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A quantum-mechanical system of N spin-!/; identical particles, where
~ matrices anticommauie for different particles, is shown to escape the
procedure of the second quantization (in the physical space). Instead,
a quantization procedure in the Fock configurational space, called here
the third quantization, is outlined. The respective particles are referred
to as the non-Abelian Dirac particles. A system of N such particles,
tightly concentrated around its centre of mass, can always be described in
the pointlike limit by the Dirac equation corresponding to a composite,
reducible (for N > 1) representation of the Dirac algebra. According
to a previous discussion by the author, such representations with N =
1, 3,5 may be responsible for the puzzling phenomenon of three fermion
generations, if an intrinsic exclusion principle is introduced.

PACS numbers: 12.90.4+b, 11.10.Qr, 12.50.Ch

As is well known, the two-step quantization procedure is, especially for
matter particles, a paradigm of quantum theory. It starts from the classical
mechanics and leads via the quantum mechanics (the first quantization) to
the quantum field theory (the second quantization). Though the first step
of quantization leading to quantum mechanics may be formally avoided by
starting from a properly constructed classical field theory and then passing
directly to quantum field theory, in the case of matter particles this step
is really crucial for our understanding of physical systems such as atoms,
solids and nuclei.

In the present note we construct a mathematical example of a noncon-
ventional quantum-mechanical system that cannot be second-quantized and
so described by a quantum field.

To this end, let us consider a system of N equal-mass identical par-
ticles described by their positions 7;, momenta p; and some new matrices
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7! defined through their anticommutation relation viz., Dirac conventional
ones:

{7£,7} = 29" fori=1,2,...,N (1)
and nonconventional:
{+f,7}=0 fori,j=1,2,...,N withi#j (2)

(the latter are replacing the commutation relations [7,“ Y5 ] = 0 which
appear in the Dirac conventional N-body problem). In order to coin a term
for our particles obeying noncommutativity (2), we will call them the non-
Abelian Dirac particles [1]. It is easy to show that the relations (1) and (2)
can be minimally satisfied by 4V x 4% matrices. For instance, in the case
of N = 3 one can use the representation

71‘.‘=7“®1®1,
"=’ ®ir’1*®1,
“=7"01"0 7", (3)

where 7# and 1 are the usual Dirac 4 X 4 matrices while 4% = i9%14%43

((v*) = (B,Bd), & = 4°§ = 4°3). Thus, the dimension of minimal
representation for our v/ does not change in comparison with the familiar
7! matrices in the Dirac conventional N-body problem.

Let us note that the relativistic dynamics for the system of non-Abelian
Dirac particles may be based on the operator

N
D .%m (4)

[

which is Lorentz-invariant, if the physical Lorentz group for such a system
is generated by

N
7=y (@ - #e i) = 1+ e, (5)
=1
where
N
N . - Y ia} forpu=k,v=0
z =
E ) [ 73] = N (6)
j=1 Yemem  foru=k,v=1
j=t1

with &; = 777; = 7}d; and &; = 7}7]7; = 7;@;. Here, the velocity matrices
d; commute for different j. The same is true for the spin matrices &; as
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well as for the chirality matrices 71 iv)v) 71 7}. We can see that the non-
Abelian Dirac particles forming our system carry simultaneously measurable
spins'/, and left-right chiralities.

In the one-time case, whent;—... =ty =tandp? = ... = p% = P°/N
with P% = i9/8t, one can write

N

N
S m= S=IP = 5= TP - VR IR ()

=1 1=1 [E-3%

where

Z'n (8)

t“‘l

satisfies together with 4} the anticommutation relations

{FO’FO} = 2’ {F0’7t } = 0 {7t 77_1} = _26’“6'1 (9)

Thus, in the free case the one-time wave equation for our system can be
assumed in the form

(PP-VNY A-p-BM)p=0, (10)

where M = Nm is the rest mass of the system of N equal-mass particles
(m; =m) and

A; = I'°F;, B=r° (11)
fulfil the anticommutation relations
{4}, A}} =26"5;, {4},B}=0, {B,B}=2. (12)

Note that relations (12) can be minimally satisfied by less-dimensional ma-
trices than the relations (1) and (2), for instance, in the case of N = 3 by
32 x 32 matrices.

The wave equation (10) implies the nonconventional second-order equa-
tion [2]

N
(P?-NY 5’ -M)p=0 (13)
i=1

that, however, in the nonrelativistic limit goes over into the familiar N-body
Schrodinger equation

N 3
=Y o )em =0, (14)
i=1
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since (P° + M)nr — 2M . We can see that, inversely, a generalized 3N 4 1-
dimensional Dirac square-root procedure [3]leads from Eq. (13) to Eq. (10).

In the pointlike limit, when 7} = ... = fy = R and §; = ... = Py
= P/N with P = —i3/0R, one gets from Eq. (10) the Dirac equation for
the motion of the centre of mass:

(PO-—X-P.—BM)’QL’CM:O, (15)
where
- 1 N - - = 1 N
A= — ; =I°T or I'=—— ¥ 16
= ; il Z:T 7 (16)
satisfies together with B = I'® the Dirac anticommutation relations
{A",A’}:Z&“, {A",B}:O, {B,B}=2 (17)
or
{r#, rv} =2¢* (18)

But, the Dirac equation (15) is not the familiar one, because it corresponds
to a composite, reducible (for N > 1) representation of the Dirac algebra
(18). It turns out that Eq. (15) realizes a generalization [4] both of the Dirac
equation (N = 1) and the Kahler equation [5], the latter being equivalent
[6] to Eq. (15) for N = 2. Note that, according to Eq. (15), the centre of
mass carries always spin '/; independently of the number N = 1,2,3,... of
non-Abelian Dirac particles forming our system. The remaining N —1 spins
1/, are hidden in the internal structure of the system, since this structure
becomes invisible in the pointlike limit (its remnant may be a correction
to the rest mass M = Nm). Of course, the true total spin of the system
remains half-integer or integer for V odd or even, respectively, even though
N —1 relative spins are hidden in the internal structure (unless the definition
(5) of the physical Lorentz group including physical rotations were changed
by excluding from it the relative spin degrees of freedom for the system of
N non-Abelian Dirac particles).

A nonconventional feature of the first-quantized Hamiltonian appearing
in Eq. (10),

N
H=+vN) A p:+BNm, (19)
i=1
is that its parts corresponding to different particles ¢ do not commute (even

in the free case). This property causes that there does not exist a related
second-quantized Hamiltonian. In fact, the Hamiltonian of the form

/ Yt (7, 8)(@- F+ Bm)e(7,t), (20)
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with (7, t) being a quantized bispinor field, would imply that the matrices
& and f resulting (in the Fock representation) for different particles of the
field (7,t) should commute.

However, we would like to point out that our quantum-mechanical sys-
tem of N non-Abelian Dirac particles, though not second-quantizable (in
the 3-dimensional physical space), can be “second-quantized” in the 3N-
dimensional configurational space. In fact, it is not difficult to see that in
the free case such a “second-quantized” Hamiltonian (related to the first-
quantized Hamiltonian (19)) can be written in the form

N
/daf; e B (P P ) (VI Y. Ao 5+ BNm) (R s s t),
i=1

(21)
where ¥(7,,...,7n,t) is the quantized N-body wave function (“configura-’
tional quantum field”) satisfying the wave equation (10) (“configura-
tional quantum field equation”). For N = 1,2,3,... the novel operators
Y(F1y .oy t) = YWI(F,...,Fx,t) form together a “Fock multicompo-
nent quantum field”. They define a novel step in the quantum theory that
may be called the third quantization. In Eq. (21), the matrices 4 = f_f,(-N)
and B = B®) fulfil the anticommutation relations (12) and are assumed
to commute for different N. The operators ¥¥)(7,...,7y,t) are chosen
to be quantized by means of anticommutators or commutators when N is
odd or even, respectively, and are assumed to commute for N’s differing by
their parity. Of course, these anticommutators or commutators vanish for
different odd or even N, respectively.

In both cases, the operators YM)(7,...,7x,t) and Yy (7, ..., 7y, 1)
can be interpreted as, respectively, the annihilation and creation operators
(of the system of N non-Abelian particles as a whole) in the configuration
1Q1,...,Tyay at time t. Here, o; with 1 = 1,2,..., N are bispinor indices
suppressed in Y(N)(7,...,7n,t) and pM* (7, ..., Fx, ).

It should be noted that for the conventional (i.e., Abelian) Dirac par-
ticles the procedure of the third quantization would run into trouble con-
nected with double and, in general, multiple counting of particles. In fact,
in this case there would be no way to distinguish a single N-configuration of
particles from a conventional configuration of N single particles (i.e., form
N 1-configurations). In contrast, in the case of non-Abelian Dirac particles
these two configurations are perfectly distinguishable since 4 matrices for
different particles anticommute in the former configuration and commute.
in the latter (in general, 4 matrices commute for two particles from two
different N-configurations, both with the same N and with two different
N).
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Another nonconventional feature of the first-quantized Hamiltonian (19)
is connected with the particle velocities

f = 217, H = VN A, (22)

whose distinguished components get the eigenvalues :h\/_IV formally exceed-
ing for N > 1 the velocity of light. Note that here 7; are not given by
the traditional velocity matrices @ = 4°7; but rather by vV NI°;, where

N
VNI° = 9. In contrast, for the velocity of the centre of mass
Vi

i1

Vi

%RH—%Z: A (23)

any distinguished component has the Dirac conventional eigenvalues +1.
Notice that 7; do not commute with each other for different ¢ and also

with R. Thus, in their motion around the centre of mass moving with the
velocity ﬁ, the non-Abelian Dirac particles have nonmeasurable velocities 1':},

provided a distinguished component of R is measured. Like a Dirac particle,
the centre of mass performs here the zitterbewegung around a mean motion
having the velocity P/v/ P? + M?2.

Finally, it is perhaps worthwhile to mention that the wave equation (15)
for the motion of the centre of mass (valid in the pointlike limit) may be
important for solving the puzzle of three lepton and quark generations [7].
This Dirac equation can be written in the covariant form

(F'P—M)pou =0, (24)
where
.
It = — Y 25
i ;'r (25)
(cf. Eqgs. (8) and (16)) with
{72, 77} = 29*6,; (26)

(¢f. Egs. (1) and (2)) define a sequence N = 1,2,3,... of composite, re-
ducible (for N > 1) representations of the Dirac algebra (18). It has been
recently shown [7] that for N = 1, 3,5 they may correspond to three gener-
ations of fundamental fermions, if an intrinsic ezclusion principle is intro-
duced for those N — 1 bispinor indices of the wave function ¢y describing
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the hidden spins !/, . This restricts, in fact, all possible states presented by
tem with various odd N to three spin-l/; states with N =1, 3,5.

In the Appendix we discuss in detail the simplest system of even number
of non-Abelian Dirac particles i.e. that with N = 2, assuming an internal
Coulombic attraction which enables us to find explicitly an exact solution.

APPENDIX

Two-body problem for non-Abelian Dirac particles

In the case of N = 2 non-Abelian Dirac particles interacting through
a vector potential V' and a scalar potential §, the one-time wave equation
(10) reads (for stationary states):

[E-V - V2(4, -5, + 4,-5)) — B2m + S)|¢ = 0. (A.1)
In the centre-of-mass variables this equation can be written as
(E-V—-A4A.P-23-§- B2m+S)|y=0, (A.2)
where .
P=p\+75:, 7=3i(F-7) (A.3)
are the momenta conjugate to the coordinates
E=YmA+/), F=f-f, (A.4)
while the matrices

E=L(E1+A’z), a=

V2 (Al - A2 ’ (A's)

and B fulfil the anticommutation relations

{4*, A} =26, {4*,d} =0, {c*, d'}=28",
{4*, B} =0, {a*,B}=0, {B,B}=2 (A.6)

following from Eq. (12) for N = 2. They can be minimally satisfied by 8 x 8
matrices: e.g. one can use the representation

E=3p®1p®0115, &=1p®(-7"p®0';, B=1p®1p®0'g, (A.7)

where o} and 1p are the usual Pauli 2 x 2 matrices.
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In the case of internal interactions V' (7) and S(7), the total momentum
P is a constant of motion and so one can use the centre of mass frame, where
P = 0. Then, if V and § do not contain spin coupling, Eq. (12) reduces to
the Dirac equation for internal motion

[E-V-2d.7~ B(2m + S)]¢ =0, (A.8)
where a* and B fulfil the usual Dirac anticommutation relations
{a*, o'} =26, {o*,B}=0, {B,B}=2 (A.9)

what is readily seen from Eq. (A.6). Thus, the two-body problem for non-
Abelian Dirac particles is then ezactly reduced to the usual Dirac one-body
problem, what never happens in the case of two-body problem for conven-
tional (i.e. Abelian) Dirac particles.

The angular momentum appearing in the reduced problem is

j=L+1¢ (A.10)

with I = #x 7 and & = (—iala?a®)d@. Of course, the total angular momen-
tum of our two-body system is

J=1847=C0+1Z+ 17 (A.11)

with & = (—-iAlA’A?’)/I, but in Eq. (A.8) there is no coupling of 5 and
7if V and S do not contain spin coupling (note that & + & = S+
and & - & = L -&). Thus, in the case of central interactions V(r) and
S(r) leading to bound states, the energy levels corresponding to eigenvalues
J = j¥'/; are degenerate. Here, j =%, %2, %, , ..., so for the ground
state, where j =!/, , one gets J = 0,1, which gives a degenerate quartet of
bound states.

In particular, for the Coulombic attraction V = —a/r and § = 0 the
Dirac equation (A.8) leads to the Sommerfeld-type energy levels

E=2m{1+ a/2 ] } , (A.12)
me+ 4/ + 3 = (a/2)

wheren, = 0,1,2,...and j =4 ,%, ,%%, ,.... Note that for the ground state
(n. = 0,7 =% ) the energy E — 0 if the coupling constant & — 2 (from
below). So, in this case, the quartet of bound states, mentioned before,
becomes massless.

i
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