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NUCLEAR TRANSIENTS
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Nuclear scattering is classically analysed using realistic conservative
interactions. Due to chaoticity of motion, the projectile can stay in the
vicinity of the target for a long time. Such phenomena are called tran-
sients. We investigate properties of transients: fractal dimensions, Lya-
punov exponents and mean lifetimes. We conclude that the lifetime of
transients is similar to that of single-particle resonances. It rises substan-
tially when we consider a more general system, with larger number of
degrees of freedom.

PACS numbers: 24.90.4-d

1. Introduction

Classical mechanics has been frequently applied to describe heavy-ion
collisions. It has been argued that masses of colliding systems and angular
momenta involved are large enough to justify such approach. Deep-inelastic
and fusion reactions are especially well suited to be described by classical
means.

The easiest way to model heavy-ion reactions is to assume only two-
body dynamics. Conservative systems lead to a split with reality because
any loss of the relative energy is impossible in this case. The system can
fuse only for a single initial condition when the trajectory hits the top
of the Coulomb barrier. This particular impact parameter corresponds to
the singularity of deflection function. For all other impact parameters the
deflection function is regular. Introduction of a friction force changes the
picture. The system transfers the energy of the relative motion to internal
degrees of freedom of projectile and target, as one used to interpret the
friction force. Zero of the relative energy is a token of fusion. Despite many
apparent successes of classical models utilizing both conservative and non-
conservative interactions in reproducing experimental data, some important
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features of nuclear reactions remain unexplained. In particular, all fused
systems live infinitely long whereas one could expect rather an exponential
decay of the compound system with time (a resonance).

A proper handling of the internal degrees of freedom of nucleus re-
quires taking into account its many-body structure ezplicite. Some efforts
in this direction has been already undertaken with noticeable success [1-3].
From the mathematical point of view, the main difference between two-
body and many-body dynamical systems arises from the fact that the latter
is non-integrable and in the most cases reveals a very complicated, chaotic,
behaviour.

In this paper we discuss properties of a simple scattering system exhibit-
ing chaotic behaviour and show how resonance phenomena can emerge. In
Section 2 we introduce some general definitions concerning properties of
chaotic systems. The notion of transient is especially important when one
considers scattering problems. Its origin traces back to a subtle interplay
between stable and unstable manifolds. They have Cantor set structure and
can be characterized by a sequence of fractal dimensions, defined in Section
3. We also show there how lifetime of transient is connected with the frac-
tal dimension and Lyapunov exponent. The concept of transient chaos is
applied to a nuclear system defined in Section 4. We calculate the fractal
dimension and the Lyapunov exponent for the nuclear transient determin-
ing its average lifetime in Section 5. A similarity to single-particle quantum
resonances is discussed in Section 6. We also consider there possible gener-
alizations of the system presented in this paper.

2. Dynamics of chaotic systems and transients

Let us consider a conservative dynamical system. Studying the be-
haviour of trajectories around hyperbolic (saddle) fixed points is of crucial
importance to decide about eventual regularity or chaoticity of motion (see
e.g. [4,5]). Points positioned along unstable directions expand exponentially
with time, whereas points along stable directions converge exponentially to
the fixed point. In general, unstable (stable) directions form unstable (sta-
ble) manifolds. Any point on the stable manifold requires infinitely long
time to reach the fixed point, i.e. it remains in the vicinity of the fixed
point forever. The system is called chaotic if the stable and unstable man-
ifolds cross each other in infinitely many points, called homoclinic points.
The resulting behaviour of such system is extremely complicated.

One of the consequences of chaotic behaviour of a dynamical system
is the sensitive dependence on initial conditions. The distance between
two close trajectories, initially equal to &y, rises exponentially with time ¢,
8 = boexp(At), when t is large. The rate of divergence, A, is called the
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Lyapunov exponent and is positive. In practice, A can be obtained by the
simultaneous solving of the original and linearized equations of motion.

Regularity and chaoticity of many dynamical systems (not necessar-
ily conservative) is connected with their dependence on a parameter. For
some values of this parameter we deal with the regular regime, otherwise
the system is chaoticl. However, the chaotic behaviour can manifest itself
also in the regular domain. During the evolution, points belonging to the
regular basin converge to a periodic orbit (the attractor) and, as an ulti-
mate outcome, the Lyapunov exponent is zero. But we can be interested in
the convergence process itself. For some initial conditions the attractor is
reached almost instantly, for other the evolution must be very long. Looking
at the behaviour of the system for those long trajectories, we find a striking
similarity to strange attractors (attractors in the chaotic regime): Lyapunov
exponents converge to a positive number and the pattern drown by the tra-
jectory resembles the shape of the strange attractor. Consequently, those
transitory phenomena are called semi-attractors or transients [6,7]. More
precisely, a trajectory reveals the transient behaviour when it remains out-
side a small neighbourhood of the periodic orbit. The time the trajectory
needs to fall into this neighbourhood is the lifetime of the transient.

The scattering problem concerning conservative systems can be simi-
larly formulated [8]. The phase space is open and trajectories, coming from
infinity, fall into the interaction region where the motion is chaotic. The tra-
jectories stay there for some time revealing transient behaviour. Transients
decay when they leave the interaction region and escape to infinity.

The time a particular trajectory abides within the interaction region
depends on the position in the phase space of initial conditions in respect
to the stable and unstable manifolds. The escape of points on the unstable
manifold is very rapid. On the contrary, trajectories located on the stable
manifold remain in the interaction region for the infinite time. Therefore,
it is crucial for the determination of the lifetimes of transients to ask how
dense in the phase space the stable manifold is.

3. Dimensions of manifolds

A trajectory crossing a plane during the evolution draws a more or
less complicated structure on it (the Poincaré section), built from isolated
points. One can ask about dimension of this set of points when time goes
to infinity. It appears that sometimes the points do not form a line, a plain
figure, etc. and they are also not isolated: the dimension of the set is fractal.

1 Equations describing flows, depending on the Reynolds number, can serve as
an example,
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Let us assume that the set is embedded in the d-dimensional Euclidean
space. If we need N(¢) d-dimensional cubes of size € to cover the set com-
pletely, the fractal dimension D is defined as

N()~eP, e—o. (1)

The most famous example of the fractal set is Cantor set. In order to
construct it, the unit interval is divided into three equal parts and the middle
segment is removed. The same is done with the remaining two segments.
The procedure goes on to infinity, and finally one gets the Cantor set. It is
easy to check that (1) implies D = log2/log3.

The definition (1) can be generalized. We define a family of dimensions
by [9] .

DW= L ji BEPL 2)
1-g «0oln(l/e)

where p; is the probability that a point is found in the i-th cube. Formula
(2) resolves itself to (1) for ¢ = 0; D(® is called the capacity or Hausdorff
dimension. A special importance have also D(!) (information dimension)
and D) (correlation dimension).

The measure of the fractal set is zero. Indeed, the total capacity of the
cubes needed to cover it is proportional to €N (e) = ¢2-C and goes to zero
(e = 0).

Stable and unstable manifolds connected with the scattering of chaotic
systems have (the same) fractal dimensions. The structure of the stable
manifold is clearly recognizable from the deflection function. Changing
the impact parameter one crosses the stable manifold what results in the
singularity of the deflection angle, accompanied by a rapid growth of time a
trajectory spends inside the interaction region. Subsequent magnifications
of the impact parameter intervals show that singularities split and their
number rises in a constant ratio, allowing to calculate the dimension. Since
the dimension is fractal, the probability to hit the stable manifold by a
random sampling of the impact parameter is zero. In practice, one gets
always a finite lifetime.

The average lifetime of transients can be assessed from the Lyapunov
exponents and fractal dimensions. The speed of their decay is exponential.
More precisely, the probability that a randomly chosen trajectory has not
yet escaped after time ¢ is exp(—t/r) where

1/r =Y X1 -D) (3)

Ai>0

A; denotes the spectrum of Lyapunov exponents and D;’s are partial infor-
mation dimensions [10].
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The interpretation of (1) is following [7]. A typical trajectory continues
to abide within the interaction region unless it falls into an interval between
two folds of the stable manifold. The total density of these holes is propor-
tional to 1 — D;. The Lyapunov exponent J; is just the mean velocity of the
escaping flow in i-th unstable direction. The escaping rates in stable and
neutral directions are slower than exponential. The total escaping flow we
get by summation over all unstable directions.

4. Description of the system

We consider the scattering of an alpha particle on 2C treated as an
alpha-cluster nucleus [1,2], ¢.e. the whole dynamical system consists of four
alpha particles. They interact via two-body interactions [11]:

afr + alexp[-(r — a,)’} +a4exp[—(r — as)z]’ T > Pmin

as Qg

V(r)=
ar + as(" - rmin)z’ 7 < Pmin
(4)
with parameters a; = —5.673 MeV, a, = 3.781 fm, a3 = 1.23 fm, a4 = 1.6
MeV, a5 = 4.351 fm, ag = 0.896 fm, a; = —3.16419 MeV, az = 4.0041
MeV/fm?; rpin = 3.6355 fm is the minimum of the potential. The parameter
a stands for the Coulomb parameter.

The potential (4) has been obtained from adiabatic time-dependent
Hartree-Fock (ATDHF) calculations. Since the ATDHF is unable to find an
effective two-body interaction in the density overlap region, the original po-
tential has been derived only up to the minimum. The far left part has been
assumed as parabolic with parameters determined by matching conditions
at the minimum [12]. The sketch of the potential is presented in ref.[13]. Us-
ing the a—a interaction (4) enables for a construction of alpha-cluster nuclei
(*2C, 80, ?°Ne etc.), properly reproducing radial density distributions in
the position and momentum spaces, as well as experimental binding energies
and separation energies of subsequent alpha particles.

To enable any serious analysis of our scattering problem we have been
compelled to drastic simplifications. All degrees of freedom within the target
has been frozen. The target alpha-particles have been fixed at equal dis-
tances so chosen to ensure the proper binding energy of 12C (Ep = —7.2747
MeV). The collision has been assumed planar. In this way the problem
is reduced to scattering by a two-dimensional potential. The motion is
then restricted to the three-dimensional manifold, embedded in the four-
dimensional phase space. The total potential we get by summation of the
two-body potentials over all alpha particles. Its contour plot is presented
in Fig.1. The potential possesses three hills surrounded by Coulomb barrier
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Fig. 1. Topographical map of a+2C potential (solid lines) and trajectories (dashed
lines) corresponding to three singular regions (see text) of impact parameter, £ =
3.5 MeV

forming three heights. The hills and the Coulomb barrier are separated by
a trench.
Equations of motion are of the form

dfz\_1/(p.

dt\y) m\p)/)’

d (p.\ _ d/0z

dt (Pg) - (a/ay)v(z,y)? (5)
where m is reduced mass of the system. For a given bombarding energy,
initial conditions are fully determined by a choice of impact parameter. We

have solved the system (5) numerically, using the Runge-Kutta-Fehlberg
method [14] with integration step size adjusted automatically.

5. Properties of nuclear transient

An uncountable set of stable manifolds connected with orbits localized
within the Coulomb barrier and stretched out to the asymptotic region
has fractal dimension. Every trajectory which starts from one of those
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manifolds stays within the Coulomb barrier forever. Since the measure of
the set of initial conditions connected with the stable manifolds is zero, we
can consider only trajectories close to them. They also live for a long time
and are attracted by localized orbits. Fig. 2 presents a section of the stable
manifold, followed by a single trajectory starting at infinity, by a surface
y = z/v/3. After a long evolution (¢ = 7.5-107'8s) the trajectory slips off
the manifold and then escapes to infinity never crossing the plane again.
We have rejected the last 65 points (to get the section through the ezact
stable manifold) and the figure consist of 3500 points. The plot resembles
5-cycle quasiperiodic orbit. Isolated points between them originate from the
incoming branch of the manifold.
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Fig. 2. The section of the stable manifold connected with the trajectory: impact
parameter b = 5.3525262978 fm, F = 3.5 MeV

Fig. 3 shows the deflection function. One can distinguish three singular
regions: b < 2 fm, b =~ 4.4 fm and b =~ 5.4 fm, separated by regular intervals.
They correspond to different localizations of trajectories captured between
the Coulomb barrier and two hills. In the absence of Coulomb potential
all trajectories can be located in the same (central) area only [15]. Fig. 1
shows how long-living trajectories characterized by various impact parame-
ters are positioned in the configuration space. Successive stretchings of the
horizontal axis in Fig. 3a reveal the self-similar structure (Fig. 3b,c) and is
an indication of the fractal dimension of the set of singularities.

Our aim is to determine the average lifetime of the transient, applying
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Fig. 3. The deflection function (scattering angle 8 vs. impact parameter b) for
E = 3.5 MeV presented with different impact parameter resolations

(3). For this purpose we need the values of the dimension and the Lyapunov
exponent. In order to calculate the information dimension D) we adopt
the “uncertainty exponent” technique [16,17]. It has been invented for de-
termination of the boundary of the basin of an attractor. The properties of
the system are different on the both sides of that boundary. In our case,
the crossing of boundary manifests itself by a rapid change of the deflec-
tion angle. The initial condition is called uncertain with uncertainty e if it
leads to the final angle in a different half-plane than the same condition but
perturbed by an amount of €. The fraction of trajectories uncertain in that
sense f(€) scales with € like

f(e) ~ &2 (6)
for sets with fractal structure. If the boundary of the set is regular, f(¢)
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is proportional to e. Fig. 4 indicates that in our case relation (6) holds
and D) can be precisely extracted. The information dimension calculated
according to Eq. (6) for four energies is presented in Table I. As expected
[18], it declines with energy.

TABLE I
The dimension D(1), Lyapunov exponents A and mean lifetime 7 for four energies.
E[MeV] D) A (1022571 T [10-225)
3.0 0.68 0.607 5.2
3.5 0.66 0.513 5.7
4.5 0.47 0.425 4.4
5.5 0.22 ~ 0.56 ~23

Our system possesses only one positive Lyapunov exponent connected
with the unstable direction. To determine the exponent we need a long lived
trajectory. The time evolution in the tangent space is governed by the set
of linear equations

d(éz\ _ 1 (ép,
dt\éy)  m\ép, /)’

d 6}7; — 32:—3 Bf;y bz
dt (5173,) - ( 52 83 V(z,y) 53} . (7)

dydzx oy?

The arguments of potential V(z,y) second derivatives follow the trajectory
determined by the original equations of motion (5). The Lyapunov ex-
ponent is obtained as average eigenvalue of the evolution matrix of eq.(7)
corresponding to the unstable direction. Fig. 5 shows the convergence of the
exponent for the trajectory depicted in Fig. 2 indicating its precise deter-
mination. Looking for long trajectories at energies higher than 4.5 MeV is
much more difficult since the dimension of stable manifolds becomes smaller.
Table I summarizes the results. For E = 5.5 MeV the value of the exponent
has been obtained from the trajectory living 10~2° s and is only approximate.

Finally, Table I contains the mean lifetime 7 of the transients derived
from equation (1). Well above the Coulomb barrier it declines sharply
with the energy but for E below 3.5 MeV stabilizes. The influence of the
Coulomb barrier eliminates all long trajectories below E = 3 MeV. The
lifetime of the transient can be also directly determined by summing up
the trajectories which still dwell within the interaction region after a given
time. For this purpose, we have sampled the impact parameter interval (0,
5.4 fm) uniformly to get a statistical ensemble. Then we have calculated
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Fig. 4. The uncertainty exponent f(e) for E = 3.5 MeV

the time after which trajectory leaves the region the transient is located
and taken the average over the ensemble. The result of this experiment for
E = 3.5 MeV is presented in Fig. 6. Due to the specific symmetry of the
transient, some escaping directions (and, consequently, escaping times) are
less probable then the others and the dependence of the number of surviving
trajectories on time is not strictly exponential. The straight line with the
slope determined from the Lyapunov exponent and the fractal dimension
(taken from Table I) is also shown in the figure. The straight line agrees
with the overall behaviour of the curve obtained from the direct calculations.
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Fig. 5. The Lyapunov exponent calculated for the trajectory presented in Fig. 1

6. Summary and outlook

We have shown that the simple model of nuclear scattering system re-
veals chaotic behaviour. The motion is governed by the shape of the stable
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and unstable manifolds which can be characterized by fractal dimensions.
The system possesses positive Lyapunov exponent. In contrast to two-body
dynamics, trajectories do not leave the interaction region immediately but
reveal transient behaviour. The number of trajectories abiding within the
range of the nuclear potential drops exponentially with time. In the absence
of transient this number declines faster than exponentially. The exponential
law of decay resembles that of quantum mechanical resonance. All classi-
cal two-body models commonly used to describe nuclear collisions fail to
produce such phenomenon. The transient can be interpreted in that sense
as a single-particle state. Despite all simplifications, we have got lifetimes
close to those observed experimentally as they correspond to the width of
about 1-2 MeV, a typical value for the single-particle resonance [19]. Longer
lifetimes, characteristic for a compound nucleus, are connected with a huge
number of degrees of freedom. Since we have taken into account only two
of them, one should not expect a formation and decay of the compound
nucleus our present analysis is able to reveal.

In (N/No)
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t{10°2s )

Fig. 6. Relative number of trajectories dwelling in the interaction region up to a
given time

In order to convince ourselves that the exponential law holds for more
general alpha-cluster systems and its lifetime rises with the number of de-
grees of freedom involved, we have considered a more realistic target. Now
the alpha particles in the target have been enabled to move in the three-
dimensional configuration space. The phase space is 24-dimensional — the
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energy, total momentum and angular momentum conserved. Calculations
have been performed for a randomly chosen internal configuration of the
target (with the binding energy Eg). We cannot repeat the whole analysis
for such complicated system but the direct estimation of lifetime of a com-
posite system is possible. Fig. 7 demonstrates this, analogously to Fig.6.
The number of surviving trajectories declines exponentially, indeed. The
average lifetime is 2.9 - 10~2%s, 50 times larger than that for the simplified
system. Further investigations of that general system are in progress.
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Fig. 7. Same as Fig. 6 but for a generalized system: a-particle scattered by 12C
nucleus built up of three interacting o clusters
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