%) 2)
where the Lagrangian density is
L =—2(8°T*)" + (8°T)" — 46°T*¢;umd ST
— 88°T* 8, Ay + 2(8°5%)" — (8.T™)’
+ demi8°SHO K 4 2(6°5%)" ~ 4(8*4%)°
+4(8,4)" - 8B6¥™ 8" 8,4, - 2(6™K*)’
+3(0nK™)" + (0°K)" — 20™K,., K
+20.T*" 0 Ky, (3)

(T = T™ and K = K*). We note that the variables K/ and A* occur
without their time derivatives.

Let us
(i) define the canonical momenta
i ac . )
ki - _ Oprki ki 90
I = 5%°T.. 49°T™ +2¢9™'3°T
12 (4™, 5%, + €m0, 5%) — 4(0* A + 5 A,
; oc ; .
ks .. — 0 gks _ kmp 1 imp kY.
PY = gong = 19°S 2(e*™0n K} + ™8, K} ); (4)

(#1) perform the Legendre transformation
I= / d*z (IT*8°Ty + P*0°Siy — H.)
to obtain the canonical Hamiltonian density

He == L(IT™)" + LI + Iyue*P™3, 5!,
— 2ITM 8, Ay + 2118, A™ + 86 ™ 8" Sim8: A;
+ 46478, 85 B, Ay — 3(8,,5™)” + (8T™)"
— 20, T™ 8 K,u + L(P¥)” + P*e™0,K,,, (5)
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where IT = II.
The momenta conjugated to K*/ and A* vanish because the velocities
8°K* and 8°A* do not occur in the Lagrangian density (3)

i oc i ac
pAE"‘—“—aaoAizoa pII(EaaoKij':O' (6)
So, there are the following primary constraints
Qzu = pf( ’ (7)
Q2’:) = PK (8)
We introduce the total Hamiltonian (4]
Hew = / &z (He + Niyy + M8 ) 9)

where A; and )\;; are Lagrange multipliers. The dynamics is expressed by

8 = {a, Htot}f(,)zi(,,zo ' (10)

The theory is consistent if constraints hold for all times. This leads to
the secondary constraints

¢2'3) =0 I™ — 8'IT + 2™ 8,8 S,
&y =0°0mT™ + 870, T™ + L(™* 0 P} + ™8, F}),
(8‘8

i) =AY + 90, 1™ + 0,01 + 3 (=

~ ¢%)0n0n ™, (11)

where [T = IT¥ — $gI1. The dynamics of the constraints is

(1
Y Q(l) - {Q(l) ’ H'“}sf(,,_.f(,,-o 245(3) ’
0
O°BG) =~y .
0°Fa) = Om®B(3) — O Fym »
0 l
0°FG) = 23y — (0°%(s) + 0 F(y)) - &)

8¢, =0. (12)
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All the constraints obey the relations

{26y, $ii)} = 0. (13)

So, we have the theory with the first class constraints.
We point out that
(%) only five constraints @4 are independent because there exists the iden-
tity -
Using the formulae of Appendix we obtain the following decomposition
of #(4) into independent parts
. &'67

$5) = 55?4)(i2) + Si'52.';)(*1) - —A—%)Z )

where
2ij ij ijg m
2y = Py = 397 P(aym
(1) only two constraints &) are independent because (according to Ap-
pendix)

5

y = AIl"(+2).
2.2 New Hamiltonian

- Because the first class constraints can be added to Hamiltonian [5], we
construct the new Hamiltonian density

H™" = Ho + Vidlyy + VS + VOB (14)

where V;, V,-g” and V}S-s) are the Lagrange multipliers, and H, has the fol-
lowing form

Ho = _%(Hik)z + ';'Hz + Hkiekmal’sjn - 3(am5mi)2 + (amei)z . (15)

We observe that the variables K*/ and A’ disappear in the new description.
Let us note that the field Vé‘) has only five independent components

5 5 8:8; 1 (aym
Vi = V(E2) + V0 (an) - v,

where ) \
v —v. yom
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and the field Vig-s) has only two independent components
V) = v(+2).

The Hamiltonian density H"*" is derivable from the phase-space La-
grangian density [6]

new i5 4 5
L™ = P;0°S + I;0°TY — H, - Vidly) - V&G, - VOSE,,  (16)
where the Lagrange multipliers V;, V}S‘) and V‘-g.s) are treated as dynami-
cal variables. So, passing to the canonical formalism, we find the primary
constraints . N 3
=0 'xa):O, ‘n'z';)zo’
where =* ,xg) and ”Zg) are the canonical momenta conjugated to V;, V’ff)
and V,-g-s) respectively. Thus the new total Hamiltonian is
A = [ (1 ot 0Px 0PE) . ()

where \’s are the Lagrange multipliers.
The dynamics is expressed by

8%a={a, Hiy"}, - (18)
In particular we have
O’ = —Blg) niy =2y, 7= -4
The time derivative of &35y, $(4) and &5 are given by Eqs (12).
2.3. Gauge transformations and noncovariant gauge conditions

We are now ready to discuss the gauge invariance of the Lagrangian
L= /daz[,““. (19)
The generator of the gauge transformation is
G = ‘/d3 ot + amxa) +afs 7"(5) + @5y + 1, & 45'4) + 17(5)5?(5))

where a’s and n’s are gauge functions (af*) and 7(*) have such a structure
as $(4) has, and a(s) (5)(:1:2) 17,(:) = n,J)(ﬁ:Z))
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The generator obeys the consistency condition [6]

d
5(;—0'

Using Eq. (18) we obtain

0= 8%n+ Oy — &',

0;0;

off) = 80} — §(8um; + 0m) — =50

(5) 007):(,5) + m4)(i2)
The infinitesimal gauge transformations are

Vi={V;, G} =ai, V=0, 6V =af),

§T" = —%(3‘17j + Bjn‘) + g 18.n™ + An®Y

ST = — (8‘6,,.17“)"‘" + afamqw'"*) ,

§S% = ( impg (4 i gimPy ,’(4)')

§PY = ™9 & +™*0,,0'n, . (20)

We point out that there are ten independent gauge functions: three 7, five

nf; ) and two 1;,(; ). To fix completely the gauge freedom we can impose the
following noncovariant conditions x, (i=1,...,10)

TV - 1T =0 (5 conditions),
779,55, + £7™8,5;, =0 (4 conditions),
Ir=0 (1 condition).
We note that
{x@wr x4} =0. (21)

2.4. Physical Lagrangian
Solving the constraints &) (i = 3, 4, 5) we get [2] (see Appendix too)

ﬁ.} = -—26“",‘8,'5'1‘1, ’ ﬁL = _§H’ P.J(:h2) =0 )
Ty = 1T, Pi=-2%9;Ty,, M9(22)=0
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Inserting these solutions to the action (19) we obtain the action describing
only one physical degree of freedom [2]

I= / d*zLonys (22)

where .
Lotys = 2PL8°SL, — EP2 +3(8'SL)", (23)

or, in the configuration space,
Lonys = 30,909,
where
Y= ‘/_G-SL .
3. Interaction with the Weyl external current
3.1. Weyl external current [1]
We assume that the interaction is described by
Eint = %K‘wapjpvaﬁ ’ (24)

where the external source j,, s has symmetry of the Weyl tensor. Using
the decomposition of the Weyl tensor

e = (19, oY),

where 7/ and 0" are symmetric and traceless, we rewrite the interaction
Lagrangian density in the following form

Lin = 73 (T — K¥) - 20,8V (25)
The Weyl external current obeys the condition
8,0,*" =0,
or, in components,

=0,
807";: = e’mnamo"l‘n ’

[(8°)" + A] 79 (2) = 8° (€740,0] (£2) + 78,0} (£2)) - (26)
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3.2. Constraints
The Lagrangian density is now
L' =L+ Lin,

where £ and L;,, are given by Eq. (3) and Eq. (25) respectively. Because the
interaction term does not contain any derivative, the canonical momenta do
not change and the canonical Hamiltonian density is

H; = Hc — Tij (Tij - Kij) + 20’,’j5ij y (27)
where H, is given by Eq. (5).

The primary constraints are the same as in the free case (Egs (7) and
(8)) and they lead to the secondary constraints &(;, (i = 3, 4, 5)

®=%r
Eo =P+,
B = B+ 00T (22) — (™ B0l (£2) + ™ 000i(22)) . (28)

We note that 45"’ )(0) = 0 for 7, = 0 (see Eq. (26)). The system of the
constraints is consmtent what can be seen from the following relations

0°%y = { Py Hiot}y , 00 = ~ 2800

0°%(;) = d5?4’) ) °%(5) = OB (£1),
s 3 4 6 8
8°%3) = 4’25’) 1(0'8G) + 0'8) — 109G
8°8) = (29)
where
H!, = H. + / d*z [-7;;(T" - K%) + 20,;5") (30)

with Hy,, given by Eq. (9). The current conditions (26) must be taken into
account to obtain Eqs (29).

3.3. New Hamiltonian
We construct the new Hamiltonian density

HIPEW — MOV _ Tij (Tij _ V(4)ij) + 20.‘1.541'
+VE) [0°79(£2) — (6™ Omol(22) + €™ Bmai(£2))] ,  (31)
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where H™¥ is given by Eq. (14), and V,.g‘) and V,-g-"’) have the same struc-
ture as in the free case. The Hamiltonian (31) and all the constraints are
derivable from the phase — space Lagrangian density

L:Inew — -P,JBOS’J + H,’jaoTij _ Hlnew . (32)
It is invariant under the gauge transformation (20).
3.4. Physical Lagrangian

To solve the constraints &;, (i = 3,4, 5) we must use the current
conditions (26). We obtain:

from (% =0: Ik = ~267%9, 81y, I, = -im;

from (=0: Ty = T, Pj(£2) = & (eqpmd® (£2)
+ ejpmap”'im(iz)) ’
i = 356 ™ O Pr, + 1713

from By =0: [I9(£2) = L(6™0nol(£2) + /™ 8ol (£2))
- 18%%(£2).

Inserting these solutions to the action
I= / diz L'

we obtain

I= / F (33)

where

Lonys =2PL8°Sy, — 2(P)? + 3(6°S1) - 30L51
— 1o (£2) 507 (£2) — §(50°77 (£2)) (50°7;(2))
+ 279 (£2) 5m(£2) + (57p) (7m) - (34)
The last four terms are similar to the Coulomb term pLp in the electro-
dynamics. We see that only one degree of freedom (described by 53) is

propagated, but to describe the interaction in the consistent way the fur-
ther degrees of freedom must be taken into account.



456 J. REMBIELINSKI AND W. TYBOR

4. Final remarks

We have obtained the canonical description of the free notivarg as well
as the notivarg interacting with the external Weyl current. The quantum
theory of the notivarg will be given in next papers.

We thank Drs M. Majewski and L.C. Papaloucas for their interest in
this work.

Appendix

The well known decomposition of a vector a* into transversal and lon-

gitudinal parts is . . _
o = ay +af,,
where
ah = a' +8'ay, a} =-8ay, e, =L18id', A=-60".
The analogous decomposition of a symmetric traceless tensor a¥/ is
a" = a’(£2) + o (£1) + a*(0),

where

0¥i(£2) = @ + £ (00ma™ + 80na™) + 5 (22 - ¢7) nBaa™,

a
(1) = =4 (80ma™ + 8 0ma™) — 222°9,,8,a™,
ai(0) =& (3"—4‘2’— + g") OmBpa™ .

The parts a’(+1) and a*/(0) can be expressed by the transversal and lon-
gitudinal parts of the vector a* = 9;a*

@ (1) = -1 (8} + & d}) ,
a’(0) =32(10'0' + Lg¢7)av.
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