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Various aspects of chiral models are discussed with special emphasis
on the chiral quark model and the Skyrme model. Firstly, the ability
of the chiral quark model to reproduce pion scattering data is reviewed.
Secondly the soliton sector of the model is studied. The soliton solution
is interpreted as a baryon — nucleon or dilambda. Next, on the example
of the Skyrme, model we study inclusion of strangeness, large N, limit
and quantization. It is argued that effective chiral models qualitatively
reproduce the low energy limit of QCD.

PACS numbers: 11.30.Rd; 12.40.Aa; 14.20.-¢

1. Introduction

Quantum Chromodynamics (QCD), the ultimate theory of strong in-
teractions, is not directly applicable at low energies, where conventional
perturbation theory ceases to be valid. The only way to implement QCD
in this energy regime is to use lattice formulation and computer simula-
tions. However it is just this energy range, where the full complexity of the
nonabelian gauge theory plays an essential role, requiring larger and larger
lattices, dedicated computers and more computer time. An alternative ap-
proach consists in constructing so-called effective models and studying their
properties. Thus, while it is a very tall order to derive such models from
QCD, we can at least use some of the symmetries or approximate symme-
tries of QCD to construct phenomenological Lagrangians relevant to low
energy physics. QCD with (almost) massless quarks has a chiral symmetry
and any sensible approximation to QCD must respect this symmetry.

* Thesis submitted to the Jagellonian University, Department of Physics, in
partial fulfilment of the requirement for the habilitation degree

(525)



526 M. PRASZALOWICZ

In this paper we discuss a wide class of effective low energy models which
are based on chiral symmetry. They are commonly called chiral models.
Rather than giving a complete review, we try to formulate a clear physical
picture, with its highlights as well as limitations, which accommodates two
important aspects of low energy particle physics: pion scattering and baryon
properties. This work summarizes author’s contributions already published
in journals [1-9] (although some of the results presented in Sections 3 and 4
are new) and as such covers only those topics which were of direct interest
to him. Although exhaustive reviews can be found in the literature [10-16],
the attempt is here to make this work to large extent self-contained.

Low energy effective models describing pions and nucleons were dis-
cussed well before the advent of QCD. The mediators of strong interactions:
gluons, as well as quark matter fields, are not directly observable. It is well
known that at large distances QCD becomes a confining theory, and only
color singlet states, such as pions, appear in nature. Ideally, we should like
to start with a theory defined by the QCD Lagrangian and by some series
of operations recast it into a form involving pions and perhaps baryons [17-
21]. In two space-time dimensions such bosonisation indeed takes place; in
four dimensions, however, bosonisation is by no means obvious.

In Section 2 we will argue that one can formally integrate out gluons
from the QCD Lagrangian [22-27]. The resulting nonlocal quark theory
[27] would, however, respect chiral symmetry [23, 24]. One can approxi-
mate this very complicated and, as yet, quite unknown theory by a simple,
chirally symmetric, quartic quark interactions. A model with such proper-
ties was formulated by Nambu and Jona-Lasinio [28], however in a different
context. This model exhibits an important phenomenon: spontaneous chi-
ral symmetry breaking. It turns out that, for certain model parameters,
originally massless fermions acquire a nonzero mass. Moreover, a massless
quark-antiquark bound state emerges — the pion. Formally, one can now
reexpress the interaction part of the Nambu — Jona-Lasinio Lagrangian in-
troducing an auxiliary, composite pion field. We will call this model the
chiral quark model (xQM). Let us stress here that at this stage the in-
troduction of auxiliary pion fields is merely a question of convenience and
elegance.

The identical low-momenta Lagrangian [20, 21] has been recently dis-
cussed within the instanton picture of the QCD vacuum [20, 21, 29, 30].
Thanks to a numerically small “diluteness” parameter found from instan-
ton dynamics, all collective excitations of the vacuum can be, theoretically
speaking, divided into two classes [21]: those whose masses tend to zero
with the packing fraction of instantons, and those whose masses remain
constant. The effective Lagrangian contains both kinds of excitations, how-
ever of more interest to us is the part where only the light degrees of freedom
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are present, with the second class of excitations, such as scalar mesons or
7', frozen out.

The remaining light degrees of freedom are now described by a remark-
ably simple xQM-type theory involving only quarks with a momentum-
dependent dynamical mass M(k), interacting with the pseudo-Goldstone
chiral field. Since the momentum dependence of M (k) is characterized also
by a relatively large typical scale [4—6], one can freeze M(k) at zero momen-
tum. Though numerically M(0) = 345 MeV {20, 21] is not much smaller
than, say], the 7' mass (957 MeV), their ratio is theoretically small in the
packing fraction of instantons. It can be further diminished by slightly
heating QCD (with chiral symmetry still broken) [31]. Then the quark-pion
theory becomes “more” exact.

What is important and what distinguishes our approach from those of
Refs [32-39], where similar quark-pion effective Lagrangians were consid-
ered, is the absence of explicit kinetic energy or, say, Skyrme-type [40, 41]
terms for the pion field: they arise only from quark loops when one inte-
grates out the quark fields. This means that pions are, in fact, composite
fields. Ideologically it is a welcome feature in comparison with models where
pions are actually point-like, whereas in Nature the nucleon and the pion
have the same size. This is exactly what one gets from xQM: both particles
appear to have radii of the order of 1/M (the pion charge radius has been
calculated in Ref.[20]). The absence of local pion counterterms also solves
the vacuum instability paradox [38, 39] (for a discussion see Refs [22, 42]).

The chiral quark model requires an ultraviolet regularization, which in
the case of the instanton motivated version of the model is in fact provided
naturally by the rapid falloff of the dynamical quark mass M(k). In this
paper, however, we shall use a more practical regularization in the proper
time [43] representation for quark loops (for details see in Appendix A).

In Section 2 we examine the ability of the chiral quark model to repro-
duce pion-pion scattering data [8]. It is certainly important to know whether
the model, which we will eventually use to describe baryons, is compatible
with pion physics in the first place. Employing a gradient expansion [44-46],
we derive an effective Lagrangian involving only pion fields, and calculate
scattering amplitudes up to the sixth order in the pion momenta [26, 47, 48].
Keeping in mind the astonishing simplicity of the model we conclude that
the QM model reproduces pion partial waves with satisfactory accuracy.
We discuss the limitations of the model due to the cutoff always present in
an effective theory such as yQM.

The essential new element of YQM in comparison with other quark
models is that the same Lagrangian which describes low energy pion scat-
tering also describes baryons, via the classical soliton solution [6, 40-42,
49-55]). Assuming that the classical pion field takes a special, spherically
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symmetric configuration, we study the spectrum of the Dirac Hamiltonian
in the presence of such a configuration and develop techniques to sum up
the contribution of the Dirac see — vacuum polarization. We observe that
the vacuum energy increases almost linearly with a suitably defined size
of the pion-soliton field. At the same time a valence level, with three (or
N.) quarks emerges from upper continuum. Its energy decreases with the
soliton size. The sum of the two contributions: valence + sea develops a
stable minimum which we interpret as a classical baryon.

We also examine another form of a classical Ansatz for the chiral pion
field based on an SO(3) embedding in the SU(3) flavor group [56, 57]. This
configuration corresponds to a dilambda (or H) dibaryon state [58]. Indeed,
unlike in the nucleon case, two valence levels with six (or 2N, ) quarks appear
[7]. The existence of such a state is still not confirmed experimentally [59].
It naturally emerges, however, in other models of the baryon such as, e.g.
the M.I.T. bag [58].

Numerically our results fall into a within 20 % category. In Section 3 we
thoroughly formulate the soliton problem within the framework of xQM and
discuss numerics. Qur results, however, deal with the classical soliton con-
figurations only. In order to account for A — N splitting for example, one
has to quantize the model. The quantization consists in rotating the soli-
ton solution and in introducing the generalized coordinates and momenta.
Although qualitatively the result of this procedure is known: one obtains
the Hamiltonian of the quantum-mechanical rotator. Quantitatively one
has to find moments of inertia of the rotating soliton — which is a fairly
complicated exercise. Some work in this direction is already in progress [60].

In order to envisage the full structure of the quantized model, in Section
4 we discuss the Skyrme model [40, 41], which, in a sense, appears as a
limiting case of QM for large soliton size [21]. Historically of course the
Skyrme model was formulated well before even the invention of the quark. It
was however abandoned for more than 20 years until Witten suggested that
QCD could in fact give rise to solitonic configurations of the chiral field,
which would have a nonzero baryon number [61-63]. Here an important
assumption was made: the baryon number was identified with a topological
number of the chiral field [64, 65].

In Section 4 we review the Skyrme model phenomenology in a simple
approach, where all relevant quantities can be calculated analytically. We
discuss SU(3) baryon and dibaryon phenomenology, chiral symmetry break-
ing due to large strange quark mass and the large N, limit [66, 67] of the
model. All these problems are in fact present in xQM as well, therefore our
analysis of Section 4, although interesting by itself, may constitute a starting
point for technically more involved studies in the chiral quark model.

There are many points we do not discuss or even touch upon in this



Chiral Models: Pions and Baryons 529

work. Certainly one can calculate other baryon properties such as mag-
netic moments, form-factors, weak decay amplitudes etc. [3, 4, 13, 68]. One
can consider more complicated effective actions involving vector mesons or
higher derivative couplings for example [69-71]. One can also construct dif-
ferent classical solutions corresponding for instance to pion condensate, [72,
73] many-baryon states or deuteron. These problems were either discussed
by other authors or work on them is still in progress. We briefly return
to these problems in Section 5 where we also summarize our findings and
provide conclusions.

2, Chiral Lagrangians and chiral quark model

The Euclidean generating functional of QCD reads (e.g. [21]):
Zaeo = [(DVIDW) exp (i [ 2 91(9 + miv)
/ [DA] exp (i / d'z (g¢f4¢ +1F. F)) , (2.1)

where the small bare mass matrix m for quarks has been introduced. Here
denotes the quark field, A — the gluon field and F is the gluon field strength.
At low energies, however, neither quarks nor gluons are the relevant observed
degrees of freedom. Instead, we have almost massless pions, slightly heavier
kaons and 7, and heavy baryons. Is there a way to reexpress Eq. (2.1) in
terms of these physical degrees of freedom ?

Formally this task has not been achieved owing to enormous technical
difficulties [19, 22]. One can however imagine the following scenario: first
integrate out the gluons [23, 24]. The resulting action would then describe
the nonlinear and nonlocal many quark interactions [27]. The next step
would consist in linearizing this complicated action and expressing it in
terms of local color singlet composite fields corresponding to pseudo-scalar,
vector and tensor mesons coupled in a chirally invariant way to quark fields
1. At first approximation only pseudo-scalars (= Goldstone bosons) would
contribute (74] and we would be left with a quark-pion effective theory.
Finally, we would have to integrate out quarks to end up with the pion
(or 7-K-n) effective Lagrangian [22, 25, 75, 76]. So, we go through the
following chain of effective actions:

Sqon(¥, A] = S%(¥] — Sxqml¥, ] — Sk[x], (2.2)

where xQM stands for the chiral quark model.
It should be kept in mind that the arrows in Eq. (2.2) do not indicate a
rigorous derivation of one action from another but rather educated guesses
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based mainly on symmetry principles and some physical input. Various
choices for the actions in chain (2.2) have been contemplated in literature.
We shall first discuss the most general action SZ; and its relevance tor — «
scattering [77-81]). Then we will show that one of the simplest choices for
Syqm is in good agreement with the data for pion-pion scattering.

The purpose of the analysis in this Section is threefold: first we want
to show that QM is compatible with the pion scattering data, second —
we will show that the gradient expansion works well for pion scattering and
third — we will stress the importance of a cutoff in an effective theory like
xQM. Although the model is not supposed to work at energies above the p
resonance it is certainly interesting to see how the tail of the p resonance
builds up in the gradient expansion. The model also predicts a new non-zero
partial wave of J = 3 and I = 1, which is, however, quite small: it arises at
the 6-th order of the gradient expansion.

2.1. © - ® scattering

In this Section our discussion will be confined to the case of two flavors.
QCD with two almost massless quarks has a chiral SU(2) symmetry which
is spontaneously broken, with pions emerging as the Goldstone bosons [77].
The interactions of these bosons have been successfully described by the
Lagrangian:

F? N —— m2 F? — =t
S u x x
Ly= 16Tr(3,,U8 ') + = T (T+7'), (2.3)
where matrix ort. =
— TR
= ] 2.4
U exp(z F‘;r) (2.4)

transforms under the chiral SU(2) group as
U— LUR. (2.5)

(In our notation pion decay constant is equal F, = 186 MeV.)

In spite of the phenomenological success, Lagrangian (2.3) contains no
information specific to QCD. A systematic approach to calculate low energy
amplitudes consists of constructing chiral Lagrangians with more than two
derivatives [78, 79]. In this way the effective action S% can be constructed.
For example at the next order the most general Lagrangian for massless
pions is given by:

Lo=2 (m (aﬂmﬁ'))2 + 21 (0,050") ™ (04T0T') . (26)
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The form of these two terms is dictated by the chiral symmetry alone; how-
ever, unlike in the case of Lj, the coeflicients a; and a, are free parameters
and should be found by dynamical considerations. In the next section we
will show how they can be computed in a chiral quark model.

We do not intend to make a general analysis of the all possible La-
grangians with six derivatives. We shall rather content ourselves with the
specific Lagrangian LX®™ which can be derived from the xQM [26, 47, 48].
Below we enlist those terms of LX®™ which contain four pion fields [8]:

To= B (8,7 -0"0,7)(8,7 0"0°%)
+ B2 (8,7 - 0*7)(8,0,7 - 0" 0°R)
+ Bs (9,7 - 8,0,7)(8" % - 0*0°R)
+ B4 (0,7 - 8,0,%)(07 - 0¥ 0°R)
+ Bs (8,7 - 8,7)(0%0,7 - 8 0°R). (2.7)

Lagrangians (2.3, 2.6) and (2.7) generate amplitudes for the process:

Ta(Pa) + To(Ps) = 7e(Pc) + wa(pa) (2.8)

in terms of a single function A(s,t,u) [81], where the Mandelstam variables
are defined as:

3= (pa+ )’y t=(pa—p)’ u=(pa—pa) (2.9)
The amplitude for the process (2.8) is defined as:
Tapea = A(85t,u) 8ap8ca + AL, 8, 1) 84c8ba + A(u, t, 8) 8aabye. (2.10)
The amplitudes with definite isospin are given by:

T(s,t,u) = 3A(s,t,u) + A(t, s,u) + A(u,t, ),
T'(s,t,u) = A(t, s,u) — A(u,t, s),
T%(s,t,u) = A(t, s,u) + A(u,t, ) (2.11)

and, from these, one can project out the partial waves:

1
Tf = G—i; /dcosOP,(cos 0)T(s,t,u). (2.12)
1
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Functions A4;(s,t,u) corresponding to the Lagrangians L,, L, and L
can be now straightforwardly computed [8, 80]:

Ay(s,t,u) = s —m?), (2.13)

=
Ag(s,t,u) = -I% (4a1 (s- 2m,2,)2 too(s+(t- u)’)) . (214)
)= 1o m2)’

~8s(s-2m2)’

+ 18, s(t - 2m:) (u- 2mi)

_ 15, ((u - 2m§)3 +(t- 2mi)3)

~ 15 (s - 2m?) ((u - 2mi)2 +(t- 2m:)2) . (2.15)

2.2. Chiral quark model

In this Section we shall concentrate on the chiral quark model. Let us
start by specifying the lagrangian which describes the interactions of pions
with two light quarks represented by an isospinor ¥ [8]:

Lou="19 (z’p — MU - eUDT - m) b, (2.16)
where 14+ 1.
=t ‘)'5
1
5 — (2.17)

M denotes a constituent quark mass, m stands for the bare (or current)
quark mass matrix and

e=1(1-ga). (2.18)

Here a remark concerning the quark axial coupling g, is in order. In
the simplest version of xQM g, = 1. However Manohar and Georgi [82]
argued that since at low energies there is only a vector symmetry, g, can be,
in principle, renormalized away from 1. Following their discussion, where
they claim that g, =~ 0.75, we have introduced the ¢ = (1 — g,)/2 piece
in the Lagrangian of Eq. (2.16). There is also a phenomenological reason
to introduce go # 1; namely, the nucleon axial coupling G, calculated in
the chiral quark model with g, = 1 is usually smaller than its experimental
value, G, = 1.23.
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At this point we should also quote recent paper by Weinberg [83]. Wein-
berg argues that the effective quarks should have g4 = 1,0 or ~1. Only
the first choice is physically plausible. We leave aside here the question
whether g, can or cannot be different from 1 and proceed to the derivation
of the effective pion action. In what follows, unless stated otherwise, we will
assume that M = 345 MeV and 7 =~ 5.5 MeV [84].

Let us now formally integrate out the quarks. The result is of course well
known: one gets a determinant of the Dirac operator defined in Eq. (2.16),
which can be recast in the form of an effective action:

N, DD
o = Zlog$ 2.19
el = Slogsp (o). (219)

where Sp denotes a functional trace as well as a matrix trace over spinor
and isospin indices. D is the Dirac operator of Eq. (2.16) and D, is the
same operator but with U = 1.

In fact S7; of Eq. (2.19) is defined as the real part of the pion effective
action [49]. The imaginary part can be in principle also computed [21, 85]
— it corresponds to the anomalous piece — however in the case of two
flavors this anomalous part vanishes identically [62, 63].

Expression (2.19) is divergent and must be regularized. In this paper
we use the proper time regularization [43]:

swlrl=- 55 [ Se(n)e

Sp (exp ( -7 DA;?) — exp ( -7T %32)) (2.20)

with step-like cutoff function (7).

Although finite, effective action S.5® is a nonlocal functional of the field
U. One way to handle such functionals is to expand them in powers of PU.
We have used heat kernel techniques [44-46] to recast S;z° into the form of
effective Lagrangians (2.3, 2.6, 2.7). Comparing the first two terms of this
expansion (see Appendix A) with L, we get two constraints on the function
o(7) for gp = 1:

(=]

N.M? [ dr —r
;2 /—T—go('r)e = F2, (2.21)
0
N.M?* Tdr m2 F2

= - {(P¥), (2.22)

473 T2 p(r)e™” =
4]

2m



534 M. PRASZALOWICZ

where T is an average u and d quark mass, and the quark condensate is
[21] _
— (Y9) = (249 MeV)>.

In Ref. [6] it was shown that for M = 345 MeV and 7 = 5.5 MeV the above
conditions are satisfied by a simple step-like function:

1
o(r) = 1T (BR)ig27r (2.23)
For g5 # 1 Eq. (2.21) takes the following form [8]:
Td
T —r
$ = / —T—tp('r)e
0
niF?

and, if we go to the next order, i.e. to four derivatives of U we get:
— N, Po 2 2 &, 2 2 P, 4
M= T gae ( 12(1"’A) *% gA(2“3gA) T

_ Nc 450 2 2 Ql 2 2 ¢2 4
a, = = (—ﬁ(l-gA) + 3gA<1—gA)-i-—6~gA . (2.25)

Cutoff dependent coeflicients

17 .
Pryr = ﬁ/d'r‘r"go('r)e (2.26)
0

tend to 1 when cutoff is removed (i.e. ¢(7) = 1). Formula (2.26) can be
extended to negative k by assuming that (—|k[)! = 1.
At the order ( pU)® we get [8]:

= (49 —
B= 453_(53'2 - 1) ) B2 = —3453,
ﬁ3 = §'¢37 ,34 = % 3}V
,@5 - %53, With 33 = m@s (2.27)

for ga = 1. As earlier stated we do not intend to make the general analysis
of the six-order terms, rather we shall content ourselves with qualitative
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analysis of the radius of convergence of the derivative expansion given in
terms of L,, Ly and Lg for the case of g, = 1.

Let us first analyze how sensitive to the choice of g, are the fourth order
coefficients a; and a, given by Eq. (2.25). Instead of taking any specific
form for the function ¢(7), like Eq. (2.23), we have found that for all choices
for ¢(7) we have tried: 0.7 < #; <1 and 0.92 < &, < 1. In Fig. 1 we plot
the band of uncertainty for both a;, and a; arising from varying ¢, and &,
within the above limits. It can be seen that in fact for g, not too small the
fourth order coeflicients are not very sensitive to the precise value of g,.
From now on we will assume that g4 = 1.

a,-103

Fig. 1. Allowable range for parameters a; and a3 as functions of g4. The shaded
area corresponds to the variations of the cutoff function ¢ , as described in the text

We wish to compare the scattering amplitudes calculated from the tree
level effective Lagrangians L, + L4 + L with the experimental data. Al-
though these amplitudes are in general complex our results are necessarily
real (we do not include boson loops) and therefore violate unitarity. In most
cases, however, the imaginary parts generated by the pion loops are small
in the energy region below 700 MeV. Only for 7 the lowest order tree-level
amplitude violates unitarity at about 550 MeV.

On the other hand the data have large errors; there is also some sys-
tematical dicrepancy between various experiments. The best tree-level fit
to all existing partial waves done with 4-order Lagrangian L, gives [80]:

a; = —0.0092, a, = 0.0080, (2.28)
whereas xQM predicts [8]:

a; = —0.0044,  a; = 0.0058, (2.29)
where the cutoff function of Eq. (2.23) was used. The two results are con-
tradictory; it is therefore useful to plot them against the experimental data.

In Fig. 2 we plot xQM predictions for the real parts of the = — x scattering
~amplitudes. We do not plot the best fit amplitudes; they are in general
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Fig. 2. Tree-level * — & scattering amplitudes for xQM. Short dashed line corre-
sponds to the lowest order (2 derivative) amplitude, for long dashed line we have
added 4 derivative terms'and the solid line represents full result with 6 order terms
included. The data were compiled by J.F. Donoghue in Ref.[80] (see also [8])

not much different for the scattering energies below 500 MeV. The most
pronounced difference is of course for ReT{, where the best fit turns down
starting from E = 550 MeV following the data points [8]. In Fig. 2 we also
plot amplitudes with the 6-order terms included.

The purpose of these comparisons was threefold. Firstly we have shown
that xQM is consistent with 7 — 7 scattering amplitudes. This consistency
was questioned in the literature [86); our results do not support this criti-
cism. Also recent calculations of vy — #%7° and Ky, — 7%y in xQM do
agree with the data [87]. The result of Ref. [76] shows that the generalized
SU(3) xQM produces the effective Lagrangian which agrees with the phe-
nomenological parametrization of Gaser and Leutwyler [78, 79]. This makes
us confident that xQM is a good starting-point for investigating the soliton
solutions which we would like to interpret as baryons.
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Secondly, it is an interesting issue to see whether the gradient expansion
works for pion scattering. In most cases the 6-order terms are small in
comparison with the amplitudes obtained from both L, and L;. The 4-
order terms always correct the second-order Weinberg formula in the right
direction. On the other hand one may be surprised that the fits presented
on Fig. 2 are consistent with the data up to energies of the order E ~
2.5M. After all, M sets the scale for the gradient expansion and one would
naturally expect that it should break down for energies of the order of M.
There is, however, another energy scale in the problem, namely the cutoff.
It is often assumed in the literature that the cutoff should be removed from
finite quantities i.e. from &, for £ > 0. Within the present accuracy of the
experimental data it is hard to argue whether the amplitudes calculated with
the cutoff are substantially better than those without; however one should
always remember that the cutoff is present in an effective theory such as
xQM. This cutoff, 4, as we shall discuss in detail in the next Section, is
of the order of 600 — 800 MeV, and therefore the model predictions are in
fact confined to the energy range below A. The constituent mass M and
the cutoff A are not independent; they are related through the constraint
condition (2.21) — this may offer an explanation why the gradient expansion
works so well up to 800 MeV.

3.Solitons in the chiral quark model

In this Section we will describe how baryons emerge in a model based
on the lagrangian density of Eq. (2.16). In the N, — oo limit N, quarks
inside a nucleon can be considered as a classical source for the pion field.
The nucleon problem in this limit appears to be similar to that of a large Z
atom, allowing a semiclassical Thomas—Fermi treatment [6, 49]. One has to
minimize the aggregate energy of the quark Dirac sea in a trial pion field,
plus the energy of N, quarks bound on a discrete level (see Fig. 3). The
trial pion field which minimizes this quantity is called, after Thomas—Fermi,
the self-consistent pion field. In what follows we will assume that this self-
consistent pion field takes the form of hedgehog (or soliton) configuration.

In the remaining part of this Section we will show that there exist non-
trivial quark-meson configurations, which we interpret as baryons, for a
constituent quark mass M > 300 MeV. For M > 400 MeV these config-
urations have energies below the free quark threshold. The above values
become modified if we change the quark-meson axial coupling g,, however
the qualitative picture remains unchanged. Our results basically agree with
those obtained by means of different calculational procedures presented in
Refs [50-55]. We also calculate the value of the o term [6] and find that
o = 55 MeV, in agreement with recent phenomenological analysis {88, 89].
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We also consider another soliton solution [7] based on SO(3) embedding
in the SU(3) group [56, 57] interpreting it as a dilambda (or H particle).
Since 1977, when Jaffe showed that within the framework of the M.I.T. bag
model a six quark state (uuddss - called H) has mass as low as 2150 MeV
(58] there have been many calculations of the H mass in various models
(bag model [90, 91], lattice QCD [92, 93],quark cluster model [94, 95] and
Skyrme model [56, 57, 96, 97]) with predictions ranging from 1.56 GeV to
above 3 GeV. If My < 2M, then H would be stable with respect to strong
interactions and could be seen in forthcoming experiments [59]. Therefore
it is of considerable importance to have a reliable prediction for its mass.

Employing, the so-called two-point approximation we find that
My = 2.11 GeV in the chiral limit [7]. The singlet part of the mass operator
shifts this value by less than AM = 300 MeV in a surprising coincidence
with the naive expectation: AM = 2m,, where m, denotes the strange
quark mass [7).

Results presented in this Section deal in fact with the classical nucleon.
By rotating the hedgehog-like pion field (3.6) we can account for nucleon-
delta splitting [49, 60]. Quantities such as the relevant moments of inertia
or magnetic moments, etc., require the knowledge of quark wave functions.
This interesting, but quite complicated analysis for the baryon octet and
decuplet remains to be carried out. In the next Section we will discuss the
quantization of the rotational zero modes using the Skyrme model as an
example.

3.1. Dirac equation and soliton energy

In this Section we discuss the basic tools used to calculate the soliton
mass. In the next Sections we will use these methods to calculate the nucleon
and dilambda masses. We are looking for a minimum of the functional:

M,ol[ff_] = min(NcElcvcl[—ﬁ] + Eﬁeld[—U—])a (3.1)

where Ej.,[ U] is the energy of a bound state level which emerges from the
upper Dirac continuum when the trial pion field is switched on, and Egqa[ U ]
is the total energy of the Dirac sea including the possible discrete levels
coming up from lower or upper continuums in the same trial pseudoscalar

field, with the free (i.e. with U = 1) Dirac sea energy subtracted (see
Fig. 3):

Eﬁeld[ﬁ} = N, Z(En - E,O,)- (3.2)
In fact the sum in Eq. (3.2) has to be regularized. The sum extends

over all levels in upper and lower continuum (the symmetric case) or only
over lower continuum (asymmetric case) — see Appendix B for details.
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Fig. 3. The spectrum of the Hamiltonian (3.3) in the presence of the pseudoscalar
field. Solid lines denote occupied levels. Nucleon mass My is calculated by sum-
ming the energies of the occupied levels (minus the energy of the corresponding
levels with the pion field switched off)

The Dirac Hamiltonian determining the spectrum is given by:

—5
0 —5 —s OU
H=7 <7kE+MU +eU7k—3-;+m). (3.3)

This Hamiltonian commutes neither with the isospin operator T nor with
the total angular momentum operator J = L + S, but only with their sum,
the so called grand spin, K = T + J.

As explained in Appendix B (see also Ref. [6]) the quantity Eg.q can be
expressed in terms of the phase shifts of the Dirac equation corresponding
to Hamiltonian (3.3). We will use two expressions for Egq, symmetric:

sym NC
Egoa 27 Z(ZK +1)
K

dF T dE T
M -M

(——]odEé—I:‘-y{—"\(—E—).{» ]wdEd_Fm

+ D (F(BS?) = F(M) + ) (F(ES) - F(—M))), (3.4)

up low
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or asymmetric:

ET =N.> (2K +1)
K,A

( / dE -‘;—g 6—1{';—(}5—) + Y (F(EE) - F(—M))). (3.5)

low

Here K denotes grand spin, A other quantum numbers, like parity for in-
stance, and n enumerates discrete levels of given K and A which emerged
from a given continuum.

Due to the theorem Sp(H — Hy) = 0 both expressions (3.5) and (3.6)
should be equal for the suitably large cutoff. However, for constituent
masses M comparable to the cutoff they can be, and as we shall see they
indeed are, different.

3.2. Nucleon in the chiral quark model

In this Section we calculate the soliton mass corresponding to the time-
independent SU(2) symmetric (so called hedgehog) Ansatz proposed by Skyr-
me [40, 41]:

Uy = exp (iﬁ- ‘T"P(r)), (3.6)
where 7 are isospin Pauli matrices, i is a unit a radial vector and P is a
function of radial distance only. Instead of solving self-consistently equa-
tions of motion in order to find P(r) which minimizes the energy (3.1), we
take a variational approach and assume that P(r) takes the following form:

P(r) = 2arctan ((Zre)’) : (3.7)

Here ro — the soliton size — is the variational parameter and the second
power of 7o/ is determined by the long distance behaviour of the equations
of motion. More complicated family of three parameter Ansiatz for P were
considered in Ref. [6]. '

In order to diagonalize the Dirac equation we take the quark isospinor-
bispinor wave function in the form

1 [_iF(r) Bl (7)) — i J(r) B E)(#)

veel =21 () s - B S80(R)

r

] ) (3.8)

where spinor-isospinors 21(;(’,,’(3(71') can be found in Appendix C. Note that
K takes integer values. The Dirac eigenvalue equation

H"pKKs(F) = E"/)KKs(F') (39)
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for given K and K3 comes to a system of four ordinary differential equations
for scalar functions F, G, H and J (see Appendix C). The parity of the
solution (3.8) and hence of the equation (3.9) is equal to P = (—=1)%+!. The
solutions corresponding to parity P = (—1)¥ are obtained by exchanging
the rows of the isospinor-bispinor (3.8). The case K = 0 is special: functions
F and G have to be put equal to zero in Eq. (3.8). In this way the four
equations (3.9) reduce to a system of two differential equations for scalar
functions H and J.

When we continuously vary the pion field by increasing rq, the energy
levels in upper an lower continuums are shifted with respect to their position
with the pion field switched off. For the pion field strong enough some of the
continuum levels my turn into the discrete ones, as depicted schematically
in Fig. 3. In Fig. 4 the energy of the discrete levels for K = 0 and K =1
are plotted as functions of ro. The K = 0 sector is somewhat special: only
here some levels which originated from the upper continuum may cross the
E = 0 line to disappear in the lower continuum as ro — co. The number
of such levels is equal to the topological charge of the pion field [21, 49].
Indeed, in Fig. 4.a only one level crosses the E = 0 line.

1

1l dedd,
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>
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0 1 2 3 4 0 1 2 3 4 5

fo "M to *M
Fig. 4. Energy of discrete levels of the Hamiltonian (3.3) as a function of variational

parameter 7o for K = 0 (a) and K = 1 (b); solid line corresponds to parity +1,
dashed to parity —1

To find the phase shifts for the K # 0 sector the following procedure
is applied [6]. The system (3.9) has two solutions regular at r = 0. Let us
denote them by superscript i = 1, 2. They behave at the origin as:

FO)(r) = O(r¥); GW(r) = O(r¥*);
HM(0) = 0; JM(0) = 0;
H®)(r) = O(rk+1); JO)(r) = O(rE*?);

F®(0) = 0; G@)(0)

0 (3.10)
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and at large distances:

FO(r) = AW sin (kr + a(‘)) ,

GO(r) = A(‘)E f 37 &% (kr + a(‘)),

HO(r) = BYsin (kr + 40,

IO (r) = BY— f 77 cos (kr + ﬂ("’) (3.11)

with k = VE? — M2, where A®), B®), at) and B¢ are found by solving
numerically Eq. (3.9). The phase shift § for given K is then defined as [6,
49]:

A(I)B(2) ccs(a(l) + ﬂ(Z)) — A(Z)B(l) COS(Q(z) + ﬁ(l))

tand = B sin(a® § fO) — ADE® sin(a® + g0y 12
The possible bound states are found from the condition:
AWB@ _ A pM) — g, (3.13)

where this time A®) and B¢) are the coefficients in front of the exponentially
decaying solutions with the initial conditions given by Eqs (3.10).

In Figs 5 and 6 we plot the energy behaviour of the phase shifts §( E)
for K = 0 sector. For comparison the full line represents a semiclassical
approximation to §(E) given by the formula:

sin P

§(E) . 1 [ sin P
T = 651gn(E)+ m/dr(z——;— (M+ €
0

)a-29

+e(2sin2P + €P'r) -I;—) +0 ( %) . (3.14)

The derivative coupling proportional to e forces the phase shifts to ap-
proach a constant +mre as E tends to infinity. This behavior is clearly seen
in Figs 5 and 6. Moreover for upper continuum and parity +1 §(E = M)
jumps from 0 to © between roM = 0.3 and oM = 0.8. This is an illustra-
tion of the Levinson Theorem stating that §(E = M)/x counts the number
of discrete levels which emerged from a given continuum (see Appendix B).
Indeed, a valence level emerges from the upper continuum at roM = 0.5.



Chiral Models: Pions and Baryons 543

10 -n|ly|||n||l|l||:1:!|:c|nbslx:xlrslle
- H
i 9,2075 rM=03 | s
0.5 4 -
1= : :
5 . s
] 00! t °® F
-0.0+ I aat 000 000° -
3 ocoo‘)"’oﬂo? :ooo -
b —— H r
p ' E :
3 H o
4 H H F
- 0.5 “trrrrrrr T T T T T T T T R T T T T T T T T T T T
-0 -8 -6 -4 -2 0 2 4 8 8 10
EIM
1.0 A : . o
p H C
] N b C
3 b -
3 : 3
0.5 - i ; C
4 N M .
e o ;
0 3 H s N
1 " : C
] B H 5 C
-0.0.: s °o° =
- £ Oo -
7 H @ E
e 1] M -
- + -
p + C
] ‘ ! £
-05 zwv'x:1|le]rnz;-:-;:?;1711]vvv;»»-|rt7
-0 -8 -6 -4 -2 0 2 4 6 8 10

Fig. 5. Phase shifts for K = 0, triangles for parity P= +1, squares for parity P= ~1
for different 7¢M and go = 0.75. Solid curves correspond to the semiclassical
asymptotics of Eq.(3.14)

Since for m = 0 everything scales with M the plots of Fig. 6 are exactly the
same for any value of the constituent mass M.

Having found the energy behavior of the phase shifts in a given K sector
by means of Eq. (3.12) we perform the integration according to Eq. (3.5)
or Eq. (3.6) (the integral is convergent owing to the presence of the reg-
ularization factors F/(E) ), add a possible discrete level found by means
of Eq. (3.13), and repeat this procedure for the opposite parity. What re-
mains, is to perform the summation over K. One does not need to go to
infinitely large K with the described procedure. The behavior of large K
partial waves is semiclassical (since it implies large orbital quantum num-
ber). A simple formula can be derived to estimate their contribution to
Egaa :
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Fig. 6. Phase shifts for K = 0, triangles for parity P= +1, squares for parity
P= —1 for different 7o M and ga = 1. Solid curves correspond to' the semiclassical
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N, M ]
Bl = Y ESL ~ / T P

Y
T r? r? ;2 .sin’P
/drrexp(-— E)II“% ( 2t) (P +2 ) (3.15)
0

Here Ix,q1/2 is the modified Bessel function, and A stands for parity P.
Summing up EX  over K with the multiplicity factor (2K + 1) one gets
the long wavelength limit given by the first term of Eq.(A.12), namely:

2
Egoes = M/ P(tM?)e~tM /drr (P,z+2sm P) . (3.16)
0

2r
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In order to calculate the energy of the Dirac sea we have used the
following identity:

Kmll
Eﬂeld = Eclass - Z (Ec};(u, - Efliild) ’ (3‘17)
K=0

which is by definition true in the limit K., = co (the quantities EX,
are calculated numerically in terms of the phase shifts). In practice good
numerical accuracy is obtained for K., = 3.

In the previous Section we have specified the cutoff function ¢ (Eq.
(2.23)) which satisfies the conditions (2.21) and (2.22). In fact the cutoff
dependence is very weak [9], therefore in the present calculations we have
used the so-called sharp cutoff:

¢(1) = O(r - m0), (3.18)

where 7, was chosen to satisfy constraint (2.21) and then 7 was adjusted
to fulfil Eq. (2.22).

The existence of a nontrivial solution which has interpretation of a nu-
cleon manifests itself as a minimum of F = M, as a function of the varia-
tional parameter ro. In Fig. 7 we plot E/M as a function of a dimensionless
parameter roM for different masses M and couplings g5. For go = 1 the
minimum appears for M > 300 MeV and gets deeper as M increases. For
M > 400 MeV the minimum is achieved at E < 3M, i.e. below the free
quark threshold. The minimum appears because of two competing phenom-
ena: the increase of the sea energy, Egqq with ro and the rapid decrease of
the energy of the valence level emerging from the upper continuum. This
pattern can also be seen for g4 = 0.75.

Soliton mass is a decreasing function of the constituent quark mass M.
For g, = 1 the minimum appears for M =~ 325 MeV at approximately
E =~ 1190 MeV to reach 1060 MeV for M = 500 MeV. For M > 600 MeV
the valence level crosses the E = 0 line and the soliton consists of the sea
only. This limit corresponds to the Skyrme model, where there are no quarks
but the pseudoscalar field only. Here a remark concerning the cutoff is in
order. For M = 325 MeV the energy cutoff A = M/,/7; is of the order of
665 MeV, whereas for M = 500 MeV, A = 645 MeV. It is clear that model
makes sense only when M < A, so we cannot increase the constituent mass
M too far. The above numbers are calculated by means of the asymmetric
mass formula (3.6). For M ~ 300 — 400 MeV both formulae (3.6) and (3.5)
give results within a few percent, whereas for M = 500 MeV the difference
is already larger than 100 MeV.

As seen from Fig. 7 the minima are rather broad; it is therefore difficult
to estimate their exact positions, i.e. ro, with high accuracy. Therefore the
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nucleon axial coupling G5, which is related to the long distance tail [98] of
the profile function P(r):
13—"F3r3 (3.19)
has larger relative errors than the soliton energy inself. Typical values of
G, are 0.5 to 0.9 for M = 325 — 500 MeV respectively. The model fails to
reproduce experimental value for G, = 1.23

So far we have concentrated our attention on the chiral limit i.e. on
a theory with massless quarks. It is interesting to look at the slope of the
bare quark mass dependence of the soliton mass E(m). This slope is just a
nucleon “o-term” [99]:

GA=

o = m(nucleon|Tu + dd|nucleon). (3.20)

where 72 = 5.5 MeV is an average up- and down-quark mass. By definition
the nucleon matrix element in Eq. (3.20) is evaluated in the chiral limit.
To compare Eq. (3.20) with the data one needs to calculate the corrections
generated by the quark masses. They have been estimated in Ref. [88] to
be of the order of 5 MeV (see also Ref. [89]. Experimental results are also
subject to uncertainties due to the extrapolation of the data to the Cheng-
Dashen point [89]. The analysis of Koch [100, 101] gives 6448 MeV, whereas
Gasser et al. [89] quote slightly lower value: 56 + 2MeV which correspond
to theoretical ¢ = 59 MeV or ¢ = 51MeV respectively. So large o term
implies a large content of strange pairs in nucleon [102, 103]. It is quite
easy to calculate the o-term in our model:

d

=m—E . 3.21

7 mam m=0 ( )

To calculate (3.21) we have used the cutoff function of Eq. (2.23) and

M = 345 MeV as dictated by the model of the instanton vacuum. Our
result reads [6]

o = 54 MeV. (3.22)

One should note that in calculating derivative (3.21) systematic errors
cancel out. Therefore we consider this numerical estimate of the o-term as
quite reliable.

3.3. Dilambda in the chiral quark model

In this Section we calculate the mass of the H particle [7], a six quark,
baryon number 2, SU(3) singlet state [58]. Working in the chiral limit we
use the dynamical (constituent) quark mass M = 345 MeV as dictated by
the instanton vacuum model. As in the case of the nucleon we will minimize
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the soliton mass (3.1), however, instead of the SU(2) matrix U we will use,
following Balachandran et al. [56, 57], the SU(3) matrix of the form:

Un(7) = exp (i~ Af(r) + i (7 - 4 - 2) 9(m), (3.23)

where A = (A2y As, A7) and 7 is a unit vector. Matrices A; generate an
SO(3) subgroup of the SU(3) flavor group. Ansatz (3.23) can be conve-
niently rewritten in the following form [7]:

(Unw = et (6,‘, cos f +nmy (e'ig — ¢08 f) + €ximMNm sin f) . (3.24)

Functions f and g depend only on the radial distance » and are chosen to
obey boundary conditions [56, 57, 96]:

f(0)= = and _f(r—»oo):rl—2
g(0)==x7 and g(r— o) = :—3 (3.25)

The general solution to the Dirac equation (3.9) with Ansatz (3.24) and
ga = 1 can be written as:

p— I’. —
Y Fu(r) EX2. ()

bem(M)=| 7 =) (7 (3.26)
" ~i 32 G () ZRR ) |
3

where the flavor-spinors 5}}-}23 can be found in Appendix C. Inserting (3.26)
into Eq. (3.9) we get 12 first-order differential equations for 12 radial func-
tions Fy,;y(r) and G,jy(r) (I = £, 0 and ¢ = £). In fact, for the valence
K = 1/2 level, the system reduces to 8 equations (I = — does not con-
tribute), which are solved numerically. Let us remark here, that since Uy
does not transform into itself under parity transformation, parity is not a
good quantum number here, and — unlike in the nucleon case — the 12 (or
8) equations do not split into two subsets of 6 (or 4) differential equations.

In order to calculate E,.,q We solve the Dirac equation numerically. To
calculate Eg,q we use the interpolation formula (A.14) derived in Appendix
A, which for Ansatz Uy can be recast into the form of an integral over dp :

Eqda = 8MN. / dpg(p) (3(12 +I7) + (I3 + I + 2 (12 + 1)
0

+2(L1s + I 14)) . (3.27)
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The integrals I;(p) are given by:

o0

I = /dr ((cosf cos% — 1)prsinpr

[o]

9 .
+(cos f cos % — cos -g‘q—)(cospr - sx;fr )) ,

o0 d . g
I, = /dr (cospra (r cos f sin 5)

)
2 .
+ (cos f cos% + sin __32) (cospr — su;fr )) ,

I3:—/dr sinpr+3 cospr—smpr cos f cosg---cc'sgg ,
pr 3 3
0
i d g, .2
Iy = — /dr (cosprzr (cos f cos 3 + sin T}—)
0

2 .
+3 (cos f sin% + sin -:—3‘(1) (cospr - 51;:71‘)) s

Iy = p/dr sn;:)rad_ ('r2 sin f cos %) s
0

r
Is = /dr sin fsin % (pr cos pr — sinpr). (3.28)
0

Finally we choose functions f and g in the form:
2 3
f = 2arctan (%) g = 2arctan (:—9) ) (3.29)

where r; and r, are variational parameters.
Our procedure consists in finding a minimum of Eq.(3.1) with respect
to parameters r; and r, . Since for wide range of r, a minimum in r;
corresponds to Mr; = 1.1, we vary only r,. In Fig. 8 we plot Ejva, Ejtiy
and My as functions of Mr,. My exhibits a shallow minimum for Mr, = 1.3
with
My = 2.11 GeV. (3.30)
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In order to depart from the chiral limit we have so far worked in, let us
consider the quark mass matrix m = diag(0,0,m,):

m = 1m,(1 - v3X). (3.31)

Since H is a flavor singlet only a piece proportional to 1 contributes to the
H mass.

As we have seen in the previous Sections xQM is quite successful in
reproducing the nucleon sigma term. In order to estimate the mass shift due
to the singlet piece of the mass operator (3.31) we will calculate the dilambda
o-termin the chiral limit. One would naively expect that oy = 20x, however
our estimates based on the long wavelength expansion, Eq. (A.13), indicate
that oy may be somewhat lower: oy = 1.30yx . The energy shift due to
the singlet piece in (3.31) can be estimated in a linear approximation (for
m, = 137 MeV): AMy = 580 MeV. This large value suggests that the linear
approximation is not applicable here and that nonlinearities in m, should be
taken into account. This can be achieved by minimizing My with m, at its
physical value. Note that the Ansatz functions (3.29) have to be modified,
since they should decay exponentially at large r. The mass formula to be
minimized now reads:

MH = Elcvel + Efli‘:tld + mnA,
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where A is calculated from Eq. (A.13). Our estimate for m, = 137 MeV
indicates that My ~ 2.4 MeV at Mr;, = 1.4 and Mr; = 1.5. This result
coincides with the naive expectation A = 2. Clearly, the nature of the
SU(3) breaking in the soliton models is still an unsolved problem [104]. We
relegate the detailed discussion of this point to the next Section where we
discuss the SU(3) Skyrme model.

At this stage we are not in a position to decide whether My is below
or above the two-A threshold. The model prediction for the mean octet
mass [49, 60] gives 1207 MeV (exp. 1154 MeV), but splittings within the
multiplets have not yet been evaluated. Let us finish by a remark that given
a completely different group structure of the nucleon and dilambda Ansatze
it is not obvious that SU(3) breaking can be treated in the same way in
both cases.

4. Baryons in the SU(3) Skyrme model

In this Section we shall discuss the inclusion of strangeness using the
Skyrme model as an example [11, 12]. Most of the problems encountered
here are, however, inherent for the all chiral models [13]. The Skyrme model
[40,41], because of its simplicity turns out to be a useful tool to address the
questjon of the nature of chiral and SU(3) symmetry breaking due to the
strange quark mass. For the sake of clarity we will use here the variational
approach rather than exact numerical procedures. While our results differ
by no more than 10 % from the exact ones found in the literature, most of
the formulae in this work are analytical.

Let us briefly recapitulate the main ideas behind the Skyrme model.
As we could see in Section 3.2, for large soliton sizes the valence level sinks
in the Dirac sea. This means that the whole baryon mass can be expressed
entirely in terms of parameters of the chiral field. It was Skyrme’s idea that
the soliton in the effective meson theory can be interpreted as the nucleon.
Of course, this model was formulated well before the invention of quarks.

Skyrme proposed a specific effective Lagrangian involving the fourth
power of the field derivatives (the Skyrme term) which guarantees stable
solitonic solutions. When the model is quantized, this fourth order term in-
volves, nevertheless, only second power of time derivatives [98]. The best fit
fourth order coefficients of the effective chiral Lagrangian (see Eq. (2.28))
are consistent with Skyrme’s conjecture. On the other hand, the effec-
tive Lagrangian obtained from xQM involves other terms (the non-Skyrme
terms, see Eq. (A.12)), which destabilize the soliton and involve higher time
derivatives in the quantum-mechanical treatment of the model. Unfortu-
nately, as we saw in Section 2, we are not able to discriminate between the
two effective Lagrangians, due to large experimental uncertainties.
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Let us simply accept the original Lagrangian of Skyrme and proceed to
a discussion of the Skyrme model phenomenology. We will assume that the
chiral field U (which is an SU(3) generalization of the SU(2) U field) takes
the form of a topological hedgehog configuration [63, 1]. We showed in Sec-
tion 2 that the number of valence levels in xQM is equal to the topological
charge of the chiral field. In the Skyrme model the baryonic current is, by
assumption, identified with the conserved topological current [64, 65]. It is
beyond the scope of this work to discuss the role of topology in detail; this
question is widely covered in the literature [17,105]. Let us only mention
that while in xQM one chooses the topological configuration merely for the
sake of elegance and convenience (although it may happen that the topolog-
ical field is selected by the dynamics [6]), in the Skyrme model the hedgehog
configuration is absolutely necessary from the requirement of energy finite-
ness.

In this Section we cover a wide range of topics. First, we calculate the
properties of the classical solution alone. Next we quantize the model [1,
106-108] and show that the system is constrained in such a way that the
lowest energy states belong to octet and decuplet SU(3) representations.
Treating the strange quark mass as a perturbation we discuss the baryon
phenomenology [2, 107, 109, 110] as well as the properties of the H particle
[96, 97]. The numerical results are not satisfactory. Finally, we discuss the
large N, limit [5, 111-113] and the "nonperturbative” approaches [114-118]
in which the strange quark mass is not considered as a small parameter.

4.1. Classical solution

Let us start by specifying the effective Lagrangian proposed by Skyrme
[40, 41] and later generalized by Witten [62, 63]:

2
/dtLSk = %‘/dtd3rl‘l‘(aﬂU'6#U)

+ 32¢e2

+ N.Twz + /dtL,,.. (4.1)

/dt d®r Tr([0,U U',6,U U'?)

Here U is an SU(3) matrix, N, number of colors, parameters F, and e, if
taken from meson physics as discussed in Section 2, are equal to 186 MeV
and e ~ 5.5 respectively.

The second term in Eq. (4.1) was proposed by Skyrme [40, 41] in order
to stabilize the soliton. The third term (so called Wess-Zumino term [119,
120]) originates from topology [62]. It can be also derived from the CQM as
the imaginary part of the action obtained by integrating out the quark fields
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[85]. It accounts for chiral anomaly and cannot be written in terms of a local
Lagrangian density; instead it is given as an integral over the 5-dimensional
manifold whose boundary consists of 4-dimensional space-time:

Tz = 2“;6% / dr 07" Tx (3,U U'0,U U'S,U U, U U8, U U'). (4.2)

In fact, as we shall see later explicitly, the fifth, redundant coordinate can
be integrated out for the hedgehog Ansatz.
Last term in Eq. (4.1) explicitly breaks down chiral symmetry:

L, = a/d3r’I‘r(U U —2) 4 b/dsrTr((U +UYN),  (43)

where a and b are given by:

F? V3F?
= 3—2("‘: +ml), b= —-24—‘("1: - mk). (4.4)

Three pseudoscalar meson masses can be therefore expressed in terms of
only two parameters yielding a constraint:

m2 + 3m} — 4mk =0, (4.5)

which is experimentally well satisfied.

As in Section 3 we have to specify a form of a time-independent solution.
We take here the simplest possible generalization of the SU(2) Ansatz U,
of Eq. (3.6), namely:

0
Uo
Uo = 0l. (4.6)
0 0 1

The energy of the solution (4.6) is given by:

M = My[P]+ mq[P], (4.7)
where
M,[P] = 4#3701 (gﬁi{’_’ + Sinzp) + (Sixﬁp + i1—"12) (4.8)
T *\\'s dz 4 222 dz YA
o
my[P]=7 3 /oo dz z*(1 — cos P) (4.9)
e3F, Jo ’
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with e
u? = ﬁ'—% ~ (412MeV)?, (4.10)

where ¢ = eF, r.

The SU(2) limit [98, 121] of the mass formula (4.7-4.9) can be taken by
substituting mx = m, in Eq. (4.10). The first bracket in Eq. (4.8) comes
from the kinetic term of Lgy (first term of Eq. (4.1), whereas the second one
comes from the Skyrme term.

Now, in order to find the energy M, one should construct equation of
motion and solve it, finding the profile function P(z). Here we will adopt
a variational approach, choosing P = P(z/z,) as in Eq. (3.7) and minimize
the energy M with respect to z5. The advantage of Ansatz (3.7) is that all
integrals over dz can be performed analytically:

My=2x 23V2 ( 2o + 15) (4.11)

e 16
_ e 2\/5 3
me = eaF‘Kﬂ' 720. (4.12)

Minimizing Eq. (4.11) with respect to 2o we find 2o = 4/15/4, and the
soliton mass M, = 1370 MeV, well above the nucleon mass. We will come
back to the question of phenomenology in Section 4.3.

4.2. Quantizing the Skyrmion

The global symmetry of the energy for the static solution U, which
leaves vacuum (i.e. Up(z = o0) = 1) invariant, is given by:

U, — AU, A!, (4.13)

where A € SU(3)/U(1), since [Ag, U] = 0. Therefore matrix A is defined
up to a local U(1) factor h = exp(iAg¢), i.e. A and Ah are equivalent.

By promoting A to a time-dependent rotation A(t) we introduce 8 col-
lective coordinates [1, 106):

A'(t)dA(t) 5 z\aflﬁ(‘-l’-t(—t—); (4.14)

however only first seven coordinates have a dynamical meaning. The time-
dependent Ansatz

U(# 1) = A(®)Uo(7) AN (1) (4.15)
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leads to the following Lagrangian [1, 2]:

_ IA[P] 2 da, IB[P] ! dak2
Lo == 2 Z 2 ;::dt

N das
2f dt

Let us for the moment forget about the SU(3) breaking piece Am[A4, P]
equal to the second term in Eq. (4.3). In what follows we will assume
that Am[A, P] can be treated as a perturbation, so first let us discuss the
quantization of the unperturbed SU(3) symmetric system.

Lagrangian (4.16) resembles the well known quantum mechanical La-
grangian of a symmetric top [106, 11] with two moments of inertia:

+ Am[A, P]. (4.16)

,dP
I[P] = P 3F /d:c (z +4 sm P+ 2? - )) (4.17)

P dp?
Ig[P] = e:;',, /d:c sin® 3 (:c’ + (2 sin® P + xza- )) . (4.18)
°

Again, two pieces originating from the kinetic part and the Skyrme term of
Lagrangian (4.1) are separately displayed. Note that the two moments of
inertia correspond to two different kinds of motion: I4 corresponds to the
motion in the non-strange directions, whereas I is relevant for the rotations
in the strange part of the configuration space, except for the eight direction.
The term linear in dz comes from the Wess-Zumino term of the Lagrangian
(4.1).

In order to pursue the analogy with the symmetric top [11] let us identify
the symmetries of the Lagrangian (4.16) without the SU(3) breaking term.
There are two symmetry groups which leave Lgy invariant:

A(t) » guA(2), g1 € SU(3)y,
A(t) > A(t)gh, gr € SU(2)r X U(1)iocar- (4.19)
Since A belongs to the coset space SU(3)/U(1) rather than to SU(3),
the right symmetry splits into the product of SU(2)g and U(1)jpcar- Left

SU(3) symmetry corresponds to flavor, right SU(2) to spin and local right
U(1) factor results in the constraint [59-61]:

YR = (420)
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P?_-

Fig. 9. Symmetric top

where Yy is a hypercharge corresponding to the right U(1).

A symmetric top can be quantized by realizing that there are two sets
of angular momentum operators in the problem. The three of them (Jg) are
connected with a body fixed frame (£, 7, (), three others (J.) are defined in
the LAB system (z,y, z) (see Fig. 9).

Since [J¢r, J.;1L] = 0, simultaneously commuting operators are:
J? = J} = Ji,J.1 and J;n corresponding to the quantum numbers j, m
and k.

The wave function of the top is just a D function :

Yeop(4) = v/dim(j) Dl (e, B, 7)
= Vdim(F)}(5),m | A(e,B,7) | (4): k),
where A is an SU(2) matrix parameterized by 3 Euler angles describing the
position of the top. We have consciously denoted this matrix by A since it
plays exactly the same role as matrix (4.14) in the case of the Skyrme model,

except that it depends on 3 instead of 7 Euler angles. Now the Hamiltonian
of the symmetric top

_ k41 -k
Hiop = 21, t+ oI5

_ G(UM)r) | C2(SUR)L) — C3(U(1)r)
T oI, 215

(with left and right symmetry groups defined in analogy with Eq. (4.13))
can be simply recast into the SU(3) form:

Hg, = M + Hsy(s) + Hsu(s), (4.21)

with
_ C:(SU(R)R)

Hsyz) o1,

(4.22)
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Cx(SU3)L) - Co(SU()w) -
2Ig )
In Eq. (4.23) we have subtracted the value of the eight SU(3) generator
squared from the SU(3) Casimir operator C5(SU(3)L) in accordance with
the constraint (4.20).
The wave function of the baryon state can be written as an SU(3)
rotation matrix [122, 123]:

Vraryon(4) = v/dim(p, 9) D% (4)
=¥ dim(p, Q)((p’ Q), Y,I,Ia l A I (p) Q)1YRa Js —-73), (4'24)

where quantum numbers m and k denote now hypercharge, isospin and
its third component, and right hypercharge, spin and its third component
(with minus sign ), respectively. SU(3) representations are labeled by (p, ),
however not all p and g are allowed. The constraint (4.20) selects the rep-
resentations of triality zero:

8, 10, 10, 27, 35, 35, 64, ... (4.25)
for N, = 3. The success of the model is the prediction that the lowest
baryonic states belong to the octet and decuplet representations of SU(3).
Higher representations are not predicted by the quark model but here they
exist (e.g. the lowest 10 state has mass of the order of 1530 MeV).

Now we shall supplement the Hamiltonian (4.21) by the symmetry
breaking term related to Am[A, P]

Hgysy = (4.23)

2 oo
H, - —r%((l,l),0,0,0 | 4] (1,1),0,0,0)/@ 2*(1 - cos P), (4.26)
" 0

with 9
Ap® = g(mf( —m?) ~ (388MeV)>. (4.27)

For small Ayu? the energy splittings are proportional to the averages of
H,, between the baryonic states (B | Hy, | B). These averages are given in
terms of SU(3) Clebsch-Gordan coefficients [124, 125] dg (see Table I and
Refs [107, 2]).

Finally let us evaluate all functionals of the profile function P in terms
of the Ansatz (3, 7):

1 ,v2
I, = o7 wzﬁ(ﬁzg + 25z,), (4.28)
—_ 1 2\/5 3
IB = esFrﬂ’ 1—6'(4230 + 9130), (4.29)
2
Hy, = ——‘lw’—@zgd& (4.30)
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In this way we have derived the mass formula for the baryon B:
Mg = My + ma + Hsuy(z) + Hsu(s) + Hr- (4.31)

Here all terms in Eq. (4.31) are functions of the soliton size zo; they also
depend on parameters of the meson Lagrangian, i.e. F, and e. It is
interesting to look at the N. dependence [61, 66, 67] of various terms in
Eq. (4.31): M., mq and H,, behave explicitly as N.. Hgy(s) behaves as
N;! and Hgsy(s) behaves like N?2. Let us note that Hgsy(s) has exactly the
same value between octet and decuplet states, so in practice it acts as a
common mass term which shifts the classical mass of the soliton by the
same amount for any physical hadronic state. Apart from the explicit N,
dependence of various terms in (4.31) there is an implicit dependence [5,
111, 112] caused by the fact, that physical baryonic states are no longer
members of the octet and decuplet for N, — co. We will come back to this
question in Section 4.5.

Note also that m and Hy, depend on meson masses: m results from
the explicit chiral symmetry breaking, whereas H), is proportional to the
SU(3) breaking parameter mg — m,.

In Fig.10(a) we plot M, as a function of z, (solid line) for a typical
values of F, = 100 MeV and e = 5. M, (z,) exhibits a shallow minimum,;
linear increase for large z, comes from the kinetic term whereas the rapid
rise for small z, is due to the Skyrme term. In this sense the Skyrme term
provides a hard core, preventing a soliton from shrinking to zero size. The
short-dashed line represents my(zo) — we see the rapid z§ increase and
long-dashed line represents Hsy(s) (Eq. (4.23)). In the next Figure 10.b
we plot M, and also M + m,, (long dash), My + Hgy(s) (short dash) and
My + mq + Hsygs) (dotted line) as functions of zo. All of them except of
M.+ Hsy(sy exhibit minima however at different values of z, and of different
magnitude. Since there is no unique prescription which combination should
be actually minimized we will discuss various types of fits in the next Section.

Let us finish this Section by discussing the applicability of Ansatz (3.7)
as the solution of the equation of motion obtained by minimizing the SU(3)
symmetric Hamiltonian (4.21) with respect to P. Asymptotically, for large
z the profile function P(z) behaves as:

P(z) ~ ;15(1 + -é%r-:c exp(—wz)), (4.32)

where

1
w= V- 2% — 1h (4.33)
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Fig. 10. Various components of the SU(3) mass formula (4.31) as functions of
variational parameter zo for Fr = 50 MeV and e = 5; solid line: M, (a) long
dash: Hsy(s), short dash: m.; long dash: M. + Hsy(s), short dash: My + mq,

dotted line: My + ma + Hsu(s)

with
2 _ 2C2(SU(2)r)
Fa 313 ’ (4.34)
U(3)L) — C2(SU(2)g) - 2
2 C3(SU(3)L) 41?5 (2)» 12 (4.35)

In the chiral limit (4 = 0) P(z) ~ 2™?; Ansatz (3.7) has exactly the
same behaviour. On the other hand for u # 0 P(z) falls off much faster than
Ansatz (3.7). Therefore we would expect that the results of our variational
approach would be less accurate for u # 0. As we shall see in Section 4.3
the difference between the exact solution and the variational approach is,
for most quantities, less than a few percent, implying that the shape of the

tail of P(z) is not very important.
Equations (4.32, 4.33) reveal another type of instability of the rotating
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soliton. If u? < p? — p%, then P starts to oscillate and the soliton decays
emitting pions.

4.8. Phenomenology

Let us now discuss the relevance of the whole picture to Nature, i.e.
model predictions for various physical quantities. What kind of agreement
can we actually expect ? The model is in fact very simple: the starting-
point Lagrangian (4.1) is the simplest one can think of, with hedgehog
configuration and with Ansatz (3.7) all integrals for the mass formula and
for other quantities can be performed analytically. The physical picture is
also extremely simple: baryons emerge as a rigidly rotating symmetric top
of the topologically nontrivial configuration of the classical pion field, chiral
symmetry breaking and SU(3) breaking being treated perturbatively. All
other degrees of freedom like e.g. vector mesons [71] are completely ne-
glected. With this simplicity in mind it becomes clear that our predictions
will be only qualitative. Still, there is a chance to gain some insight into
the mechanism of chiral and SU(3) symmetry breaking, to see the impor-
tance of various terms and to find a way to generalize this oversimplified
picture.

Let us now examine the mass formula (4.31). In principle one should
take experimental values for F, and e, and and obtain in this way the abso-
lute predictions for baryon masses. This (let us call it orthodoz) procedure,
however, as discussed at the end of Section 4.1, overshoots the experimental
values. Therefore Witten et al. [98] proposed to fit F, and e to two baryon
masses and calculate other quantities in terms of fitted model parameters
(we call it a flezible-orthodoz approach). In the most flezible approach one
rewrites the mass formula (4.31):

MB = M1 + MzCz(SU(2)R) - M3 dB (4.36)

in terms of three free parameters M; ; ;. Here M, includes M, m, and Ip,
M, is related to I, and M; contains m — Apu?. Taking [11]

M, =1144 MeV, M, =97 MeV, Mz = 700MeV

one obtains relatively good fit to the octet and decuplet masses. The results
are presented in Table I in column A.

It is interesting to examine the second order of the perturbative expan-
sion. Hamiltonian H}, mixes octet or decuplet states with higher, unphys-
ical representations (like e.g. 27, see Fig. 11). For these representations
C2(SU(3)L) — C2(SU(2)r) — N2/12 is different than in the case of 8 and 10;
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TABLE I

Baryon masses for various fits (dp denote group theoretical coefficients described
in the text).

dp exp A B C D E F [114] | [118]
N i% 939 941 932 1019 1083 | 1094 1066 1068 inp.
Al Ll 1116 1081] 1090| inp.| inp. | inp.| inp.| 1180| 1046
pH —%6 1193 1221 1212} 1212§ 1147, 1138 1166} 1260| 1120
= —% 1318 1291, 1321 1261} 1164; 1149 1191 1338 1199
A % 1232 1295 1229| 1324 1365] 1371 1354 1266 inp.
Y o| 1385| 1382| 1391| inp.| inp.| inp.| inp.| 1344| 1302
= —% 1533 | 1470 1536 | 1446 1405( 1399| 1416 1435 1381
Q —% 1672 1557 1662 1506 1425; 1412 1448 1521 1467
Fy 186 - - 80 74 41 52 89 129
[O3Ne]
o] O 0O (o2 < 2Xe)
o® o & (o2 -2 o] o ®O
(o2 - 2N o) o 00 C0eoo0 000060
(oo} o0 0$ 00 0@ C000@O0
0O O 00OO0OO0
8 10 27 35

Fig. 11. States belonging to higher SU(3) representations which are mixed with
proton (x) by the hamiltonian Hp,. The same for A~~ (+) if looked at upside-
down

therefore the term with Ig cannot be included in M, any longer introducing
the new, 4-th parameter M,

M, = M! + M"(C2(SU(3)1) — C2(SU(2)) — N2/12).

Taking [11]
M, =900 MeV and M, =163 MeV

we obtain a very good fit (see Table I, column B). There is a substan-
tial improvement with respect to the first order formula (22). This is not
a surprise since we have fitted 8 masses with 4 free parameters. Similar
agreement was also obtained in Ref. [107] where an extra term Tr(\sA! 4)
was added. Since this term was not present in a meson Lagrangian, its
coupling was a free parameter and the total number of free parameters was
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also 4. Therefore the success of fit of Ref. [107] is due the number of free
parameters rather than to a physical importance of the new term.

Let us remark here that the model predicts existence of exotic states
belonging to 10, 27 and higher representations of SU(3). For example the
lightest 10 state of spin 1/2 and strangeness +1 has a mass of the order
of 1530 MeV. It is of course an important theoretical question, which we
have no answer to, whether our low energy effective theory can be applied
to describe such excited states.

Columns C — F in Table I present various fits in, what we called,
flezible-orthodor approach. Fitting procedure consisted in finding F, and e
which fit A and £* masses. Soliton size z; was found by minimizing certain
combination of various pieces in mass formula (4.31).

Fit C

Here we take a point of view that only M, is minimized treating both mq
and Hy, as perturbations. Moreover we further assume that Hsys) should be
discarded from the mass formula since it is a non-leadingin N, contribution
to mean octet and decuplet masses. The Skyrme Lagrangian (4.1) could be
in principle enlarged by terms of the order (1/N.)° and higher, which would
also contribute to the mean octet and decuplet masses. For consistency of
the N. expansion we therefore disregard Hsy(s):

~~
mass = M + mq + Hsy(z) + Hpr,
1019 = 562 + 5474+ 55 — 145,
where the brace indicates which part of the mass formula was minimized,
and the figures below correspond to the nucleon mass (in MeV). The quan-
tum SU(3) piece, omitted in this fit is Hgys) = 291 MeV. The resulting Fy
is given in Table I and e = 5.8.

Fit C' (not displayed in Table I)
takes the model mass formula at face value with Hsy(s) included:

~~
mass = M + mq + Hsy(z) + Hsua) + Hue
1119 = 271 + 547+ 55 + 291 - 145.
Again, the figures above correspond to the nucleon mass. The results for

baryon masses are identical with fit C, the only difference being F, = 47
MeV and e = T.

Fit D
Here again we neglect Hgy(s), however we minimize both contributions to
classical mass:

pm——
mass = My + mq + Hsu(z) + Hpr,
1083 =888 + 180+ 63 — 48.
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The resulting e is 4.3 and Hgy(sy = 407 MeV.

Fit E
Again we take the model mass formula at face value with Hsy(s) included,
and minimize My + m. as in case D:

e e,
mass = M, + mq + Hsuy(z) + Hsu(s) + Hors
1094 =507+ 1234+ 65 + 432 - 33.

This is actually the procedure adopted in Ref.[2], where the soliton
profile was found by solving numerically the equation of motion. The vari-
ational approach is here quite close to the exact result with F, = 41 MeV
(46 MeV in exact approach) and e = 4.8 (4.6).

Fit F

Here in addition we minimize Hsya):
mass = My + mq + Hsu(a; + Hsy(z) + Hy:,
1066 = 441 4 282+ 367 + 61 -— 75.

We have checked that the stability condition p? < p? — p% (see Eq. (4.32))
is not violated. Here e = 5.4.

Let us summarize the results of Table I. Column A, where we have
used a general 3 parameter mass formula (4.36), represents the best fit one
can possibly obtain with Eq. (4.31). The closest to this ideal is the fit of
column C where the SU(3) quantum part of the hamiltonian (4.31) was
neglected. However F, needed in this fit deviates from the experimental
value by more than 50 %. All other fits are worse and require even lower
values of F,. Let us mention that neglecting the common mass term mg
(for which we see no reason) as well as Hgsy(s)y would give the masses as
in column C, but with F, = 134 MeV. This is exactly the chiral SU(2)
result of Ref. [98]. The latter might indicate that presumably one should
either include higher orders in the perturbation series (like in column B) or
find some other Ansatz which from the beginning breaks down the SU(3)
symmetry. In fact both these approaches were examined and the results are
presented in the last two columns of Table I. We shall comment more on
that in Section 4.6.

Let us also mention that if the breaking terms in Eq.(4.4) are neglected
(i.e. m, = mg = 0, one can fit the mean octet and decuplet masses (1151
MeV and 1385 MeV respectively) with F, = 105 and e = 5.4 [1].

Technically we can understand why the fits are not satisfactory. We
need to satisfy two conditions: we need relatively small common soliton
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mass and rather large splittings within the multiplets. One should however
remember that a too small classical mass is inconsistent with the physical
picture of a slowly rotating heavy, classical object. Since splittings are
proportional to z3 we would like to have large z, which minimizes the soliton
mass. As seen from Fig. 10 M, has a minimum at large z, — this corresponds
to fit C. However we have still to add m, and also Hsy(s) which substantially
increase the baryon mass.

On the other hand, if we minimize all representation-independent terms
contributing to the baryon mass then z, is rather small (see Fig. 10) and
therefore the mass splittings are not satisfactory.

In fits C', E and F the contribution of Hgy(s) and/or m is relatively
large (like in the fit C’, where my + Hsy(s) & 3/4Mn). Those fits should
be discarded, since they contradict the picture of a heavy, slowly rotating
classical object, whose mass is dominated by the classical part M, with
Hgy(sy and m,, being only a small correction.

4.4. Dilambda in the Skyrme Model

In this Section we calculate the mass of the H particle within the frame-
work of the Skyrme model. We use exactly the same Ansatz Uy as in
Eq. (3.23). The topological charge of Ansatz (3.23) is given by [56, 57]:

By = 27 £(0) (4.37)

and is independent of g. Here an important remark concerning the parity
of the H particle is in order. Ansatz (3.23) has no definite behavior under
the parity transformation:

Un(7) = UL(~7) # £Un(). (4.38)

The parity transformation corresponds to a replacement ¢ — —g. Therefore,
classically, the parity P = +1 and P = —1 states are degenerate in the
Skyrme model. Moreover, 1/N, corrections do not lift this degeneracy.
However, since two Ansitze Uf(lm) (corresponding to g, = ¢ and g; = —¢
respectively) have the same topological number By (see Eq. (4.37)), there
should exist a family of interpolating Ansitze UiM(7), where 7 € (—o00, 00),
such that [7]:

Uirt(—o0) = U and Ujf(oo) = UL (4.39)

One could in principle calculate the action corresponding to the tran-
sition from U,({l) — U}({z) and, in this way, estimate the splitting of P = +1
and P = —1 states. In any case this splitting will be parametrically small,

i.e. of the order exp(—N.).
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There should also exist a continuous tunnelling trajectory from H to
AA system which, however, can be expected to suppress H— AA decay
(even if My > 2M,) due to the fact that the pseudoscalar field configura-
tion (3.23, 3.24) is very different from the product Ansatz of two hedgehogs
corresponding to AA configuration.

Inserting Uy into the Skyrme Lagrangian (4.1) we get the mass formula
which depends on 2 trial functions f and g:

F, = 22 0f* z20g°
My(f, 9] —27r—e- A dz ((1—-cosfcosg+z—5£ +ﬁ§£)
+ (% sin? fsin® g + :—2(1 — cos fcosg)’)
af? 9g°?
+ (a U )(1—cosfcosg) , (4.40)
[f]~“27d’32f2 % 4.41
malf, 9] =755 zz cos feos T —cos = |, (4.41)
)

where z and p? are defined in Sect. 4.1.

Upon rotation (4.15) the mass formula M + m. gets quantum correc-
tions, however the mass of the lowest singlet state remains unchanged. One
can analytically evaluate the integral over dz in Eq. (4.40). Introducing

2o =eFyr; and t= Tri
q
we find:
F, Toyo (2
Mcl = —e—1r2 (Ikin(t)zo + ‘—S%(—)-), (4.42)
0
where
3 1
Lin(t) = % + 3%

2 2 1
— (V21 + Y+ (-t + 2"+ 3+ = )
+1+t“( V2(1 + )+3( +2t7 4 +t)), (4.43)

50
Isige(t) = %

+

2 206
T ( V2(101 — 25¢°) + 3(-5t" - =t +170t))
8

+ (1 + 112)2 (\/5(37 - 25t°%) + -2-(1!%9 + 54¢° — 70t))
64

o ((3\/5(1 — %) + 2(¢° + 2t° - 2t)) . (4.44)
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Unfortunately m can be evaluated only numerically.

2

M = T e 3F

z31.(t), (4.45)

however I, (t) can be well approximated by a simple analytical formula for
t>0.3:

(=]

I.(t) = /dz 32(3 — 2cos f(z) cos g—(—;-ﬂ — cos @)

0

1 1r\/_
a3

Functions My(zo,t) and My(ze,t) + ma(2o,t) exhibit minima at non-
zero zo and ¢{. Unlike in the ordinary baryon case, the mass of the H particle
is not unreasonably large for the physical values of the model parameters,
t.e. F, =186 MeV and e = 5.5. On the contrary, My turns out to be just at
the threshold of the two A state. If we minimize M, only, My = 2.27 GeV
(zo = 1.7 and t = 0.9), whereas if we minimize M, + m, then My = 2.23
GeV (with 2o = 1.4 and ¢t = 0.85).

If we take model parameters as fitted in Section 4.3 we get My always
below the two A threshold. The smaller is F, the lower is the H mass: for
fit D in Table I My = 1.47 GeV, whereas for fits ' and E we get Mg = 0.85
GeV. In all these cases my ~ 140 — 450 MeV, i.e. it is of the order of the
strange quark mass rather than of the order of 2m,.

Of course the result where the six-quark state has a mass smaller than
the nucleon cannot be left without any comment. We have already discussed
the physical relevance of the fits to baryon masses presented in the previous
Section. In fits F and F the portion of the mass distributed over the terms
which should constitute only small corrections to M., is unreasonably large.
Here this pathology shows up once again in the unreasonably small H mass.
For the parameters of fit D dilambda is still strongly bound, with a mass
of the order of 1.5 GeV, whereas for fit C My ~ 1.3 GeV.

4.5. Large N, limit

As we have mentioned earlier the Skyrme model is believed to be a large
N_, low energy approximation to QCD [66, 67]. In the limit of N, — oo
baryons consist of an infinite number of quarks, and therefore are infinitely
heavy . In this limit they can be equivalently described as solitons of the
effective meson theory [61]. In all calculations in the previous Sections we
have, however, kept N, = 3. This procedure was criticized in Ref. [111],
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where the authors argued that one should organize all mass formulae and
expressions for other quantities as a systematic expansion in 1/N,. For that
very reason we neglected Hsy(s in fits C and D in Section 4.3. In this
Section we will show how the systematic expansion in N, can be explicitly
performed.
Here we immediately encounter a problem. As explained in Section 4.2
the quantization of the Skyrme model results in the constraint of Eq. (4.20):
N,
Yr = 3
For N, = 3 Yg = 1 and the lowest representations allowed are 8 and 10.
If, however, N, > 3 then the lowest possible representations have higher
dimensions. The same is true in the quark model where N, quarks forming a
baryon can no longer form octet or decuplet representation of the SU(3),, ..,
group.
For an arbitrary N there is a number of representations (p,¢) which
satisfy the constraint of Eq. (4.20):

(N, 0), (Ne—2,1), --+ (1,3(N. - 1)). (4.46)

Which of them should we call a generalized octet or decuplet? There
are at least three possible choices of such generalization [113]:

N.-1

“¢ = (1, =—), «ag = (3,2e=),

(4.47)

2 2
N.-1 N.-1 N.+3 N.-3

“KQY 111 b .

oe (i el (AR

wgn = (e ,1), «10” = (N., 0). (4.49)

In each of the above choices for N, = 3 “8” = 8 and “10” = 10, however
for N. > 3 each choice corresponds to a different set of representations
which we would like to call generalized octet and decuplet. Of course every
representation in Eqs (4.47-4.49) has more than eight or ten states, however
we can distinguish a subset of eight or ten states which, according to certain
criterion, “look like” the states of octet or decuplet (see Fig. 12). All other
states in such representation are spurious. We will always require that the
generalized particles have physical isospin. Other quantum numbers may
have, in principle, values different than in Nature.

In choice (4.47) proton has hypercharge Y = N./3 and charge Q@ =
(Ne+ 3)/2; all octet states have spin 1/2 and decuplet states 3/2. In choice
(4.48) we require that the generalized octet should form a selfadjoint rep-
resentation, like the physical octet. In this choice the hypercharge of the
generalized baryons takes physical values; this condition uniquely deter-
mines the choice for the generalized decuplet. However in (4.48) spin takes
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Fig. 12. SU(3) “8” and “10” representations defined in Eq. (4.47) with octet-like
and decuplet-like structures

unphysical values: (N, — 1)/4 and (N, 4 3)/4 for representations “8” and
“10” respectively. In the last choice representation “10” is totally symmet-
ric as in the case for the physical decuplet. For this choice spin as well as
hypercharge are of the order of N..

All these choices are in principle equivalent [113]. If we however re-
quire that the soliton rotates slowly also in the large N, limit, then only
representations (4.47) are allowed, since for them spin takes always physical
values. Therefore we choose (4.47) as the definitions which generalize octet
and decuplet SU(3)aavor Tepresentations for large number of colours.

Now we can calculate the mass splittings for an arbitrary number of
colors. As seen from Eq. (4.26) H,, is proportional to

A =((1,1),0,0,0] 4| (1,1),0,0,0).

The coefficients dg are defined as matrix elements of A between states of
representations (4.47), and are given in terms of the SU(3)aavor Clebsch-
Gordan coefficients. More details can be found in Appendix D; here, in
Table II, we present the results [5].

For N, = oo all dg’s are equal 1; i.e. Hy, ~ N.. The splittings inside
each multiplet are therefore of the order of 1 except for the A — ¥ split-
ting which is of the order 1/N.. Hence we have an interesting qualitative
prediction:

My — My < M, — My, (4.50)

77 MeV < 177 MeV,

and
My — My < Mz — My, (4.51)

77 MeV < 125 MeV,

which, as seen from Eqs (4.50, 4.51), agrees with the data very well. Inter-
estingly enough, for N, = 3, inequality (4.51) is reversed contradicting the
experimental results. This is perhaps the most serious failure of the model
[104].
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TABLE 11
Coefficients dg for arbitrary N,

B dp
N N2 +4N. -3 zl__f_s_+_:_sg
(N +3)(N. +7) N.  N?
N.-2 9 63
A N.+7 = 1—-}V—C+Fc§
> NE+N—18 o, 9 51
(Ne +3)(Ne + 7) N.  N?
= Fe-5 12,08
N.+7 N. N2
A N2 +4+4N.-15 zl__fs_+ﬁ
(Ne + 1)(N. +9) N, N2
T (Nc—B)(Nc+4) ~ l_i+z{_
(Ne +1)}(N: + 9) N, N2
o N2-2N.-9 1_1_2_+32
= (Ne+1)(Ne+9) ~ N N?
0 N~ 5N 6 ~ 1——1—5--4-}2
(Ne + 1)(Ne +9) Ne N2

Can we understand inequalities (4.50) and (4.51) in terms of the quark
model ? In the limit N, — oo nucleon has mass of the order of N.m,, where
q stands for up or down quark, whereas A or ¥ mass is of the order

N.mg + (m, — my).

Of course the difference is of the order of 1. The ¥ — A mass difference is
zero in this crude, qualitative picture, since both particles have only one
strange quark. Their splitting is due to some details of the wave function
and starts at the order of 1/N..

Let us define new coefficients dg:

dp = 1 — dg, (4.52)
which are O(1/N.). We can now rewrite m. + H,, as:
ma + Hye = Mo + Hur, (4.53)
where
. om?: V2,

T —2z, (4.54)
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is of the order of N, and equals to the chiral symmetry breaking term in
the SU(2) case, whereas

— Ap? z\/é‘ 3=
Hbr = eaF’r‘K "—2-"20 dB (4.55)

is of the order of O(1). The quality of the fits to the baryon masses is not
different of those presented in Section 1.3.

4.6. Large Kaon Mass

In what we have done so far we have had explicitly assumed that Au? is
small, and subsequently, that we can treat Hy, as a perturbation. Although
in various fits presented in Section 4.3 the value of the mass splitting is no
larger than 150 MeV, i.e. 15% of the nucleon mass, it is quite plausible
that the kaon mass (or Ap?) is in fact too large to allow for perturbative
treatment. In this Section we shall briefly report the results of two nonper-
turbative approaches.

The first one proposed by Yabu and Ando [114] consists in exactly
diagonalizing Hy,. In fact Hy, mixes various SU(3) representations (see
Fig. 11). Here, it is useful to pursue the analogy with the symmetric top
[11]. The kaon mass term acts as a spring attached to points A and B
(see Fig. 9). Therefore energy is required to change the angle 3, whereas
U(1),, p rotations with respect to axes z and ( still correspond to the zero
modes. This picture can be easily generalized to the SU(3) case. The “good”
quantum numbers are isospin, hypercharge and spin; the wave function is
a sum over all representations (p,q) which mix with 8 or 10. In order to
calculate the elements of H,, we have used analytical formulae for the SU(3)
Clebsch-Gordan coeflicients derived by methods described in Appendix D.
In Fig. 4.6 we plot baryon energies calculated by diagonalizing numerically
H,, as functions of w(my):

2

Ap 2
e"%’,/dzz (1-cosP)

The dashed line denoted by ¢, corresponds to the energy of the state with
vacuum quantum numbers. In fact Hy, mixes SU(3) singlet with the isospin
singlet of the octet, 27 and higher representations of SU(3). Alternatively
we can view ¢, as the energy of the symmetric top which does not rotate
but only oscillates in angle 8. Yabu and Ando subtracted this energy from
their mass formula to ensure that in the limit of mg — oo it reduces to
the SU(2) mass formula of Eqs (4.21, 4.22). The results are presented in
Table L

wz = 3137('
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Fig. 13. Baryon masses as functions of w in the approach of Ref.[114]

The approach of Yabu and Ando consists in fact in summing the per-
turbation series in mx. This does not take into account, that for sufficiently
large K mass the soliton may have tendency to deform as it deviates into the
strange directions. Callan and Klebanov [115, 116] developed a treatment
in which strange fluctuations about the SU(2) skyrmion are described by

the following Ansatz:
UCK = \/ UOUK\/ Uo, (4.56)
where Uy is given by Eq. (4.6) and

7
.2 T Ak
UK = exp (‘L:-F— AaK ) (457)

* a=4

Callan and Klebanov expand Lagrangian (4.1) up to the second order
in the kaon fields K and find that a hyperon consists of a kaon bound by
the SU(2) soliton. The results of the numerical analysis of Ref.[118] are
presented in Table I. Although the hyperfine splittings are reproduced with
good accuracy, the centroid of the hyperon spectrum is to low. In fact, the
fit of Ref. [116] predicts that mz < m,. Let us mentjon that the bound-
state approach has been recently used to describe charmed and bottomed
baryons [118].

Both approaches described in this Section fail to explain inequality
(4.51).

5. Summary

In this paper we have attempted to present the foundations of the chiral
models as well as the baryon properties emerging from such models. We
have selected topics discussed by the author in Refs [1-9] and in review
articles [11-13]. Apart from the Skyrme model which triggered this sort of
approach to the strong dynamics, we have discussed alternative quark-pion
models. These models do not account for confinement. An attractive way
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to incorporate confinement was developed in the chiral bag picture (see e.g.
[15]), which, however, is plagued by infinities which have to be subtracted
in an arbitrary manner.

Our goal was to present a general framework with some phenomenolog-
ical applications. The material presented in this paper is by no means com-
plete. We did not discuss in full detail the role of the Wess-Zumino term and
the role of topology in chiral models, especially the fermionic nature of the
soliton [62]. We have not considered vector mesons and higher excitations
[71]. We have confined our discussion of phenomenology to baryon masses
only, although other quantities such as magnetic moments or form-factors,
have been calculated [71, 70]. Apart from static properties, dynamical char-
acteristics, such as pion-nucleon phase-shifts [126] or weak amplitudes {3, 4],
have been also discussed. Chiral models have also proven to be of value in
analysis of nuclear structure [69].

Introducing strangeness to the above models creates a serious theoret-
ical problem connected with the strange quark mass; how is m, related to
another small parameter — 1/N.? The approaches discussed here take two
extreme points of view; m, is very small or, to the contrary, rather large.
None of them gives a really satisfactory description of the hyperon splittings.
It seems that more work is needed to understand the nature of the SU(3)
symmetry breaking in chiral models. The large N, arguments presented
here indicate that 1/N, corrections are of importance.

We see the following points which require further study. A full anal-
ysis of hyperon mass spectrum in xQM is of course one of them. More
complicated versions of the model with vector mesons also merit discussion.
Finally, the interesting problem of the nucleon structure functions in deep
inelastic scattering, providing an interesting link between low and high en-
ergy regimes of QCD, has not been discussed so far within the framework of
xQM. From the high brow theorist’s point of view, derivation of low energy
action from QCD is of course a challenging problem.

This paper summarizes work done in collaboration with D.I. Diakonov,
Z. Dulinski, M.A. Nowak, P.O. Mazur, V.Yu. Petrov, P.V. Pobylitsa,
J. Trampeti¢ and G. Valencia whom I would like to thank for fruitful col-
laboration and numerous discussions. I am grateful to I.J.R. Aitchison,
A. Bialas, A.P. Balachandran, K. Goeke, G. Ripka, M. Rho, J. Schechter
and K. Zalewski for encouragement, discussions, remarks and helpful hints.
Discussions with R. Alkofer, W. Broniowski, A. Gérski M. Jezabek, M.
Kutschera, and 1. Zahed are gratefully acknowledged.
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APPENDIX A
Derivative Expansion

In this Appendix we will derive the effective pion lagrangian (8] leading

to coefficients o, and §; and to constraints (2.21) and (2.22). The effective
action of Eq. (2.20) reads:

Sreg[ ] _% / th_ ‘P(th)e—tM’Sp (et8’+tMV _ e:a’) . (Al)
0

where operator V is given by:
V=9U. (A.2)

Our task is now to expand Eq. (A.1) in powers of derivatives of V:

n n+1
tB’-HMV Z(tM)ﬂ / H da; § (1 — Z ak) S,.(a1, (23 TR an+1)7
k=0

n=0 o i=1
(A.3)

where
Sn(a1,Q2y...50n41) = Sp ( tend’ygtaadly | gtanhi® ) . (A.4)

Next we perform functional trace introducing a complete set of normal-
ized states |z):

Sn(alv Qayenny an+1) =Tr / H d‘&zi
i=1
(:cl |e‘(°“+°n+:)3’V|z,) (:cz|e'°"82V|a:3) cee <a:,,|e“"‘an|:c1), (A.5)

where Tr denotes spinor and isospin trace. Fourier transforming V(z) we

find

(zile:ﬁaa'vlziH)
d'k; d'p;

—ikiz; —tBi(kit+pi)? Li(kitpi)zis .
) (27r)4e e e V(pi), (A.6)

where
Tott =2,

ﬂ1=c11+a,.+1 and ﬂ,-:a;forl<i$n+1.



574 M. Praszarowicz

After inserting Eq. (A.6) into Eq. (A.5), and introducing new variables
(L. _ LT — Tigr
ki — ¢ = (ki +p:) + YT

we can perform Gaussian integrals over d*g;:
SulBs o+ -+ ) = ﬁm.m(m, o) [T oo (— =2
n b b "HFn i 11 4tﬁ'

[
/,I;Il ((2:;’ exp (- tﬁ‘q'?)) ’ (A.T)

Note that S, does not depend on f,,;. Introducing new variables:

eXP(zpa ) T (V(p1)V (p2) -+ V(pn))

:l:,'+1 -3 Zi = z"+1 — T, Ty — T

we get

Sa(BrsBas-- -+ Bn) =/d*z /Hd'*z, &* (Z z,) Hexp( 4tﬂ>
/;EII (2:;4 exp ( - 2'P;z,~)Tr (VP )V(pz) - V(pa))

1

(2:)"4 exp ( - tﬂ.-q?)) ) (A.8)

where capital P; is defined as

P = ZP:‘-
J=1

The last step consists in Fourier transforming §(3° z;) and integrating over
d*z;. We are left with an expression containing Tr (V(p1)V(p2)---V(p.))
and an exponent of some powers of the momenta p,, p;,...,p,, which can be
rewritten in terms of an exponent of a differential operator O,, constructed
from derivatives d/dz acting on a given V(z) under the trace. Our final
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formula reads:

reg

S&El 32#22 / (tM)"p(tM?)eM" / d'z

1 1- ﬁz 1-B1~Ba—...—Bn

o/dﬂzofdﬁa--~ / i

&% Tr (Vi(2)Va(z) - -+ Va(2)), (A.9)

with 8y =1 — 85 — ... — (3,.. The operator O, is defined as:

On(B1s s - - ,ﬁn)—Zﬁ. (Za"> (Zﬁ,za">, (A.10)

=1 [E3

where 0’ = (9/0z,); acts only on a given Vj(z) under the trace in Eq. (A.9).
Note that 01 =0 and Oz ﬂz(l hd ﬂg) 83 62

In order to compute the pion effective Lagrangian Eqs (2.3, 2.6, 2.7) let
us observe that:

V=-5F2-?- e (F-PRT-R+ 777 PF). (A.11)

It is useful to expand (A.9) in terms of derivatives of U (in Minkowski
metric):

ST (T = M: %, / d*r Tr [L, L]

N
+ 75 24&/&1& [(8,L*) + (L,L*)?
N. .
+ Tg3.3% / d*r Tr [L,L,L*L* - 2(L,L*)?]
+0(8°0), (A.12)

where L, = iU’ BF—U-. In the first order in bare quark mass matrix m we get

_  N.M? N
Setall] = s, /d‘rTr [m(@ + T - 2)]
NcM 4 =t u
+ e [dhr T [m(U +U)L,L ]

+ 0(m 8*'D). (A.13)



576 M. PRASZALOWICZ

Let us finish by deriving the so-called two point or interpolating approx-
imation [21] to S_g¥[x] by cutting off the expansion (A.9) at n = 2. However,
we will not expand 2. Instead, we will go back to Eq. (A.8) and keep the
Fourier integral over d*p. Introducing 8 = 3, we get:

stta) = v [ 2B T (V)T 0) 9, (A1)
with
G(p?) = 161 ‘f Q(tM?)e™M’ / dp e~ tP(1-8)p" (A.15)

0

Trace in Eq. (A.14) extends over flavor indices only.

Formula (A.14) becomes exact in three limiting cases: i) low momenta:
|0U| < M, ii) high momenta |8U| 3> M, iii) any momenta but small pion
field, |logU| <« 1. Comparison with the exact calculations of this paper
shows that accuracy of (A.14) is not worse than 10%.

APPENDIX B
Phase Shifts

Various physical quantities related to the Dirac sea can be found from
the scattering phases of the Dirac equation. In this Appendix we derive a
general formula expressing functional traces through the phase shifts [49,
6]. We then give a few application of this general relation.

Let H be a Dirac Hamiltonian, e.g. given by Eq. (3.3), and F is some
function. Suppose we want to calculate the sum over all eigenenergies:

Y F(E,)=Sp F(H). (B.1)

In case of a discrete spectrum the use of this formula is straightforward.
In case of a continuous spectrum let us first discretize the energy levels by
putting the system into a large box of radius L. The eigenenergies are then
determined by the phase shifts §,:

E,=x+k2+ M? k,L+6,=nn. (B.2)

Here each level E, corresponds to a free Hamiltonian level E? (i.e. §, = 0).
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We get
Sp (F(Ea) - F(ES)) =3 (F(En) - F(E)
1 dF d .
A 2;@ (F(E.) - F(E)

dFT‘de k

0 discrete
dF 6(E) dF §(E)
/ dE — / dE — iE n

+Z(F(Ex)—F(M))+Z(F(Ex)~F( M)).

low

(B.3)

In the last equation we have introduced integration over both, upper
and lower continuum. We have also added to the r.h.s. of Eq. (B.3) the
contribution of discrete levels if there are any. Here A denotes all conserved
quantum numbers, “up” and “low” correspond to the summation over the
discrete levels which emerged from the upper or lower continuums respec-
tively. As an application of Eq. (B.3) one can derive the Levinson theorem
for the Dirac equation:

(M) + 6*(—M) = nym, (B.4)

where n, is the number of bound states levels with given quantum numbers
A, and §*(+ M) are the threshold values of the phase shifts.

Let us turn back to the calculation of the nucleon mass. It has been
noted in Refs [49, 6] that:

Sp (H — Ho) = 0. (B.5)

Putting F(E) = E we find that r.h.s. of Eq. (B.3) is equal to 0. This
theorem is very useful in checking the numerical calculations of the phase
shifts.

The effective action given by Eq. (A.1) can be now expressed through
the phase shifts. For time-independent Ansatz U we obtain:

S8 [x] = TN

) (B.6)
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where

F(E) = o(tM?)etF’, (B.7)

dt
, Viartt
Since the cutoff function F(E) = F(—E), the effective action (B.3) can
be, at least for ¢(tM?) such that F(E) « |E|, expressed with the help of
Eq. (B.5) as a sum and integral over the negative energy states only. In
contrast with a symmetric formula (B.3) we will call such an expression
asymmetric.

APPENDIX C
Dirac Equation with Spherical Symmetry

In this Appendix we collect formulae for spinors which diagonalize the
Dirac equation (3.9). In order to get a state with a given grand-spin K we
first construct two two-component spinors .Q(ij, IRy where J= S+ L . The

upper superscript refers to the eigenvalue L which for given J and spin 1/2
can be either L=J —1/20or L=J +1/2

-) _ 1 [ VI + s Y g0,-4 }

n = _—
i V2J ‘\/J“‘Js Yj__,;_,]3+%

ow - 1L [—V”l—Ja YJ+%,A—%]

= C.1
VT2 | VT T T Yags et (D

Next, for the case of two flavors, we construct four four-component
spinors Eﬁé}é). Here the second superscript, as in the case of {2, corresponds
to two ways spin and angular momentum can be coupled to form given J,
and the first superscript refers to two ways J and isospin T = 1/2 can be

coupled to form given (integer) grand-spin K

1 ‘\/K"{"Ka \Qg)_%'x3_%

"..',"(_r") —

~K,Ks / [TF i
2K K~ K, .Q;()_ $.Ks+3

Vs’anm 7 (i)
=) _ 1 —vK +1-K, 0K+%»Ks-§

- _ 1 : C.2
0T VEK A2 | VETTTER: 05), s o

It is useful to observe that for given K and Kj:
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n

Wiy - 24 ((K+ 1__2*;{)5(1,—1) _JEETD 1)5(-1,1)),

(ixad) 7

2K + 1
. I . .
7.7 =50 - st-7) _ =(=hi)
A.7E 2K+1( 12/E(K +1) )
. 1 .
F . "5('»1) — 2K 1—1 5(1,])
T Te1 (GKF1+I=3)
(- §)*VE(E + 1).=:<-"-J'>) ,
= ; . 1+1 ;
. -':'q(”J) —_ —_— 5(111)
L.¢= i(K + == +3) =,
fi.g5W) = _zt-9) (C.3)

where I,j = £1, 7 denotes isospin Pauli matrices, whereas & matrices are
related to the spin operator, L denotes angular momentum operator (pre-
viously denoted by L).

With these definitions at hand we can write down the set of differential
equations for functions F, G, H and J corresponding to the Dirac equation

(3.9):

dF K sin P sin P
'J?‘(T+2K+1 (M”K‘ r ))F

+(E+McosP+m+eK (P,_Ksmrzp))a
vVEK(K+1) ,  sin2P
—e——————2K+1 (2P +__r )H

9sin p YEE +1) (M —e ffl:—P) J, (C.4)

2K +1

+

dG K sin P sin P
@ - (‘7“ 2K +1 (M”Kf ; ))G

+ (-—E+McosP+m—€K (P’+Ksmr2P)) F

vVEK(K +1) (—2P’ + sin2P) 7

2K +1 r

+2sinp YEE L) (M —e Si’:P) H, (C.5)

2K +1

+ €
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dH K41 sin P sin P
_Zi—r—_( r +2K—i—1(JW_2(K+1)6 r ))H

+ (E—McosP-{-m——eK (P’+(K+1)Sm2p>) J

.
(VE(KEAD) (2P1_M)F

2K +1 r
. 5 VE(K+1) sin P
+ 2sin P 5K 71 (M——e - )G, (C.6)
dJ K +1 sin P sin P
717_(_ r _2K+1(M_2(K+1)6 r ))J
, sin2P
—(E+McosP+m—6K(P+(K+1) " ))H
VEE+1) (.., sin2P
s (2P
__JE(E+D) sin P
+2sinP 2K 1 1 (M——e . )F. (C.7)

In the SU(3) case there are three quarks: two form isospin dublet,
whereas strange quark is an isospin singlet. Therefore we have three sets of
six-components flavor-spinors X':

VE + Kz - 1)(K + Ks) 08

K-1Ks-1
Zix) = N© V2(K + K;)(K — Ks) Q(iZ%,K, ]
V(K — K3 — 1)(K - Ks) -Q(i)_%,x,,u;
~VE+E)E - K +1) 2 s
52 = NO V2K 29, |,

VIE =K (K + K + D)2,

VIE-Ks +1)(K - Ks +2) 00, ¢, s

S = N | 2K - K + (K + Ks +1) 29, o, |, (C.8)

V(K + K3+ 1)(K + K3+ 2) ‘Qg)-f-%,K3+§
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where normalization factors are given by:

NG = _..._l____.,
V2EQK - 1)
A U
V2E(K + 1)
N = 1

VK +2)(2K +3)

Similarly to relations (C.3) one can derive the following identities for
the SU(3) flavor-spinors:

- . 1 .
. (L3) - — (,-75)
n-AY SKT1-1 (IB
1 .
- —V@2K+1-D)2K +1+2 2(0,,))
75V JK +1+2)5¢9)
- . 1 .
R AN = = 5(0,-5)
n-A K1)
A Zielh St K(2K + 3)2(+.j) - \/(K +1)(2K - 1)2(—.1‘)
2(K +1) 2K ’
F - y 13 1 .
L.gx®) = _j(K + 3 +1+j7),
fi . &'Z(ln’) = ._.Z’(lv“j). (C'g)

APPENDIX D
Clebsch-Gordan Coefficients for Arbitrary
SU(3) Representations

In this Appendix we collect our conventions for evaluating Clebsch-
Gordan coefficients used in Sections 4.3 and 4.5 to calculate mass splittings
[5]. In the SU(3) Skyrme model baryon wave functions (Eq. (4.24)) as well
as various operators (like Hy, in Eq. (4.26)) are proportional to the SU(3)
D functions:

D(4),
where subscripts a and b stand for hypercharge Y, isospin I and I3, and
superscript p = (p,q) denotes an SU(3) representation. Matrix elements
are evaluated using the formula

.,
dim (ps) [ a4 DD AP =3 (82 21 )
,

a; az; as

P P2 P3
(bl p ba),(m)
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where symbols in large brackets denote SU(3) Clebsch-Gordan coefficients
and v is a degeneracy index described below.

Tensorial methods of calculating Clebsch-Gordan coefficients are de-
scribed in Ref. [124]. Representation p = (p, ¢) of SU(3) acts on a space of
symmetric and traceless tensors T{{:}} labeled by ¢ upper (antiquark) and p
lower (quark) indices. In what follows we omit labels {p} and {¢q} and write
the indices explicitly.

Let us discuss only the case when the operator transforms as an SU(3)
octet. In the direct product of the octet T{{;}} and T{{:}} representation (p, q)
appears twice:

irigdg) iyizei
(fo j?ﬂ‘jr)l - Z TJZ Tﬂjz'--jr"
iriaedg) _ iy pniad
(Tos), =T T, (D.2)
where the sum in (D.2) extends over all permutations of

{ny ooy jrs-.} or {n, ... %,...}.

Let us distinguish the two ways in which representation p = (p,q) was
constructed introducing additional degeneracy index 4 = 1 or 2, so that
ph:? corresponds to the first and second line of Eq. (D.2) respectively. We
define

pt=p'tap, (D.3)

where a is chosen in such a way that p* are orthogonal:

of = q(6 + 3p + 8¢ + 2pq + 2¢%)
q(6 + 3¢ + 8¢ + 2gq + 2¢%)

The Clebsch—-Gordan series for the highest weight of (p,¢) which we
denote by “p” reads:

(D.4)

ap o —~29+ ap
[19g) —_ N :t 2 ® (199 ] +
P :t( \/i P \/6

+ ;/__f_ i P ® “20” — \/an ® “2-5_”

_ (ia(p + 1) - q)ﬁ WA”
VoD tatD o A)’ (0-5)

where octet operator indices are labeled by the labels corresponding to
baryon octet, whereas states in the arbitrary (p,q) representation are la-
beled by the baryon octet states in quotation marks: “p” stands for the

A ® “P” F a‘/p? E+ ® “n”
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highest weight; “n” has the same Y and I as “p” but I; smaller by 1/2;
“%*” has Y smaller by 1, I and I; greater by 1/2 than “p”; etc. Here

N = 3(p+1+4q) _
29(6 + 3p + 8q + 2pg + 29> T ap(p + ¢ + 4))

(D.6)

Our phase conventions are such that the Clebsch-Gordan coefficients for
8®8 i.e. (p=gq=1) agree with the standard ones [17].

SS,A = (1, 1):':.

The limiting procedure for an octet requires more care since for ¢ = 0 we
have only one representation (p,0) in (1,1)®(p, 0) (see Eq. (D.2)). Therefore
we have: 1

10 = 7 ((3,0)~ - (3,0)*).
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