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Using a specific time-reversal transformation, the Smoluchowski equa-
tion for aggregation processes is proved to be formally equivalent to the
equation obeyed by the partition function of random cascading models of
multiparticle production processes with intermittent fluctuations. This re-
sult gives an unexpected connection between intermittent patterns of fluc-
tuations, spin-glass systems and the dynamics of aggregation and gelling,
first described for brownian motion by Smoluchowski already 75 years
ago.

PACS numbers: 02.50.+s

1. Introduction: from random cascading and spin-glasses
to aggregates

Random cascading models were proposed as a prototype of models ex-
hibiting intermittent-like fluctuations of multiplicity in multi-particle pro-
duction [1]. However, their connection with other fields of Physics was soon
recognized. Inspired at the beginning by a mathematical description of fully-
developed turbulence in fluids [2], they can be related [3] to popular models
of spin-glass systems [4]. It is thus natural to ask the question whether this
nontrivial connection can be extended further to other dynamical processes.
In the present paper, one will demonstrate that this is indeed the case for
coagulation, aggregation and gelling as described by the well-known Smolu-
chowski equation. The hope is that establishing such a link will allow a
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more basic understanding of intermittent phenomena in Particle Physics.
In fact, one will show that it provides a quite general approach to solutions
of the Smoluchowski equation.
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Fig. 1. Tree diagrams of random cascading models. (a) Fixed branching. Each
path [m] in the tree is in a one-to-one correspondence with a bin in phase space.
The fluctuations density in the bin is described by the product of random weights
W1 W, W3 W, along the path [m]. The tree can be separated into 2 branches. Each
of these branches defines a random value Z, of the partition function, the tree itself
corresponding to Z, 1. (By convenience, one here chooses to count the generation
number “v” starting from the smallest bins considered). (b) Random branching.
Same structure as in (a), but with small increase ¢ of the total number of steps v
and random branching with probability also equal to e.

Random cascading models of simplest type are described in Fig. 1. A set
of fluctuating densities {p,,}, — where m denotes the phase-space element
where the density is observed — is generated by a product of random weights
Ws.
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One writes

pm = [[Ws, (1)

where the Wy are independent realizations of a random function W obeying
to a probability distribution (W), and distributed along the links of a tree
structure, see Fig. 1(a). A given phase-space bin m corresponds to a well-
defined path [m] on the tree, with s = [1,...,7] denoting the v successive
links of the path, or “number of generations”. From definition (1) and
the mutual independence of the Wy, one finds by averaging the following
property:

{pZ%) = VPR x| (2)

(Pm)?

where A is the branching number (A = 2 for the simplest example of Fig. 1)
and where

w1y = [romwiaw, 3)

is the ¢'® moment of the local probability distribution r(W).

Formula (2) can be interpreted as an intermittency property, since the
moments of fluctuations have a power-law dependence on the total number
of bins A¥, i.e. on the resolution with which one looks for these fluctuations.

The random cascading models, as schematized in Fig. 1(a), can eas-
ily be generalized [5] to random cascading — random branching models
as described in Fig. 1 (b). In this case, one goes to the case of a large
number of cascading steps. At each step, one considers a small probability
to get a branching described as previously by a random density factor W
and unchanged at this step. By choosing a constant probability per cas-
cading step, one obtains [5] an interesting class of continuous differential
equations. This limit will be discussed in the next sections in comparison
with the Smoluchowski equation. The properties of the random cascad-
ing — random branching models appear to be very similar to those with
fixed branching, as was shown in details in [5] in connection with models of
spin-glass systems.

The connection of random cascading with spin-glasses is best exhibited
by studying the “Partition function” Z(q), which is a function defined on
the set of fluctuations. As an example with the fixed branching case, one

defines:
Z(q)=> ph= Y [[Wi, (4)
m allim] 8

where Z(gq), depending on the number of generations (see Fig. 1 (a)), has
its own random distribution P,(2). In the case of spin-glass systems [4,5],
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Z can actually be identified as a genuine partition function and ¢ as the
inverse temperature. Using techniques developed for spin-glasses, it is pos-
sible to compute exactly P,(Z) or, on a more compact form, the generating
functional of moments of Z, namely H,(u) = (exp(—uZ)),, where the av-
erage is defined over different realizations of Z, that is over the distribution
P.(Z). One finds [3] the following recurrence formula, for fixed branching:

Hon(w) = {8 (5F) }A , (5)

where the averaging { }, refers to the local densities Wy, as in formula (3).
Indeed, formula (5) can easily be generalized to the case of random branch-
ing processes [5], where is introduced a constant branching probability &.
One gets, in the case of random cascading-random branching models

Hyp(u)=¢ (/ (W) arvtfﬂ(%))A +(1— &)H,(u)

or by going to the ¢ — 0 limit:

Hfe) _ (/ r(W)dWH.,(%))A — H,(u). (6)

Note that, further generalizations of Eqs (5) and (6), can be introduced in
different ways. One can consider generation-number dependent probability
distributions »(W,») which give interesting phase structures in spin-glass
models [4]. It is also possible to consider models [4] where, at each step,
one is led to introduce correlations between the A different random factors
Wy of the same branching. The different models have essentially the same
qualitative properties, the detailed structure being different but studied
with the same tools. As an example of simple generation-dependent case,
let us introduce a probability 1 — p(v) of generating a hole (W = 0) in the
random density distribution for a fixed branching process. One gets the
recurrence formula (5), with a modified probability distribution »(W,v) =
(1= p(1))6(W) + p()r(W).

Formulae (5) and (6) play a central role in the following study of the
Smoluchowski equation. Indeed, they nicely exhibit two main features of
random cascading models, randomness and the tree geometry, through, re-
spectively, the convolution formula and the non-linear feature of the equa-
tions. These two characteristics which are also present in the Smoluchowski
equation (see next Section) leads one to the idea that a deep link may exist
between both — a priori very different — approaches.
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As another remark, it is known from spin-glass models that a phase
transition may exist whose features can be studied [4,6] from the moments
of the partition function. This phase transition is specific of spin-glass sys-
tems and the low temperature phase possesses [4,5] a hierarchical structure
in domains, which is very different from the usual order/disorder transition.
Properly writing, in random cascading models the temperature itself is not
fixed [6] and therefore different phases may coexist [7]. Compared to this
situation, the hierarchical structure and the dynamical features of aggrega-
tion phenomena are similar and are suggesting a comparison with random
cascading. However it is clear that some-time reversal transformation has to
be invoked, since aggregation and cascading follow an opposite geometrical
evolution. This is the purpose of this paper to explain this time reversal
transformation.

In Section 2, one shall present the Smoluchowski equation [8] for aggre-
gation processes and show how a specific time-reversal transform leads to
an equivalent formula. In Section 3, one shows, taking the generic exam-
ple of “multiplicative weights” that the Smoluchowski equation is exactly
equivalent to formula (6) for random cascading-random branching processes
with A = 2. Generalization to other classes are briefly outlined. In the final
Section 4, possible applications of the proposed transformation are envis-
aged, both for aggregation problems and for current questions about random
cascading and its application to Particle Physics.

2. The Smoluchowski equation and its time-reversal
transformation

The Smoluchowski equation [8] describes in a simple way the time evo-
lution of an aggregation process. At a given time ¢, the variation of the
number N(n,t) of aggregates of “mass” n is the algebraic sum of two con-
tributions: one positive, is the aggregation of two clusters whose total mass
is n and one, negative, is the aggregation of n-clusters to other ones (see
Fig. 2). In the case of a continuous process in time, one writes

WY 4 Y NGONGOKs - N ) Y NGO (1)

t4y=n 25

where the aggregation coefficients K;; define the dynamics of the process. In
some popular cases [9,10], they can be chosen multiplicative (K;; = K;K;)
or additive (K;; = K; + K), but can be more complicated in specific prob-
lems [9]. One could also consider a discrete time equation. The system of
equation (7) can be conveniently expressed in terms of a compact equation
for a formal Laplace transform [10]
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G(ut) = Y N(n,t)u", (8)

n>1

from which the weights can be obtained by differentiation at u = 0.

> @ dN@

Fig. 2. Aggregation diagram of Smoluchowski equation. The clusters of mass
n is sketched by a symbolic equation. The clusters are represented by circles.
The aggregation coefficients K;; are shown on the figure (where summation over
i,7 (1+ 7 = n), and £ is left implicit) by links.

Inserting (8) into equation (7), one easily gets the following equations:

dG
_d?—-G*G GxGy, (9)

where, omitting for convenience the arguments of the functions, the convo-
lution operation * is defined by:

G2G' = 3 NGONG O (VK. (10)

i,j21

In formula (9), G, stands for G(u = 1,t) and is nothing else than the total
number of clusters at given time ¢ (see definition (8)). Note that in the
multiplicative case, the convolution factorizes and one gets instead of (9)

— =6 - GG, (11)
with _ N
G=)Y N(GtKa', Gy =) N(i,t)K.. (12)
i>1 i>1

Our treatment of the Smoluchowski equations begins by deriving the
equations for the normalized Laplace transform defined as follows
G _ Y N(n,t)u"
—_——= 13
(?1 EJIV(n,t) ( )



On a Transformation Property of the Smoluchowski Aggregation Equation 601

Using equation (9), once for G and once for G, one gets

d(G/Gy) _ 1dG G dG,
dt - G1 dt G? dt

2G’1 —1G*G —2G *x G, + (G, xG1)(G/G1)} - (14)

Now, we will introduce a time reversal transformation which allows one
to simplify expression (14). Let one introduce a variable v, which plays the
role of a continuous “generation number”, by the following:

d(G/Gy) _ dtd(G/Gy) _
dv  dv dt

= 2(6/Gihwe~G/Gl).  (15)

It becomes clear from equation (14), and also from the consideration
of the above mentioned discrete time version of the equations (e.g. ¢ = 1),
that the suitable choice of the transformation is given by

d_V=_G1*G1_ dG1
d ~  2G, = G,dt’

(16)

where the last equality comes again from Smoluchowski equation for G;.

It is important to note that the same reasoning can be applied to a
modified version of the Smoluchowski equation, where one considers the ag-
gregation process by discrete-time steps. In this case, one is led to replace in
equations (5), (16), time derivatives by finite differences, and to replace the
infinitesimal increment ¢ by 1. In this discrete-time case, one obtains recur-
rence relations instead of differential equations. This is the same discussion
as the one leading to the different equations (5) and (6) corresponding,
respectively, to fixed-branching and random-branching cascading models.

Using relations (15) and (16) in the transformation of Eq. (14), one
finds the following equation

v\ & ) G %G, G /-
It is to be noticed that the transformation of Eq. (14) into (17) has been only

made possible by the change of variable (19), including the change of sign
is a function of time always positive, i.e. InG; is monotonously

( G *G
dec;easmg). One is thus able to relate an aggregation process (when the
variable t increases) to a “time-reversed” cascading (when the number of
generations v decreases). Equivalently, one could consider the recurrence
formula (17) in the normal way for cascading processes (v increasing) as
a “time-reversed” aggregation mechanism. Note [11] that aggregation is
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not a reversible mechanism since its “time-reversal” is not identifiable to a
physical “desaggregation” mechanism. Note also that the solution of the
equations depends on the boundary conditions for some values (v, t,) com-
patible with the change of variable (16). This can be fulfilled by integration
of equation (16). One gets the very simple relation

v—-vy=InG, —Iny,, (18)

where G is the total number of clusters, assuming that the condition v = vy
corresponds to some cluster number G; = 7;.

The relation (18) shows how the number of generations comes directly
from the evolution of the total number of clusters during aggregation. This
number often has nice scaling properties [9,10], which will be translated into
a function v(t) by relation (18).

It is remarkable that the equation (17) can provide a constructive way
of solving the general Smoluchowski equation, knowing the coefficients K;;.
Indeed starting with initial conditions, G(¢, v) near the initial value ¢,, one
could get the right hand side of equation (17), and the local correspondence
between t and », through equation (16). By small steps » — v + € one can
numerically integrate the equation (17). However, as will become clear in
the next Section, it is possible to get more direct analytic relations. We will
show the result explicitly for the multiplicative case (cf. (11), (12)), but it
can be extended to the other cases.

3. From aggregation to random cascading and spin-glasses

Let one consider now the multiplicative case (11) of the equation with
the notations defined by (12). The recurrence formula (17) takes the simple
form: o

1-G/Gilypyr=(1- G/Gl)zlv . (19)

for the discrete-time equation and

d . d N,(1 -
=g (Sew)
3 (21{.-N,~(1 - u*))’
> KiN;
for the Smoluchowski equation (17), where we introduced the notation ( ),
for the average over the weights N; at a time corresponding to the generation

number v, see Eq. (18). Let also introduce the inverse Laplace transform of
the aggregation coefficients under the following form

-(1-1Y),, (20)

v

Ki=C / r(W)dW(—‘;’-)‘, (21)



On a Transformation Property of the Smoluchowski Aggregation Equation 603

where (W) is a normalized, positive, distribution and C is left arbitrary
but constant. Formula (20) becomes

:_V <1 - ut')u = {1 — Pv +Pv<1:‘i>"}2 -{1- “i)v ) (22)

where the numbers p, are also related to the number of clusters G; by the
following relations

a_S KN G 1 [d2/G)
bo=c¢TN~ce eV a (23)

One can express (1’—7&‘) and G, by convolution formulae using relation
(21). One gets

(1T, = 7 (W) dW (1~ (“—2”1)>

G, = C/O?r(W) W G (u - Kz’—-t) . (24)

Equation (22), with given initial conditions and evolution of the total
member of clusters, gives an equivalent form of the Smoluchowski equation
in the multiplicative case. Note that the correspondence has to be completed
by the knowledge of the dependence G,(t) of the total number of clusters,
which fixes the law »(t) and the normalization of the generating function
G(v, t).

As is obvious by comparison of equation (22) with the expression (6),
they are formally identical. This is explicit for the case p, = 1, and by
the extension to generation dependent processes (see the end of Sect. 2) the
identity is true in all cases. More precisely by choosing a modified random
distribution of weights, namely

r(W,v) = (1 - p,)5(W) + pr(W). (25)

One proves the equivalence of the form (22) of the Smoluchowski’s equation
with the one for the partion function of a random cascading random branch-
ing model with branching number A = 2. Note that one could also identify
the recurrence equation for a discrete-time Smoluchowski’s equation with
the equation (5) obtained for random cascading models with fixed branch-
ing. As mentioned previously these equivalences can very probably be ex-
tended between the general Smoluchowski equation with non-multiplicative
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weights, e.g. random cascading-random branching models with correlated
weights at each node.

4. Conclusion: an equivalence property

The result of the present study can be briefly summarized as follows.

Equivalence property

The solutions of the Smoluchowski equation for the kinetics of aggrega-
tion are formally identical to those for the partition function distribution of
random cascading models.

The potential consequences of this fact are quite interesting when con-
sidering some questions remaining unsolved in both field of research.

(i) in models of aggregation, it seems [10] that the investigation of new
exact solutions can be helpful. On the other hand, exact solutions have
been discussed in the framework of random cascading models [3]. More
generally, random cascading models have the same structure as models
of spin-glasses [4] and polymers in random potentials [5] whose extensive
study is the past years opens the way to applications to aggregation
kinetics via the equivalence property.

(i) in studies of random energy models, one important question concerns
the structure of the “event space” or more precisely the knowledge of
the distribution P(Z). Indeed, a whole hierarchical structure appears
in the cases where this distribution is known [4]. This structure is to
be related to the one revealed for spin-glass systems where the “event
space” is replaced by the “replica-space” [12]. Yet, the interpretation
of this structure in random cascading processes is not clear, due to the
absence of conditions analogous to a fixed temperature. The random
cascading systems appear more similar to complex multifractal systems
than to thermodynamical ones [6]. It is thus interesting that a kinetic
equation for an irreversible process such as the Smoluchowski equation
can be introduced for random cascading models.

(#1) in aggregation processes, there exists an interesting phase structure re-
lated to the differentphysical regimes:“flocculation” or “gelling”,with
different scaling behaviour [9]. Flocculation is an aggregation process
where the number of aggregates remains large throughout the coagu-
lation process. On the contrary, gelling is characterized first by the
formation of an “infinite cluster”, that is where a finite fraction of the
total mass forms one cluster, and finally ending by a unique cluster of all
aggregates. It is intriguing that such involved phase transitions could
be in a correspondence with phase transitions which are discussed in
Particle Physics, such the confinement transition of quarks and gluons
into hadrons, or the mass generating or so-called chiral phase transition.
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As a final remainder, one may note again the interesting generalizations
which are suggested on both sides — aggregation and random cascading —
by the calculation of Sections 2 and 3. Indeed, the convolution formula
(10), means that random cascading models, and their main results, can be
extended to non-multiplicative cases [4]. On the other hand, the existence
of random cascading solutions with an arbitrary branching number A, can
enlarge the range of aggregation to a modified type of clustering. Finally,
time (or generation) dependent aggregation coefficients could be introduced,
in much the same way as can be done for random cascading (or spin-glass)
models [4].
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them including M. Le Bellac and A. Bialas who kindly invited him to (re-
spectively) the Institut Non-Linéaire de Nice and the Marian Smoluchowsk:
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