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We investigate the problem of discrete in time regular perturbations
affecting a deterministic process with a generic relaxation time. The ef-
fect on the moments of a kinetic process caused by chaotic changes in the
deterministic forcing is calculated. Our discussion is carried out in two
stages. First, direct calculations determining statistical properties of the
process driven by a chaotic motion are presented. Second, the long time
predictions of the model are analyzed in a perspective of a properly taken
limit of continuous-time idealization of a regular forcing. Some compar-
isons are made with the known properties of continuous time stochastic
processes.

PACS numbers: 05.40.+j; 05.45.+b; 82.20.Fd

1. Introduction

Mechanical processes are known to posses domains of a “chaotic mo-
tion” which may influence other mechanical processes, especially in com-
plex many-body systems. At the level of the theories of the Generalized
Langevin Equation [1] or the Exact Master Equation [2,3], one can derive
evolution equations for relevant mechanical variables (or “low observables”
projected from the relevant part of the density matrix) which take forms
of nonuniform differential equations. An extra nonuniform term appear-
ing there comes from averaging over “fast variables” and has usually an
interpretation of a thermal noise [3]. It would be therefore natural to ask
whether a chaotic character of underlying mechanical processes can imply
a “stochastic” (or noisy) behaviour of a physical system at hand. When
does a chaotic motion become a source of a random behaviour and un-
der what conditions its influence on the dynamics can be approximated by
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noise-generators? What are possible routes of unification of mechanics and
the theory of stochastic processes [4]? A different rationale for these studies
is the concept of thermal bath in the theory of open systems. The bath
is usually described as a stochastic set of harmonic oscillators. A possible,
and maybe more natural, extension of this description would be a set of
coupled nonlinear oscillators with a chaotic behaviour. As the investigation
of influence of a chaos generated by such a system is rather cumbersome,
one can simplify the problem by using, instead of physical oscillators, model
generators of nonlinear behaviour. An example can be a logistic map or its
topological conjugate (also, an appropriate set of the maps) [5,6].

The above way of reasoning relates closely to the problem of ergodicity
of dynamic systems [7]. Further, we will concern mostly “semi-ergodic hy-
pothesis” by studying trajectories of non-ergodic systems influenced by noise
and investigating their asymptotic properties (non-ergodic trajectories may
become ergodic after a noise being imposed on the dynamic system [8-10]).

In this paper we try to go deeper in the understanding of non-ergodic
and noise-like behaviours of chaotic generators. Our interest will be devoted
to investigation of non-ergodic and stochastic behaviours of logistic mapping
and linear systems perturbed by chaotic generators of this type.

Section 2 discusses ergodic vs non-ergodic properties of the logistic map
in the range of either fully, or partially developed chaos. Statistical proper-
ties of the transformation are studied in terms of correlation functions. In
particular, non-ergodic behaviour of the logistic transformation is investi-
gated in the range of 3 < A4 < 3.449... (this choice of A produces, by a
pitchfork bifurcation, two stable fixed points z,, z; which form an attractor
of period two). Some numerical results are also presented for the range of
A-values which lead to subsequent period-doubling bifurcations of the map.

Section 3 is devoted to statistical analysis of the linear system perturbed
by an additive term representing a chaos-generator. Long time behaviour of
the system is compared with expectations calculated by ensemble averaging.
As a natural extension of these studies, we present results for the linear
system driven by a “shot chaos” (Section 4).

Further complicacy of the asymptotic behaviours comes from multi-
plicative perturbations imposed on the system driven by, otherwise fully
“deterministic”, forcing. Section 5 discusses time-evolution of such systems
by use of partial differential equations of the Fokker-Planck type.

2. Non-ergodic behaviour and stochastic properties of
logistic mapping

Time evolution of dynamic systems depends frequently on externally
perturbed model parameters. In the variety of recent studies [8-11] it has
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been observed that inclusion of either chaotic or stochastic perturbations
of these parameters can induce quantitatively new phenomena. Different
concepts [12] have been used to distinguish hetween perturbation-induced
chaotic and stochastic behaviours. The possibility of the existence of fractal
attractors or (and) diffusive motions has been pointed out [13] by studying
the sensitivity of a given dynamics to the strength, frequency and time cor-
relations of external perturbations. It has been shown [14], that in the limit
when the dynamics of the perturbations converges to a stationary Gaussian
diffusion process, the long-time behaviour of the dynamic system coincides
with the predictions afforded by a stochastic analysis. Particular attention
has been focused on the class of phenomena induced by the presence of
regular perturbations created by the mapping:

Yni1 = 2¥° — 1, (2.1)

Apt1 = Aa, + T1/2Yn+1 y € [_1’ 1]' (22)
Here T, X = exp(—+7) are positive constants and the logistic transformation
may be substituted by any other mapping conjugated to the Bernoulli shift.
Decreasing 7 the system (2.1)~(2.2) exhibits a transition from non-Gaussian
chaotic to Gaussian stochastic behaviour [15] provided the mapping in (2.1)
has the so called ¢-mixing property. It has been rigorously proved [14] that
for 7 — 0 and Ty = 2y* — 1 a “classical” stochastic process is generated in
the a-variable, namely the Ornstein-Uhlenbeck velocity process [16]. This
transition has been recently studied [17] in terms of r-point correlation
functions. The authors have developed a systematic method to calculate
correlation functions of arbitrary order for the class of systems characterized
by the Bernoulli-shift. The method allows to analyze meaningful differences
in the structure of r-point correlation functions when the dynamics of the
system evolves from chaotic to a stochastic-Gaussian behaviour.

In our analysis we use an equivalent form of T (2.1) which is:

Zpyy = Az,(1 - 2,), z € (0,1). (2.3)

For A = 4.0, the above map is ergodic (even mixing, [5]) and there exists
the absolute continuous invariant density g(z),

(2.4)

1 1
9(2)=:‘7(\/—1———_'—35, b/g(a:)dz:l.

Given a map T, a phase space X, the ergodic invariant measure p(z) and
a test function f(z), an ensemble average (f(z)) is defined as

(f(2)) = / #(z)e(z) dz . (2.5)
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From (2.5) one easily gets e.g. :

m-—1 1 2m — 1)
=2 e = S

m
_2m—1

m - m-—1
(elell - 2" = = (alel- 2™ . (2)
We further define correlation functions:

g(nyn+m) = (2(2n — (2))(Znim = (2)) = (TaZasm) — 5. (28)

In the case of a stationary dynamic process, g(n,n + m) = g(m). The
evolution generated by a logistic map T in the domain of “fully developed
chaos” possesses this property. In fact, for A = 4.0, g(m) is trivially zero?!
as

(2.6)

(BaZrim) = 5. (2.9)
This proves authomatically mixing-property? of the logistic map [5,6,18]
for A = 4.0.

Existence of p(z) for A = 4.0 means that distribution of any set of
initial points {zo} leads to the distribution of {z,} predicted by g(z), so
that averaging with the invariant measure g(z) yields ensemble-averaging.
On the other hand, g(z) can be obtained directly from a rigorous “time-
solution” of (from iterates of) a trajectory z,(z¢) with a given starting value
zo. This implies, in turn, that averaging with p(z) is effectively equivalent

to the time average and o
(f(2)) = f(=)- (2.10)

All of the above statements need not to be true for A < 4. In fact, for
A < 4, the process (2.3) is not ergodic as a trajectory {zo,21,...,2p,...}
does not cover the whole phase space (0,1). In the region of regular dynam-
ics all trajectories become attracted by either one stable fixed point or by
a finite family of cycles emerging by the “period-doubling” transformation.
In the chaotic domain, the trajectory covers the domain of a fractal dimen-
sion. Moreover, the logistic process is not then ergodic even in a “weaker

sense”, i.e. .
(f(=)) # f(=), (2.11)

1 We refer to the paper of Beck [17], where it has been shown that with T
defined by (2.1), (ynym) =0 for n £ m.

2 A map T is called mixing if for every pair of measurable sets A and B

Jim_o[T™(4) N B] = e(A)e(B)

which requires correlation functions decay to zero in the infinite time limit.
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what can be easily shown numerically, especially in the region of two-cycles.?
2.1. Statistical properites of logistic map in the region of two-cycles

In the domain of appearence of a two-cycle, we get asymptotically
(t.e. for a stationary process):

T = FR ,
Too = { (2.12)

zo =T+ a,
and
A+1 a’~(A+1)(A_3)
24 - 442 )
Let us assume conventionally an initial value z_,,, so that asymptotic dy-
namics leads to a set {z¢,Z;,...,Zn,...} and, in particular, for a two-cycle:

z= (2.13)

z;, with afrequency », =v,

Tap = { (2.14a)

z2, with a frequency rva=1-v,

(2.14b)

z,, with a frequency v,,
Toany1 =

z2, with a frequency ;.

From the above formula, it can be easily shown that:

(:c,,.) =12 + V22 N (Zgn_“_) = vz, + 123, (2.15)

And the appropriate values of the correlation functions are:

(3211‘22”’ .o .:c,,“) = lllz: + yzz: = (z:n> ,

(Z3ma41Z3ms41 - - Banap1) = a2} + 1125 = (25,44) - (2.16)

3 As the logistic transformation is an example of a “phase-space shrinking”
process, it cannot be strictly ergodic (except from the case of A = 4). This
would suggest studying its ergodicity in a weaker sense:

(f(z)) — :f(_z') asymptotically.
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Fig. 1. Two-Cycle. A-dependence of v;, a relative frequency of occurrence of
a stationary state z; after an even number of steps. Iterations have been done
for N = 10* different values of initial points zo.

In particular,

(zznzzmﬂ) =12y,

k1
(z,,., ce o T2, To2my 41 o - .zgm,+1) = Vlscla:, + V3T, . (2.17)

Furthermore, if Z = z — (z), one gets:

(& =0, (2)=21-v)(z:1~2),

(5znizn+1) = ($2n¢zn+1) - (221;) (32u+1) = —V(l - V)(zl - 32)2,
(2.18)
where for each pair of n,m
53” + égm.}_x =0. (2.19)
In order to achieve
(x) == %(zl + 2:3) N (2.20)

i.e. for the weak (asymptotic) ergodicity condition to be fulfilled, the fre-
quency of realization'in the n-th S’fép any of the values z;, z; has to be the
same (= 1) when starting with various initial values z,.

Numerical calculations dlsplay discrepancy to the requirement (2.20),
(c.f. Fig. 1). Iterations of the trajec¢tories have been started from a set ( 10*
points) of various {z,},'distributed either regularily or randomly over the
interval (0,1). We have calculated numbers of ‘trajectories N(zo — z;)
which after n steps of iteration have occupied z; (z,, respectively):
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N(zo e d 3,‘)
Vv; = "——"N—-" . (2.21)

It can be seen that lower states (»; > va, z; < z;) are more frequently
attracthg the traJectones, sq that the ensemble average of any quantity
f(z) will asymptotically approach

(f(2)) = vif(21) +vaf(22), (2.22)

wheras its time-average will be

f(z) = —;rf(:cl) + %f(z,) . (2.23)

The difference between (f) and f can be easily estimated by direct use

oft v;:

(1 = 21’/2)(22 el zl‘)
z, + 2, |

Mé__ Z| = (2.24)

The same tendency is observed for other multicycles. Fig. 3 displays
relevant frequenc;es for the 8-cycle (4 = 3. .550); see also Fig. 4. In the
chaotic region, differences between (z) and Z become less, prominent. We
have constructed a coarse-grained type density g(a:) (c A Flg 3, A=23.7)
which serves as a measure of time the system spends in a direct nelghbour-
hood of a given point. To get the h.\stogra.m of §(z), we have started from
the set of {zo} (N ~ 10* points regularly or randomly distributed over
(0,1)) and calculated the number of trajectories which after m steps fall
into the interval [md:c, (m+1) dz ), where® dz = 0.01.

Before closmg up this sectlon, let us summarize statistical properties
of quantities that can be calculated numerically. for the logistic. mappmg
with some (finite) accuracy. Dispersion of the correlation function g(m) is

defined as:

U:(m) = <(zﬂzﬂ+m)2) - <‘anﬂ+m)'2 ,' (2.25)

4 The estimate of § gives values in the range 0.18% ~ 3.6%.

5 The solid line in Fig, 3 has been drawn through centers of the histogram, the
dashed line represents the shape of g(z) for A = 4.0.
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Fig. 2. Eight-Cycle. Intensity of occurrence of various stationary states. N = 10*%
randomly sampled initial points have been chosen for iteration.

where z = z — (z). For a fully developed chaos, one finds o7 ,) = (02)’ =
1/64, which prompts that relatively big fluctuations can be met in numerical
calculations of the correlation functions for 4 < 4.0.

For a two-cycle, a dispersion of the time-average 7 is

s 2 (A+1)(4-3)

whereas a dispersion of the ensemble average (z) gives:
a(zz) = 4”1."'2&2 = (znzn+2> . (2.27)

9 ix)
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Fig. 3. Coarse-grained density g(z) (c.f. the text) calculated for the dynamic
system (2.3) with A = 3.7. Solid line links centers of the histogram, the dashed
line depicts the form of the invariant measure g{z) for 4 = 4.0.
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Fig. 4. “Basins of attraction” for the eight-cycle (A = 3.550). To study their
“quasi-fractal” structure, we have refined the region of starting points zo.
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For the correlation functions one gets:

and

oy = 16 (v — vy)’at, (2.29)

which for a uniform distribution of the stationary states v, = v; = 1/2 gives
identically zero. In conclusion, the chaotic regime of the dynamical system
(2.3) exhibits features of a “random-noise generator” only for a particular
value of A = 4.0. Other systems conjugated to the Bernoulli shift could
be chosen as potential noise-generators, but as it has been proved recently
[17,18], the mapping Tz = 42(1 — 2) has a very special status among all
of them. Strong properties of randomness possessed by this map can be
viewed as the consequence of the fact that the system has less higher order
correlations than any other generic system conjugated to the Bernoulli shift.

Chaos and noise-like behaviour can be also generated in systems driven
by a delayed force [19]. If the delayed force is chosen to be periodic with
respect to the amplitude of the motion ahd the period is much smaller than
the response time of the system, the chaotic solutions are shown to be noise-
like, i.e. they have statistical properties similar to those of random chaos
resulting from nonlinear Langevin equations. Large delay in the periodic
feedback is known to generate random chaos, but only large intensity of the
feedback produces Gaussian noise [20].

Due to richness in variety of dynamic systems realized in nature all of
the phenomena mentioned above can be displayed by physical dynamic pro-
cesses. It seems thus plausible to investigate closely averages of quantities
whose time evolution is governed by equations leading to both regular and
chaotic dynamics.

3. Chaos-driven linear process

Let us discuss a linear process perturbed by an additive “noise” x rep-
resented by a chaos generator:

(t)= %-;1 = —yz(t) + Az(t), (3.1)

where evolution of z(t) is given by a logistic mapping (2.3) and
2{ty=2, for nd<t<(n+1)A. (3.2)

As it stands, the process {z(¢)} resembles closely an Ornstein-Uhlenbeck
Pprocess (except that y s not of the standard form given by time-derivative



Dynamics Perturbed by a Chaos-Generator 467

of the Wiener process [16]) extensively used in the theory of Brownian mo-
tion. Our task will be to reconsider all of the characteristic features of this
“Ornstein-Uhlenbeck” process.

First, let us note that the trajectory z(t) is given by:

2(t) =exp {~1(t = nA)} (2 = A7)+ 277,

nA<t<(n+1)4, (3.3)
so that
n-1
7z =G"2%+BY Gz, (3.4a)
=0
A
G =exp{-74} < 1, =7 (1 —exp{-74}). (3.4b)

To proceed further, we assume that the process {z(t)} starts from a given
fixed value 2, and is perturbed by a stationary noise® (3.2). Ensemble
averages of the process (taken over all realizations of the path) are then
expressed by:

(a(t)) = exp {=1(t — nA)} (z0)
+ 2 (1= exp{-1(t = nA)(on) (3.5)

(zz(t)) = exp {—27(t — nA)} <zi)
+22 exp {1(t = nA)} 1 - exp {~1(t — nA)}] (se2.)

A\’ ANLI2 /02
+(2) - e (orte - na)P (22), (36)

(s(2)2(t + 7)) = exp {~761} exp {71} (znZnsm)
+ $exp (=76} (1 - exp {~763}) (2aZnsm)

+ ;’é‘xp{—'y 6} (1 = exp {—701}) (zngms)

+(3) 0 ron (- e (78N eatmin) s
(3.7)

¢ For this requirémient to be met, the process {z(f)} has to be started at
1 — —co afid (Zo) = ().
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where

t=nd+ 6,, t+r=(n+m)A+ 0,, m>0. (3.8)
In the case of a fully developed chaos, from (3.4) one gets:

n-1

n n—i— n 7 n
(2) = G20+ 3B G "' =Gz + X (1=G",  (3.9a)

1=20

2
()= (=) +1(2) @-cm), (3.9b)
l,m A n
(ZaZnim) = (ZnZn) = 3G 20 + ™ 1-G6", (3.9¢)
A
(ZngmZa) = 3G "2 + 74; (1- G**™) + 1BG™ 1, (3.9d)
2n+m 2 n+m A n
(ZnZngm) =G 25 + 20G 2 (1-G")
oz G -+ +ia-6"(1-G6"m) A’
2y 4 5
A 2
+3 (;) G"(1-G™). (3.9¢)

From the above formula and an explicit form of G (c.f. (3.4b)) it can be
easily seen that z(t) are exponentially correlated (so that {z(t)} can model
a non-white noise).

Direct evaluation of the dispersion yields:

o} =1 (3)2(1 -G*™) = (%)2 (1-G™)q2. (3.10)

From (3.5) and (3.6) we deduce that

ol = exp{-27(t - nA)} o] + (%) [1 - exp {~7(t - na)}* o7, (3.12)

which allows to evaluate dispersion of the trajectory at any instant of time.
Long-time limit leads to the following formula for the averages:
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A A
(zn) — ;(:c,‘) =2y

- (2) e,
(2020) = (snasm) = = (2l = £

A
(ZnZatm) — 4—7- [1 + %(1 - G)G’"‘"l] ,

2
(znzn+m> - .]i_ (%) (1 + %Gm) )

2
o (ﬁ) o2,
” i

469

(3.12a)

(3.12b)
(3.12¢)

(3.12d)

(3.12€)

(3.12f)

o~ [exp {~276} + (1 - exp {~76})] (3) o2,

(3.12g)

with ® = t — nA. (Note that for t - o0, n —» o0, t — nA remains
finite and time-dependent quantities become periodic: @ =t —Ent (t/4) =
AFrac(t/A), @ € [0, A]). By repeating the same type of calculations
for z(t), we arrive at:

A
(2(2)) - 5 (=) (3.13a)
2 1 ’\ ?
(2(t)) = L (5) (3—2exp{—70}+2exp{-270}), (3.13Db)

(2(t)z(t + 7)) — L (%)2 {1 +1G™ L exp {—70.}

x [Gep{-102+(1-6)(1- exp {-16:)] }.

(3.13¢)

If the transformation (2.3) enters (3.1) with A covering the range of

partial chaos (i.e. 3.57... < A < 4.0), the above presented results can be
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reproduced only via numerical evaluation. We can, however, estimate aver-
ages of interest in case when the noise source is given by a chaos-generator
(2.3) activated in the region of two-cycles (3.0 < A < 3.449...):

1 — G2n
1-G2°
(3.14a)

(220) = Gz + [G (nzy + vaz2) + (Va2 + Vlzz)] B

) GZn
(z2n31) = Gz + B {(:L‘zn) + G (G{z2m) + (Z2ns1)) 1-G¢ } )
(3.14b)
(23.) = (6™20)" + 26720 ((220) — G*20)

1-6\?
+ B? ( 1-G2 ) (G* (23.) 4 2G (z122) + (23041)) »  (3.14¢)

<z§n+1) = (G2n+lzo)z + 2G”+120 (<22n+1) - Gznlo)

x B? {(—————-—1 — GZ“H) (23.) + 2G(1 -G - G (z122)

1-G? 1- Gy
1~ GZn 2
P ( - G’) (z§,,+1)} : (3.14d)
: 1-G™
(Zzn$2m> - G2“ZO (22m> + B-i'_—c;-;' (G (Zgﬂ) + (2123» , (3148)
1 — 2n .

: G . ‘
(Z2nZam41) = G 20 (Zamy1) + Bl—_“G—T (G (z1z2) + (23011)) (3.14f)

and

n-1 n-1

Z G-1-1g, = E(Gz)“'j”l(Gzzj + 22541) (3.15a)
=0

F=0

n-. n;l

306" =Y (G Uz + G Y GHM ey, . (3.15b)
j=0

=0 j=0
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Similarly, we obtain

(Zzn+1zzm+1> = Gz"fHZO (zZn-i—l)

+ u—-Ba'%S{(l =G @012) + G (1= G™) (zansa)' |, (3.162)
(z2n+1Z2m) = G*tlz (Z2m)
e {1 )+ G- e}, (o)
(Z2nZam) = Gz(“+m)z§
2n 2m (1 — Gzn)
+ B (G (220) + (22n-1)) [G +G (1_—@] %o
b (267 (1- @) (6 () +26 e ek,
(3.16¢)
(22n+122m+1) = Gz(n+m+l)Zg
+ (T-%:“) (1= 6™ (22a) + (1= 6™) {22n11)) 0
B? 2n+2 2m+2 2
¥ m{.“‘“ D emem )
+ G[(l —G™) (1-G™) + (1- G*™+?) (1 - G”‘)] (z122)
+6 (1= 6™) (1= 6™) () |
(3.16d)
(Zanzm-H) = G2”+2m+llg
+ G(VG”‘ (1-6™)+G™(1- G’")) (zzm+1)}
P om0

+ (1 + G?* - 2G¥™+?) (2122)} .
(3.16¢)
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If the “noise” x is zero-centered (c.f. (2.18) and (2.19)), the above

formulae lead to the following long time behaviour:

(2a)— 0,

BD \?
<22n22m>'—) (z;n)_) (I_I__G) ’

BD \?

(22n4122m41)— (Z§n+1)—’ (1+_G) ’
(zan ot} BD \* @G
Z2nZam+1 1+G 1—G.

Both (23,%2m) and (z3,4182m+1) approach the same value:

_B_
1+4G
and so do (2z,E3m41) and (2aa41E2m):

B

(z2nZ2ms1) — +ﬁ—G'D2,

D2

(22n52m> - —

where

D*=(#)=v(1-v)(z1— =) =0}.

(3.17a)

(3.17b)
(3.17¢)

(3.174)

(3.17e)

(3.17f)

(3.18)

Hence, by using directly (3.7), for even m = 2m’, such that Ent(7/4) =
2m' and in the limit ¢ — oo one gets the following expression for the

correlation function:

cweerm) - { (1) e (ro3em (103}
1

+ exp {~70:} (1 — exp {y @1})]

+(1-ep (701 - exr {—vo | (

- TG [exp (=161} (1 - exp {-762})

AD

7).

(3.19a)

For m odd, m = 2m' + 1, such that Ent (7/A) = 2m’ + 1 the long-time

limit yields:
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s~ { (Frg) og e (16 exp{-162)

+ g e (=761} (1 - exp {~762))
+exp {-76:} (1 —exp {y 91})]
AD\?
- (- ep {700 -e (v} (22) .
(3.19b)

To summarize this Section, let us briefly discuss behaviour of the quan-
tities of interest in the limit of “continuous-time perturbation processes”,
i.e. for A — 0. A natural time scale of the process (3.1) is 7o = y~! which
characterizes relaxation of z(t). Further, we will analyze limit of 4 — 0
with a physically obvious condition v4 < 1, so that

n=Ent(t/4) - oo, nAn~t, (3.20)

and ¢ remains finite. Following these conditions one has:

O=t-nd —0, (vO < 1), (3.21a)
G" = exp {—ynd} — exp {-7t}, (3.21b)
G™ — exp{-77}, (3.21¢)
G = exp{—74} — 1+ 0(v4). (3.214)

From (3.5)-(3.9) we get now:

((t)) 5= exp{~7t} 20 =0, (3.22a)
(%) 57 (exp{-1th 20 + 1 (2) (1- exp {-2m)
L (A
t—00 5(7) 3 (3.22b)

(2()=(t + 7)) 5= (exp{-71t}20)" +} (3) exp {—77}(1 — exp {-271})

2
= i (%) exp {~77} . (3.22¢)
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Let us note also, that by taking the limit A — 0 from r.h.s of Egs
(3.19a) and (3.19b) one arrives at:

(22(r))2, = lim, Jim (=(t)z(t+7) , (3.23a)
A(A-6,)(A-0;)D*—0, if % = even,
(2a(r)), = 2
-(A/7)*D?, if -+ = odd,
(3.23b)

wheras the same operation performed in the reverse order (by calculating
first the limit A — 0 and then taking ¢t — oo} yields:

(2(t)z(t + 7)) — exp {~7(2t + 7)} 75
+ (:\7) (1 — exp {—7t}) (1 — exp {~277}) (20 +F2a41)?)

+0(v4)
=exp{-7(2t + 1)} z3 + 0(y4) == 0. (3.24)

As it stands, the perturbation process x, does not possess single tra-
jectories mimicking typical noise-like stochastic process. (In principle, we
can think of idealization of a noise by using ensembles of trajectories with
all possible distributions of initial points). One can, however, compare the
long-time limit properties of a “nearly ergodic” two-cycle to its analogon
in the theory of continuous time stochastic processes, i.e. to a symmetric
dichotomic noise. Let a random variable F(t) be a dichotomous (not nec-
essarily Markov) process, alternately taking on the values a;, —a;. The
times, that F(t) retains the value a; are governed by the distribution ;.
If F(t) is supposed to be a Markov process, then these distributions are
exponential [11), ¥; = Biexp {—f;t} and B! are the average residence
times in the states a; (they are just the average times between the switches
from o; to as: as;f; = a;0;). Now, let us consider the case of Brownian
motion governed by an ordinary Langevin equation:

#(t) = —yz(t) + F(t) (3.25)
with the above mentioned assumptions for F(t). Moreover, if F(t) is a
centered dichotomous noise (with a; = —a; and B, = B; = B/2), its

average becomes trivially zero and a correlation function of F(t) is given
by:
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(F(t)F(t + 7)) = o’ exp{-B 7]} . (3.26)
The formal solution of (3.25), assuming z(t = 0) = 0 is:

2(t) = exp {—7t} / exp {yt'} F(t') dt’, (3.27)

from which one can easily calculate the long-time limit properties of the
moments of z(t). In particular, we obtain:

((t)) == 0, (3.27a)
2(t)) —= . — 3.27b
((8)(t + 7)) AT (3.27¢)
T (B4 ’
By comparison with appropriate averages ( )go estimated for the dy-

namic process (3.1) driven by a “two-cycle” generator, we see that, contrary
to a real noise situation, additive perturbation by a “two-cycle” produces
correlations which decay in the long-time limit. Dispersion of the trajectory
becomes constant in this limit with the ratio:

2
Tnoise — 87

atzwo—cycle B 7(1 + 7) ’
where we have put # =1 and a = A.

A similar analysis of the process in the region of a fully developed chaos
brings

2

(3.28)

o3 .
Tnciee _ 4, (3.29)

achaos

with a properly exponentially correlated” (z(t)z(t + 7)), -

7 The Ornstein-Uhlenbeck process is a stationary Gaussian process with expo-
nentially decreasing correlation function:

(z()z(t + 7)) = (A*/27) exp {-77} .
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Obviously, even in the continuous time limit, regular perturbations gen-
erated by the logistic mapping in the domain of multi-cycles do not repro-
duce fully characteristic features of its stochastic analogons. This issue is a
subject of further studies in the subsequent Section.

4. Perturbations induced by shot-chaos process

As a natural generalization of (3.1), we analyze a linear process affected
by an additive x¥ modelled by a “shot-chaos™:

2(t) = —y2(t) + £(1), (4.1a)
(1) =AY 2.5(t - n4), (4.1b)

where  is generated by a zero-centered logistic map (2.18), (2.19).
Between the pulses, integration of (4.1) yields

2(t) = exp {-7(t — nl)} z,, (4.2a)
and
2z, = z(nd + 0) = z2(nd - 0) + AZ,, (4.2b)
so that effectively,
Zn41 = exp {714} z, + A%, , (4.3)
or
n-1
m=Gz+A4) G g, (4.4)
=0

where, as previously, G = exp {—yA}. Ensemble averages over trajectories
produce now:

(2(t)) = exp {~7(t —nd)}(z.), (4.52)
(z*(t)) = exp {—y(t — nA)} (2}) , (4.5b)

(2(8)2(t + 7)) = exp {~1(t - n4)} exp {~1(t — A — M)} {zuZmsm)
(4.5¢)



Dynamics Perturbed by a Chaos-Generator 477

where n = Ent (t/4), m = Ent ((¢t 4+ 1)/ 4).
For a fully developed chaos and for (Z) = 0 one gets:

(za) = G"2, (4.6a)
n 1 Gzn
(22) = (G™z)* + AZTT&7< %, (4.6b)
— (2

(2nZnym) = G*t™22 + A’G™ 11 _Céz ( ) ) (4.6¢)

which in the long-time limit (£ — oo) tend to
(22) — 0, (4.7a)

2 A?
<Zn> — 8(1 . Gz) 3 (4.7b)

AG™

(ann+m> —_— mj‘a—z) (47(:)

In the case of &, driven by a two-cycle, analogously calculated averages
turn to be:

4n42m 32
<z2nz2n+2m> = G*t mZo

Az
+ ZC_G’—)’ (1-6") (1-G*m) <(G52j + 525+1)2> ’
(4.8a)

4n42m+1 2
(Zzn22n+2m+1) = Gintimt 29

1 - GZﬂ
2( ) [(1 G HImA2) (20, (GEaj + £2i41))

+
1-6?’
+ (1= G™™)G (£2i41 (G255 + 5zj+1))] ) (4.8b)

dn+2m+1 2
(z2n+1z2n+2m> = Giimt Zg

1 _ G2(n+m)
n Az_(______) [(1 — G”‘*z) (£2: (GZ3j + £32541))

(1-G?)
+ (1= GG (B34 (G + Baya))] s (480)
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(Z2n+lz2n+2m+l) = G“"“’"“Zﬁ
A n ntami2y [z
+ m (1 _ G2 +2) (1 - G2 +2 +2) (z;‘)
A? n nt2m
e (- 6™+ (1- 6™+
+(1-6") (1- Gzn+2m+z)] G (£2:82541)
A -
Fey (O (-G G ) s

Asymptotically, for ¢ — oo one gets then:

A 2
(22nZ2n43m) — (1 — G’) <(G£23‘ + 5zj+1)2> s (4.9a)

(z2nz2n+2m+1) — <z2n+lz2n+2m)

AN i i
- (1 _ G’) ((GZ3yj + 22j41) (23 + GZ3541))
(4.9b)

A Ny .. N _
<Z2n+lzzn+2m+}) — (-i—-:—G-;) <(G23j+1 + z,,-)’) R (4.9(:)

Some comments need to be said also concerning the proper scaling of
the process when A is supposed to approach zero. In fact, one can rederive

the same type of asymptotic behaviour of the averages ( )20 as in the
last Section (c.f. formulae (3.22a)-(3.22c)) provided the following scaling is
used®:

A A’

In other words, taking the limit A — 0 requires now to take A — 0 in such
a way that (4/A) remains constant.

A/ A = const = 2)? /7. (4.11)

A? A?
8 It is so, because e A in this limit.
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This constraint to be satisfied®, we scale the intensity of the { process:

£(t) = A 3:/4 Y 8t —nd) = AVA) §(t-na). (4.12)

Keeping in mind that for a “two-cycle” £;;+ 234, = 0 for t — oo, we get the
following expression for A — 0 limit of the correlation function (23,z3m):

(220 22m )0 — (A;-;;Z) {{[(1 - 74)2y; + 23511]*) + 0(47) }

A
=y Ean(Ban + E2n)) + 0(4% =o. (4.13)

By inspection, the same result is obtained for other averages. In conclusion,
our conjecture is that rapid shot-like oscillations imposed on a deterministic
process will not change (asymptotically) properties of its moments. One can
expect also that a “slight mixture” of any multi-cycle will decay sufficiently
fast in time to be unobservable experimentally, provided its period N sat-
isfies

NAg o= }7 (4.14)

with 7, representing the deterministic relaxation time.

5. Evolution equations for the probability distribution function
of a variable perturbed by a parametric shot noise

Our aim is now to derive evolution equation for the probability den-
sity function describing time-dependent statistical properties of the system
driven by a noise generator of the type discussed earlier. Let us start with
a general one-dimensional kinetic equation with a parametric “noise”:

& = f(z) +v9(z)E(t), (5.1)

® The procedure is a common manner of dealing with the continuous realization
of discrete in time “noises”, c.f. [11].
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where

£(t) =AY wab(t - n4),

2
Wpyy = 2w“ -1 3

we[-1,+1], (w)=w=0. (5.2)

Hence, ¢ satisfies conditions of a “white shot noise” [21] with a distri-
bution of peaks given by

+1
1

P(w)=;‘\71=—:—;—;, /P(w)dw=1-

-1

Following the procedure of Hanggi, with { interpreted in the Stra-
tonovich sense [22] Eq (5.1) is equivalent to the Master equation:

OP@:t) - 0 1) - xy () o(a)) Pl

#2{ [ [~ug1ae)| pwrdu -1} Pzt), (53

where P(z,t) stands for the probability that a variable z(t) takes value =z
at time ¢t. From the definition of a cylindric function [23] we get

1 e {£zt} o~ (—1)% z\2*
’:;___ Io(z)zg s (5) . (5.4)

So that the final form of (5.3) is

an:,t) -_-,;—g;f(z)P(a:,t)-}- EX: (k')"’ [-__9_7g(z)] P(a:,t), (5.5)

which approximated up to the order 4? yields a standard Fokker-Planck
equation.

As it has been argued earlier, in the case of multi-cycles a single tra-
jectory does not represent a particular “noise-realization”. An ensemble of
these trajectories starting from all possible initial points apparently resem-
bles characteristics of the white shot noise and for an M -cycle is described
by a distribution



Dynamics Perturbed by e Chaos-Generator 481

p(w) = Z v;6(% — B;), Z v; =1. (5.6)

Equation (5.1) with the noise whose stationary properties are expressed
by p(w) of the form (5.6) can be easily transformed to:

P _ 2 f)p(a, 4 155 |- 3279)] PGa). (51

For a particular choice of a linear system driven by a multiplicative
noise, g(z) = az represented by a two-cycle generator and by assuming
W = —a, Wy = +a, vy, = v, v = 1 — v r.hs of (5.7) can be further
transformed to produce effectively

0P(z, 9
g: t) _ 5. 1(2)P(2,2) = AP(2,1)
4 Ave** P (e*%z,t) + A(1 — v)e P (e™*%2,1) . (5.8)

In the case of a purely periodic forcing (f(z) = 0) the process can be
compared to a two-state telegraphic process with the Poisson distribution
of waiting times in a given state. By an analogy, let us think of the system
whose evolution is governed by a propagator exp {TA} or exp {—7A} for
some random time 7, then reversing, with the Poisson distribution of the
reversals. It has been shown [24] that for a general form of the operator A
(we accept here A = az, a;; = *1) probability density of observing z at
time t provided given sign of the operator A

Py(z,t) = {Prob z at time t | evolution governed by + A} (5.9)

satisfies the equation

aPﬂ:(z’ t)

5% =T vP,(z,t) + (1 — v) P_(z,t) £ APy(2,t). (5.10)

Let us assume for simplicity » = 1/2. The sum of P, and P_ satisfies

then a telegrapher equation:

9*P(z,t) OP(z,t)
bt? ot

— A’P(z,t) = 0. (5.11)
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As it stands, both of the Eqs (5.8) and (5.10) have different operators de-
scribing time-evolution of the probability mass and, a priori they do not
need to give the similar asymptotic behaviour for P(z,t) in the long-time
limit. It seems thus challenging to investigate closely [25] differences in the
dynamic properties (kinetic rates, mean first passage times, relaxation dy-
namics) of the system driven by forcing leading to Egs (5.8) and (5.10),
respectively. This problem will be the subject of separate studies.

6. Final remarks

In this paper we have concentrated our attention on direct calculations
of statistical properties of a kinetic process perturbed by a chaos-generator.
Our intention was to clarify existence of limits allowing to envision the
long-time properties of such systems by use of the concept of ergodicity.
In particular, it has been demonstrated that a perturbing mapping which
bifurcates to an M -cycle does not possess semi-ergodic properties (they are
restored however in the limit case, when the dynamics of the perturbations
converge to an ordinary diffusion-like stochastic process). On the other
hand, a mixture of M -cycle in the dynamics of the system does not produce
any observable effects in the long time scale (properly scaled correlation
functions of the M-cycle vanish in this limit).

In addition to giving the background of the formalism we have derived
evolution equations for the probability density function describing time-
dependent properties of the ensemble of perturbed trajectories. The utility
of them will be discussed in a future analysis [25] where dynamic proper-
ties of the systems perturbed by regular disturbances will be brought up
and interrelated with the long time behaviour of the systems driven by
continuous-time noises.

This contribution has been supported by the Polish Ministry of Educa-
tion grant DNS-P/04/212/90-2.
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