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Numerical simulations indicate that the multigrid method has some
natural limitations when applied to the calculation of the quark propaga-
tor in the Lattice QCD.

PACS numbers: 12.38.Ge

1. Introduction

Since we do not know the analytical solution of the continuos gauge
theories [1] we have to use the computer simulations for the lattice QCD
calculations. One of the main numerical problems there is the computation
of the inverse of the fermionic matrix. In terms of the Dirac matrices v,
and the gauge fields U;; this matrix has the following block structure:

Aii = Ia

Aij = —'K(l_‘yu)Uij’ i=1i+j,
As‘j = _K(1+7p)Uij: .7 = i"‘ﬁ:
A4; = 0, otherwise.

Here K denotes the hopping parameter

1

K=—
8 + 2ma’

where m is the quark mass and a is the elementary lattice length.
In what follows the cases with

K<Kcr:%

(623)
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are considered. The relation j = ¢ + [ means that the site j is next to the
site ¢ in the p-direction. To calculate the inverse of the matrix A means
that we have to find IV times the solution of the following algebraic problem

Az = b,

zeCV, beC¥, A g CN*Y,

Different techniques have been introduced to solve this problem in an effi-
cient way. The most promising ones seem to be the incomplete LU decom-
position [2], introduced in a different context by Meijerink and van der Vorst
(cf. the papers contained in [3]), and the M(ulti) - G(rid) approach (cf. [4])
with a variety of iterative basic algorithms. Our research was triggered by
the following observation.

The C(onjugate) G(radient) method is known to be one of the most
efficient local algorithms. When used to solve an standard elliptic prob-
lem, it shows, however, a rather peculiar behaviour [4]. The residuum norm
reduction for initial iterations is not particularly fast, for subsequent itera-
tions the error norm could even increase and only then, after the appropriate
minimization subspace is settled, one observes a sudden residuum norm fall-
-off by several orders of magnitude. In Oyanagi’s [2] numerical data pre-
sentation, concerning the inversion of the fermionic matrix, the CG method
was also the worst one for the first, say, 200 iterations.

On the other hand, a good performance of the MG with the, e.g.
G(auss)-S(eidel) method, is well understood. If we take the Fourier trans-
form of the errors, G'S supresses the high frequencies, the coarse grid takes
care of the lower ones. Therefore it is rather natural to ask if the CG
method, put on the MG, would improve the convergence at the early it-
erations, preserving its sometimes striking performance at the end of the
calculations. Theoretical analysis does not seem to give us clear suggestions
in this case (cf. [3]).

Note that the preconditioning LU method leads to a steep residuum
norm decrease right from the beginning of the iteration procedure.

2. Implementation

Due to the resource memory shortage (we had at our disposal only
2.5 Mb on the CROMEMCO CS - 420 computer) we were forced to limit
ourselves in the following way. We resigned from the gauge structure right
at the beginning and therefore we do not touch here the problem of the
gauge invariance . For the MG calculations we used a two level 6* — 3*
scheme with the spin structure retained. As a consequence we had to deal
with complex vectors. The incomplete LU decomposition requires at least 4
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grid points in one space — time dimension. This requirement is connected
with the periodic boundary conditions implemented in our algorithms. The
4* coarse grid for the incomplete decomposition implied an 8* (dense) grid
for this acceleration method. Therefore at the beginning of our calculations
we tested this method only for scalar fields.

Our program was written in the C language as a rather natural conse-
quence of using the UNIX operating system. The results presented below,
if not stated otherwise, are coming from 4 iterations on the dense grid and
10 relaxation sweeps on the coarse one.

The most time consuming operation is the matrix times vector multipli-
cation. For comparison between different methods we use this multiplication
as a measure of the number of iterations.

As well known a simple MG algorithm has the following structure:

1. Perform a certain number of iterations (e.g. GS) on the dense grid
to get a rough approximation for the solution of the initial equation
AZ =b.

Project the fine grid values of the residual vector # on the coarse lattice.

3. Solve approximately the auxilliary equation A€ = 7 on a coarse sublat-

tice.

4. Extrapolate these coarse sublattice values of the error vector € to the

fine grid and correct Z.

5. Return to the first step.

As a starting value for Z (on the dense grid) we used (LU);;15, on the
coarse grid we commenced with the error vector € = 0.

One of the most important ingredients of the MG acceleration is the
transport of the solution values between the coarse and dense grids. In
four dimensions an elementary cube containes 81 knots. Tab. I shows their
characteristics relevant for our calculations.

N

TABLE I

Distances and relative weights for a 4-dimensional hypercube

Distance from Weight Number of knots
the centre
0 1 1
a 1/2 8
aV2 1/4 24
a3 1/8 32
2a 1/16 16

For example, when moving back from the coarse to the dense grid every
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Fig. 1. (a) transmission of residuum values from the dense to the coarse grid, (b)
scattering from coarse to the dense grid values with appropriate weights.

point retains the appriopriate solution value, propagates % of it to the 8
nearest neighbours, § to the next 24 neighbours etc. An inclusion of an
overall normalisation factor is obvious. Similar procedure was adopted for
the return journey to the coarse grid.

It is easy to demonstate this procedure on a two - dimensional lattice.

In Fig. 1a the transport of the dense grid residuum values to the coarse one,
according to the formula

T4 = (r7 + %(7’3 +re + 111+ 78) + i("z + P10+ riat "'4))/4

is shown.
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Since in our calculations the CG Least Norm and Least Square results
did not differ very much we present here only the numbers concerning the
LN approach.

3. Results

The typical behaviour of the CG method for different values of the
hopping parameter K is shown in Fig. 2.
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Fig. 2. Norm reduction of the CG Least Norm method for different values of the
hopping parameter K for a 6* grid

The final results are almost independent of the K values but one has to
be cool-headed before the real convergence is seen. Putting the CG method
on MG does not help: the convergence rate is better for the initial iterations,
but eventually the original C'G finds its way to the drastic residuum norm
reduction (Fig. 3). It turns out that MG disturbs the construction of the
set of independent vectors which is crucial for the convergence of the CG
method.

This is in agreement with different, 2-dimensional calculations when
non-trivial gauge structure is included [5]. However the preconditioning
with fine tuning (good acceleration parameter choice) could lead to a much
better residuum norm reduction than MG, what can be seen in Fig. 4.

Only recently we were able to check our calculations with the com-
plex variables on the 10* vs 5* grids. None of the conclusions presented
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Fig. 3. Norm reduction for the CG LN with and without MG acceleration
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Fig. 4. A comparison of three different iteration procedures with M(inimal) R(re-
sidual) and M R accelerated by the MG, and ILU decomposition (best acceleration
parameter choice)

above has to be changed. This is indicating again that the MG approach
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is not very helpfull in the QCD lattice calculations, when combined with
the CG iteration prescription, and that the ILU technique may lead to
faster convergence of the iterative calculations than those based on the MG
philosophy.

Useful discussions with J. Wosiek at the early stage of this work are
acknowledged.
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