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The elementary method in pairing energy calculations has been pre-
sented: () for like-nucleons in the j — j coupling; (ii) for like nucleons in
the | — s coupling; (iii) for bosons on the degenerated l-level. The simple
explanation how and, more involved why the elementary method works
has also been given.

PACS numbers: 21.60.Cs

1. Introduction

The pairing interaction is, by definition, the interaction between pairs
of nucleons which are coupled to zero angular momenta either J = 0in j—j
coupling orL = 0 in L — § coupling. A number of uncoupled nucleons in a
given nuclear state are not active and they give no direct contribution to the
pairing energy; however, they are responsible for the well known “blocking
effect”. A number of those nucleons is the seniority number v introduced
in the old paper of Racah [1] for electrons in atoms and then by Flowers [2]
for nucleons in nuclei. Since the introduction of the pairing interaction to
nuclear theory in the early 1950, it has become one of the main ingredients
of the nuclear interaction and still it has its fundamental meaning in the
modern nuclear theory. The pairing interaction by comparison with the
radial delta interaction has the short range character and it pushes strongly
down one of the nuclear energy level with the total J = 0 (for even nuclei).
Hence, the pairing interaction acts toward the spherical symmetry of nuclei
and in many cases it competes with the long range forces simulated by
the quadrupole—quadrupole interaction. The actual behaviour of nuclei is
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just the result of the interplay between these two interactions. The picture
is, of course, only an approximation because many other components of
the nuclear forces, both of phenomenological and microscopical characters,
enter in detailed considerations of the ground and excited states of nuclei.

There are, generally speaking two methods to deal with the pairing
interaction. The first one had come from the theory of superconductivity
[3] and had been adopted very soon in nuclear physics [4, 5]. The method is
based on the quasi-particle approximation to the exact solution but it can be
applied to the complicated system of many nucleons on many single particle
levels with a relatively simple numerical program. The second method, an
exact one, is based on the symmetry connected with the pairing interaction
[6, 7]. The method gives exact results in the theory of the pairing interaction
but there is a technical difficulty in applying them to many single particle
nuclear levels not because of matrix element calculations but because of a
very large numerical matrix program.

Since my first involvement (with Lord Flowers) in the pairing interaction
some 25 years ago [8] I have been and still am astonished that some of the
very sophisticated results in pairing energies can be immediately obtained
by the very simple reasoning. At last I have decided to look more carefully
on such an elementary simplicity and the results of my considerations are
presented here.

In this paper I deal with a system of like particles, say neutrons only,
both in j—j and L-S couplings. There is also considered a boson system
which has become, since the Interacting Boson Model introduction to nu-
clear theory [9], a very important and modern nuclear problem. The next
paper to be prepared, will be devoted to a much more complicated problem
of a system with neutrons and protons including the full isospin formalism.
We also plan to discuss the matrix element calculations using the elemen-
tary method in the pairing interaction. The off-diagonal matrix elements
are necessary to consider the many single—particle level configurations.

2. The system of like—nucleons (neutrons) on the j-level

Suppose we have a system of n-neutrons on the 2j+1 degenerated single
particle level j(n < 25+ 1) out of which v-neutrons are not paired and n—v
neutrons are coupled in pairs with J = 0 each. There are 2>* such pairs
(n — v has to be an even number). Let us distribute the neutrons according
to the pictorial scheme (Fig. 1). The black circles represent nucleons, the
white holes, and each state (m, —m) enters the picture with different m > 0
because we deal with fermions. There are three "boxes” in the picture. The
first one represents the two-particle state (m, —m) fully occupied and taken
n,; times. They are considered as paired neutrons. The second box is the box
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Fig. 1. Schematic picture presenting the specific configuration of like-particles
(neutrons) on the single particle j-level.

repeated n, times with only unpaired neutrons distributed over the different
m > 0 single particle states which prevents them from pair coupling to
J = 0. The third box repeated ng times represents the rest of the unoccupied
states allowed on the single-particle j-level. Before further explanation, just
to attract the reader’s attention we apply to the pictorial scheme the pairing
Hamiltonian which can be constructed by the pair creation a} at,, and pair
annihilation a_,,a,, operators. The pairing Hamiltonian does nothing else
but annihilates the pair (m, —m) on each of the place (n, possibilities) and
creates the pair (m, —m) on every possible place (1+n3 possibilities). There
are altogether

my(1+ na) (1)

such pair annihilation and pair creation actions and each single action gives
an unit contribution to the pairing energy and hence

Epnir = nl(l + n3)’ (2)
where we assume the pairing strength G = 1. From Fig. 1 we get
2;7+1 _

ﬂ1+n2+ﬂs=T=

2 +nga=mn
ny, = v, (3)

where 2 is so called pair degeneracy, n is the number of neutrons and v is
the seniority number. Taking a reverse transformation

n—v

ny = )

Ny =7

n v

n3=f)—§—§, (4)

and introducing (4) to (2) we get
Epuir = n;v(2ﬁ+2—n—v)
n—v,_.
= (27+3—-n-v). (5)

4
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This is an exact formula for the pairing energy which could be also obtained
in rather sophisticated considerations [4, 6].

There can be several objections to such a simplified treatment of the
pairing energy. At first, Fig. 1 cannot represent a real physical state. It
represents rather one of the configurations of a very complicated linear com-
bination of similar terms. Secondly, even if, for some good reason, we are
right to consider only a single configuration, then the Hp,;, as we explained
above, changes that particular configuration because it has moved one pair
of particles from the block n,; to the block n3. Such an action could be rather
connected with the non-diagonal matrix elements of H,;, than with its en-
ergy. Next, the particular configuration in the linear combination of many
configurations forming a physical state has a proper weight factor coming
from the complicated couplings of many particles to the total angular mo-
mentum. Hence it is not possible to consider a change of one configuration
into another without taking weight factors into account. The same argu-
ment holds for the pairing Hamiltonian which also has many terms.

Let us at first explain the last two points. In the configuration presented
in Fig. 1 there are two separate particle parts. One part, n;, involves paired
particles and the other one, n,, — unpaired ones. The unpaired particles
have, by definition, the zero paired energy and hence, their structure has no
influence on the pairing energy or, in other words, the structure of unpaired
particles forms a scalar with respect to the pairing Hamiltonian. Then
the structure of unpaired particles can be taken out of the action of the
pairing Hamiltonian. However, there is a visible blocking effect of those
particles because they block the n,-part of the single particle j-states and
the pairing Hamiltonian can act only in the space represented by n, and
ng. The blocking effect is demonstrated in the energy formula (5) by the
seniority v. Let us consider the configuration n, of neutron pairs coupled
to J = 0 each. In the language of creation a* fermion operators and with
the usual Clebsch-Gordan coupling coeflicients a coupled pair reads

(a af Z(]m] m|00)a},
(o
Z 75 T

1Y —mgt ot (6)

= 7T S

The last expression is obtained with the help of the common fermion anti-
commutation relations
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{ajm ,a+ )= ajma;m’ + afr s Gjm = S
{a’ ym’ 3 Jm }

{asm s @jm} =0 (7)

For further convenience we take the two particle coupled creation operator
with a factor —1——“22“

,/2] +1 —m
( 5 + 7=0 = Z( 1)] ;-m j—-m = S+ (8)
m>0

It is now seen that each (m, —m) configuration appears in (8) with the
weight factor (—1)’~™ equals +1. The same, however, phase factor is present
in the proper term of the H,;, and hence each of the overall weight fac-
tor brings the same unit contribution to the pairing energy. The pairing
Hamiltonian is constructed in the form

Hoir = _G{V21+1 ataty’= o} {V2J+1(ajaj)1=o}

2 7 2
= -G&.5_, (9)
where N . _
$-= (80t = X (-1Y " aj-mtjm, (10)
m>0

and —G is the strength of the pairing interaction.
In our considerations the value of —G is nonrelevant and we simply take
—G =1 and then o
Hppie = 545 (11)

The next problem is to answer the question why it is possible to con-
sider only one of the many nucleon configurations. Suppose the physical
eigenstate is formed by a complicated linear combination of the configura-
tions, Fig. 1. Suppose that the Hamiltonian acts on that state. The result
should be also the same complicated linear combination but with a common
factor equal to the energy F. Hence, if we consider any single configuration
of the state and if we are able to answer the question how many times that
particular configuration is repeated after the action of the Hamiltonian on
the full eigenstate, we will get the eigenenergy as a repetition factor. That
is the basis upon which we can consider the single configuration instead of
the complicated linear combination of configurations. The pairing Hamilto-
nian (and any other two-body interaction) could change at most the state of
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two particles. Hence, if we pick up any particular configuration, say that in
Fig. 1 then we must look only on configurations which differ by the position
at most of one pair of particle. In our case, those are the configurations with
one pair of particles taken from the block n, to the block n3. The proper
part of Hp,i. will take back that pair from the block ns to the block n;.
There are n;, X nj such possibilities and that is also a number of repetition
of a given configuration. But the H,,; can also annihilate the pair in the
block n, and create it on the same place. A number of repetitions of such
an action is equal to n,. Because each of the configurations comes into the
physical state with the same weight factor, the pairing energy is equal to
the total number of repetitions of a given configuration

E=n1><n3+n1::n1(1+n3)

as obtained before (2). The language we used to get (5) differs slightly
from the real action of the H,;, on the eigenstate. Namely, in elementary
calculations of the energy (5) we said that the Hp.;, annihilated a pair in
the n, configuration and created it in the n; configuration while in fact
there is an opposite action. But a number of repetitions of the action and
its opposite is the same and that statement ends the verification of the
elementary method in pairing energy of the system with like-nucleons on
the j-level.

We have given here the detailed description of the elementary method
in pairing energy calculations for the simplest system of one kind of nucleons
on the j-level. The other systems to be considered are more or much more
complicated but the main line of verification of the elementary methods
also holds but will not necessarily be given in detail. However, the rules
of the elementary method in the calculation of the pairing energy are still
extremely simple and calculations based on those rules are of the same
simplicity as for the neutrons on the j-level.

3. The system of like-nucleons (neutrons) on the I-level

In light nuclei for which the angular momentum of a nucleon is not
necessarily coupled with its spin to total j, the better basis is provided by
the states with the separate coupling of angular momenta to total L and
spins to total S. Hence, we should consider a configuration of neutrons on
the single particle [-level. The number of single particle states on the I-level
is equal to 2(2[+1) because of a 2-fold spin degeneracy. The pair degeneracy
£ in this case is equal to

220 +1
n:%:zzﬂ (12)
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Two neutrons coupled to a zero angular momentum, L = 0, are symmetric
in the L-space, hence, they must be antisymmetric in the spin-space and
then S = 0 follows. For the system of n neutrons with the seniority number
v (the seniority v means now the number of unpaired neutrons in the L-
space) we consider the configuration similar to j — j coupling.

n, n; i
-y —t——O—+—O—0O—
{mo; ~m-~0o) {mo;-m-0) [ md;-m-0)

-lgmgl a=l,

Fig. 2. Schematic picture presenting the specific configuration of like-particles
(neutrons) on the single particle I-level.

In Fig. 2 o stands for the third spin component of a neutron but an
angular momentum quantum number [ and spin quantum number s = !/,are
understood without being written. The remarks concerning the m-numbers
and n; numbers are the same as for Fig. 1. Pairing Hamiltonian acts in a
quite similar way as in the j-case: it annihilates a pair of neutrons on the
block n, (n; possibilities) and creates a pair on each empty space (14+n3
possibilities). The pairing energy is then

Epair = nl(l + ns) (13)

From Fig. 2 we get the same relations of n,; ,n,, and ng with physical quan-
tum numbers as in (3)

ny +ny +n3 =
2n1+n2=n
Ng =70 (14)

and hence

n-—v n-—

Eppic = 1 224+2-n-v)= 40(4I+4—n~—v) (15)

The shape of the formula is exactly the same as in the j — j coupling (5) in
terms of a pair degeneracy 2. If 12 is replaced by j or [, two formulas differ
slightly. The verification of the elementary method in the L — S coupling is
quite the same as in the j — j case.
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4. The system of bosons on the /-boson level

Bosons have become very popular in nuclear theory since the construc-
tion of the Interacting Boson Model (IBM) by Arima and Iachello [9]. A
boson in the model represents a properly correlated pair of shell model
nucleons. Similarly to the nucleon shell model there has been considered
the boson shell model. Although bosons represent pairs of nucleons, they
are usually treated in the IBM as ideal bosons fulfilling the common boson
commutation relations

[bm 3 b;;,] = Omm! [b;t‘ 3 b;:,] - [bm 3 bml] =90 (16)

Together with the IBM there has been introduced the pairing interaction
among bosons defined similarly as the interaction acting between two bosons
coupled to the total angular momentum L = 0. In our treatment of the
boson pairing energy we will consider bosons as ideal and we neglect their
nuclear structure.

Let us consider the n-boson system with the seniority number v on
the single particle level of a given angular momentum ! (I — necessarily an
integer). The boson eigenstate of the pairing Hamiltonian is also a very com-
plicated linear combination of many boson configurations but the reasoning
of the elementary method is, in the main lines, the same as for nucleons.
The difference in constructing the full eigenstate or one of its configurations
as compared to the nucleon system is the possibility of putting as many
bosons as one wishes on the single particle state. Sometimes it simplifies
the problem, but sometimes it makes the problem more difficult. In our
elementary method as well as in the group theory consideration it is rather
a complication.

Let us now choose the boson configuration presented in Flg. 3 where all
bosons are put in the state (m, —m) = (I, —I). The schematic configura-
tion of bosons in Fig. 3 is also divided into three parts. The first box repre-
sents all the bosons out of which n — v are paired and v are unpaired with
m = —1. The second box represents (I — 1) empty pair states (m, —m) for
m =1,2,..., 1 — 1. The third empty box is a single one for m = 0.

DY bosons DY hosons
2. 2
\ /
—e ——+—O- OO
{1, -1) {m;-m) {0}
m=12...,1-1

Fig. 3. Schematic picture presenting the specific configuration of like-particles
(bosons) on the single particle I-level (I-integer).
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In the elementary method the question is: how many times the pairing
Hamiltonian will repeat the specific configuration in Fig. 3. There are alto-
gether 22 x 2£* possibilities of forming pairs in the (I, =1) states, and the
repetition factor from the first box is just

n—vxn+v
2 2

n—v

But each pair from 23* pairs can be also taken either to the state (m, —m)
in [—1 different ways or to the state m = 0 with a weight factor */;which will
be explained later. Hence, the total repetition factor equal to the pairing
energy reads

n—v n+t+v n-—v n—v
Epairz D) X 2 + ) X (1—1)+

2 2
2t-14+n+v), (17)

2
n-—v

4

and that is the exact formula for the boson pairing energy. The pair de-
generacy has no meaning in the boson system because there may be on the
level [ as many boson pairs as one wants to take.

The explanation why the elementary method works properly in the
boson system is rather different from that in the fermion case and hence, it
will be presented here in detail. The simple configuration in Fig. 3 can be
exactly constructed with the boson creation operator b+

lex) = (8F)7"M2(b2,)"*)20) = (bT,)" (b b1)"V20).  (18)

The nice feature of the configuration (18) comes from the fact that unpaired
bosons are coupled to a good angular momentum, namely

L =vl; M = —vl. (19)
The coupling of unpaired bosons to a given total L does not influence the
pairing energy and hence, we can consider the simplest coupling (18)-(19).

For a such coupling we can also write the exact eigenstate |f) with the help
of the quasi-spin boson operator @+

1£) = (6%)" (01" ""0), (20)
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2

m=-1

I
Q~+ = \/2l+ (b+b+)L =0 _1 E (_l)l—mb;l;bi-m

= Z(-l)“"‘bj;bfm + L(-1)'bbs . (21)
m>0
For further convenience we write the vector |f) in the form

-1

1) = (62)" {65, + 3o (1) mbkst
mxl
F3-nese ) o). (22)

The pairing Hamiltonian is constructed analogously to the fermion case as

-

pmr = Q Q— ? (23)

where
= (04)* = 32 (~1)™b_mbm + 3(~1)'bobo.
m>0

The main question in the explanation of the elementary method is: how
many times the specific configuration (18) will be repeated after the action
of the Hp,;; (23) on the full state (22)? To discuss the answer we need only
such a part of the full state (22) which differs from the specific configuration
(18) at most by the position of one pair. That part is

Powe = (02" { BF02) "

-1
n—v [(n-v)/2]-1 -
+ ——(bb2) ;:1(-1)' "b4bt
n —
2

Let us analyse each of the three parts of (24). The first part is just our
chosen configuration |c;) (18). The proper part of the Hpa; (23) to repeat
this configuration is

+

v n—v /2]-1
x 1(-1)(58%) T gt o). (24)

b?-btlb—lbl ]
and
b_ibiler) = boyby (6F) "7 2 )

n ; v x n -;— v (b?_)[(n—v)/ﬂ—l (btl)[(n-}-v)/?]—l!O)

and hence
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n—v n+v
b?-btxb—lb”‘:l) = ) X 2 Icl) (25)

showing that the repetition factor coming from |c,) is

n—vxn+v
2 2

Let us now pick up from the second part of (24) i.e. from

les) = (b5)" x 25— (Be%,) 7 ‘Z( 1)-™5%b*,.|0)

m=1

one term with a fixed my

leahme = (b1)° x T2 (%) VAT (Caymmens BE L 10)  (26)

The proper part of Hp,;, to act on (26) is

bot (- 1)""‘” b_mybim,
and hence

Zlea). (27)

n
b?-bil(_—l)l_mob—mobmoIcz)mo =

There are (I — 1) configurations of the type (26) and the repetition factor
from the second part, |c,), of (24) is

(28)
The last part of (24), |cs), is
lea) = (b%,)° bbs (675%) " o)
and the proper part of Hp,i, to act on |c3), is
b b, x L(—1)'bobo
and then
B b*, X L(=1)'bobolcs) = ";” x Ler), (29)

where we have got the weight factor !/, which is a product of three factors
1/2x'/ax2 coming from the calculation (29).
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In the formulas (28) and (29) the factor *3* is connected rather with
creation of a pair and the factor ({ — 1) in (28) has come from a pair an-
nihilation because the Hp,;, changes the configuration (24) to the specific
configuration (18) while in our “elementary language” we assumed an op-
posite transformation. In the first contribution to E,.; given by (25) the
repetition factor has come entirely from the pair annihilation and that is the
reason that we did not divide this term, in our elementary method, into two
parts. Taking the three contributions (25), (28), (29) we get the formula
(17).

Although, the group theory treatment in the boson pairing energy is
much more complicated than for the fermions mostly because of the un-
common non-compact group SU(1,1) {10] involved, the elementary method
in both cases is astonishingly similar. In the next paper we will apply the
elementary method to the case of protons and neutrons including the isospin
formalism and we will show that the pairing energy treatment is also very
simple in spite of the fact that the symmetry groups are still much more com-
plicated, namely there are orthogonal groups in five- and eight-dimensional
abstract spaces.

The author is very grateful to professor Klaus Dietrich for a kind invi-
tation and also to the Deutsche Forschungsgemeinschaft for a grant.
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