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Assuming that no Higgs has been found below 1 TeV, we study the
physics of longitudinally polarized vector boson (Wy) scattering in the
TeV region, using a one loop calculation and partial wave analysis. We
show that the occurrence of a resonance in the isospin I = 1 channel de-
pends on a certain parameter called 3, which is measured near threshold.
We investigate the similarity between low energy wr scattering and high
energy Wi Wy, scattering, as suggested by the equivalence theorem.

PACS numbers: 14.80.Gt

1. Introduction

The physics up to energies of around the vector boson mass is very
accurately described by the Standard Model Lagrangian. The Standard
Model (SM) is currently being tested at the LEP to an accuracy of about
1% and so far, up to about 100 GeV, the SM predictions are in complete
agreement with the experimentally obtained results [1].

Apart from the top quark, the only thing that remains to be verified
experimentally is the existence of the Higgs particle. The SM contains the
linear o-model as the Higgs sector, which is needed to ensure the renormaliz-
ability of the theory, and consequently requires the Higgs particle. Through
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the Higgs mechanism the vector bosons and fermions acquire their masses,
but at the same time we end up with a non-zero cosmological constant. In
order to agree with experiment, which says that this constant is zero, one
could, for example, introduce the same constant into the Lagrangian but
with the opposite sign. This, however, does not seem to be a very satis-
factory solution to the problem. Based on these considerations the Higgs
sector may be considered suspect and there is thus the possibility that the
Higgs particle is very heavy or it may not even exist.

The foregoing discussion motivates us to consider the SM (after all,
its success cannot be disregarded!) but without the Higgs particle. This
may be achieved by taking the large Higgs mass limit. Of course, at this
point the SM has become non-renormalizable, meaning that we are now
dealing with problems like perturbation theory breakdown and violation of
tree unitarity. It is obvious that if the Higgs particle does not exist, new
physics will have to take its place.

In principle, evidence of this new physics may already be obtained from
low energy processes by considering the one-loop corrections due to a heavy
Higgs. However, as it turns out, for processes which take place at a center of
mass energy less then 100 GeV, the magnitude of these one-loop corrections
are at best 0.5% [2-3] and are at this point not observable. This is a result
of the screening theorem [3], which states that for any process the one-loop
corrections due to a heavy Higgs depend at most logarithmically on the
Higgs mass. We see now that below 100 GeV the SM in the large Higgs
mass limit is a very good approximation to the new physics, since in this
energy domain details concerning the Higgs system, or whatever goes for it,
are yet to be observed.

On the other hand, we may look at high energy processes and determine
from the tree unitarity limit where new physics has to come in, in the
absence of the Higgs. An example of such a process is W, Wy, scattering
(WL = longitudinally polarized neutral or charged vector boson); the tree
amplitude grows like the energy squared and the unitarity limit is reached
at around 1 TeV [4-6]. This value of 1 TeV should be considered only as
an indication since perturbation theory is not valid. All we know is that
somewhere around 1 TeV new physics will have to show up in processes
involving the longitudinally polarized vector boson and processes involving
the top quark, since the Yukawa coupling is not to be neglected.

Here we would like to remark that according to lattice theory non-
perturbative results of the ¢*-theory indicate that the Higgs mass cannot
be larger than 630 GeV, which is to be considered only as a rough estimate
[7]. It is thus indeed acceptable to assume that if no Higgs has been found
below 1 TeV, then new physics will show up at around 1 TeV.

The energy region between 100 GeV and 1 TeV proves to be very in-
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teresting; it is in this energy region that we may assume that the one-loop
corrections due to a heavy Higgs, being of the order of 10% [6, 8-10], are
still a reasonable approximation. The importance of this energy region is
understood; it still makes sense to talk about one-loop corrections, which, of
course, cannot be said about the energy region above 1 TeV. Furthermore,
if we are able to measure one-loop effects below 1 TeV, then we may be
able to predict what will happen above 1 TeV. As we will show, this is the
case for W Wy, scattering; within the framework of partial wave analysis
the prediction of a resonance in the I = 1 channel above 1 TeV depends
on a certain parameter, called 8. This parameter is derived from the one-
loop amplitude below 1 TeV. Because one measures cross-sections and not
amplitudes, we will show in Section 7 how 3 may be expressed in terms of
a linear combination of the differential and total cross-sections for Wi/ W¢
vector boson scattering.

In the study of Wy, interactions the equivalence theorem [5, 11-13] proves
to be a very useful tool. For W Wy, scattering, where the interacting Wy ’s
have an energy E much larger than their mass M, the statement is

AW LWy, — WLW) = A($¢ — ¢¢) + O (%) (1.1)

Here ¢ is the corresponding Higgs ghost. Thus, the leading energy term
for the W, amplitude is found by calculating the leading energy term for
the corresponding ¢ amplitude. The above equation is valid in all orders of
perturbation theory and is independent of the Higgs mass or the top quark
mass [13]. The equivalence theorem may thus also be applied to the case of
the SM in the heavy Higgs mass limit.

It is interesting to observe that in the heavy Higgs mass limit the tree
amplitude for ¢¢ scattering is exactly like the tree amplitude for 77 scat-
tering if we replace the v.e.v. v = 250 GeV by F, = 98 MeV. This has led
many people to consider for example technicolor [14] in the study of W Wy,
scattering in the energy region above 1 TeV, assuming that no Higgs has
been found below 1 TeV. In this model there is one very notable feature,
namely the prediction of a resonance in the I = 1 channel at around 1.5-2
TeV [11, 15-17]. The reason is that for #x scattering there exist a reso-
nance in this channel, called the p resonance, at an energy of 0.77 GeV.
Then technicolor will predict the techni-p with a mass of

My =, () =2TeV. (1.2)

In Section 4 it will be shown that according to the partial wave analysis,
the occurrence of such a resonance corresponds to

B=5. (1.3)
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Besides technicolor, other models have been considered as well in the pre-
diction of a resonance for Wy, Wy, scattering in the I = 1 channel at around
2 TeV [18-19).

It is maybe interesting to see what value for § we obtain if we consider
the SM in the large Higgs mass limit. We know of 2 different ways that the
large Higgs mass may be taken (to be defined in Section 2) and the results
are

Ba=-032, By=1. (1.4)

We can now remark the following. The first value for 3(3,) has the wrong
sign and cannot give a resonance at any energy, while the second value for
B(Bs) is far too small to produce a resonance at around 2 TeV. Although
according to the partial wave analysis a resonance at around 2 TeV cannot
occur in either case, the result does seem to depend in which way that we
take the large Higgs mass limit.

It is clear that details concerning the one-loop amplitude are important,
but this seems to be contradictory to the analysis done by Brown and Goble
[20]. Some 20 years ago they produced the p resonance through the use of
the bootstrap analysis and knowing only the tree amplitude. Their results
were found to be in reasonable agreement with the-experimental values.
The conclusion would be that the existence of a p-like resonance around 2
TeV is guaranteed and is, in fact, independent of the underlying new physics
[16]. However, this conclusion is not correct, simply because the bootstrap
analysis is not correct and the success obtained by Brown and Goble is thus
misleading. This was first noted by Lehmann [21]. The analysis of Ref. [20]
has recently been questioned again in the literature [17, 19, 22].

But then how can we explain the p-resonance? For low energy =«
scattering the effective Lagrangian contains 7N interaction terms and when
considering the amplitude at one loop this interaction needs to be taken
into account. Diagrams containing a Nucleon loop do contribute. This
is precisely the analysis that was considered in Ref. [21] and in there the
p-resonance was obtained to within 30% accuracy (8 = 3.5) with the exper-
imental value (8 = 5).

The upshot is thus the following. The prediction of a resonance de-
pends on the details concerning the one-loop amplitude. For low energy ==
scattering the resonance can be explained by the #N interaction. For high
energy W Wy, scattering the SM Lagrangian does not contain such a heavy
Nucleon contribution. From Eq. (1.4) we see that the manifestation of a
p-like resonance at around 2 TeV becomes questionable if the physics below
1 TeV is described by the effective Lagrangian of the SM in the heavy Higgs
mass limit.

This paper is organized as follows. In Section 2 we define in what ways
the heavy Higgs mass limit may be taken. In Section 3 we give the tree
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amplitude for Wi, Wy, scattering and show the analogy with low energy ==
scattering. In Section 4 we review the physics of low energy 7 scattering.
The analysis by Brown and Goble [20] is briefly discussed, followed by the
analysis by Lehmann [21]. In Section 5 we go back to high energy W Wy,
scattering and derive the results as obtained from one-loop perturbation
theory. In Section 6 we discuss the arbitrariness of the large Higgs mass
limit. In Section 7 we derive (3 as a function of the cross-sections for W& /W¢
vector boson scattering and finally Section 8 contains a summary and a
discussion of the results. For simplicity we consider the simple SU(2) model,
which is achieved by taking the weak mixing angle #, equal to zero in the
SM Lagrangian. The Lagrangian is given in Appendix A. In Appendix B
we give the one-loop calculation for ¢¢ scattering (¢ is the Higgs ghost) in
the non-linear o-model.

Our metric is such that p? = —m? for a particle on mass shell with mass
m and momentum p.

2. The heavy Higgs mass limit

In this paper we are investigating the amplitude for W Wy, scattering
in the three isospin channels I = 0,1,2 according to the SU(2) model in
absence of the Higgs particle.

The Higgs particle may be removed from the theory by taking the heavy
Higgs mass limit, which may be done in the following two different ways;
(a) One may do a leading Higgs mass expansion. Thus, when calculating

the amplitude for some process, only the leading Higgs mass terms are

kept. We are still dealing with the linear o-model.

(b) One may take the large Higgs mass limit in the tree level Lagrangian and
then calculate the amplitude. We are now dealing with the non-linear
o-model.

The Lagrangian of the SU(2) model is given in Appendix A and we show

briefly how the non-linear model is obtained.

At the tree level there is, of course, no difference between limit (a) and
limit (b). Let us now consider the one-loop amplitude for W, Wy, scattering
in the large Higgs mass limit. When the energy of the interacting Wy’s is
much larger than their mass, the ratio of the one:loop amplitude A! and
the tree amplitude A° is proportional to the energy squared [6, 9-10, 13].
Thus " ) )

g P
R(WL) = ';1—0' = 161&'2 . M—i - C (21)

(for the moment we will not worry about isospin indices). Here M is the

vector boson mass, p is a typical momentum with M? <« p? and c is a

dimensionless expression, found by explicit calculation.
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When considering the linear model (limit(a)), the expression for ¢ may
contain In(m?) terms. We note that quadratic Higgs mass dependence shows
up only at the two-loop level, in accordance with the screening theorem (3].

When considering the non-linear model (limit(b)), divergencies remain.
In the dimensional regularization scheme these are the 1/(n — 4) terms and
they correspond to the In(m?) terms of the linear case.

3. The tree amplitude for W, Wy, scattering

The process Wy Wy, scattering is displayed in Fig. 1. All the momenta
are taken to be ingoing, thus p; + p; + ps + ps = 0. We have p? = p2 = p} =

p3 = —M?, where M is the vector boson mass.
a [}
P Ps
Pa Py
b d

Fig. 1. The process WfW? — Wi W¢.

In the limit M? < s, t, u(s, t and u to be defined in Eq. (3.2)) the tree
amplitude is given by

2 2
a < g S
aowpwy = Wiwd) = 05 {awt (s + 5

u? t?
6..6bd (u + '_—u—m) + 8qabse (t + m)} . (31)

Here a, b,c,d = 1,2,3 are the isospin indices and s,¢ and u are the Mandel-
stam variables. We have

s=—(p+p)’, t=-(p+ps)’, u=—(pr+ps)’, s+t+u=4M>.
(3.2)
In the large Higgs mass limit, thus for

M? < s, t,u < m?, (3.3)

we may ignore the terms containing the Higgs mass m in the denominators
of Eq. (3.1) and we obtain

92

A°(Wawh - Wewg) = 2

{‘s.abscd-s + 6ac6bdu + 6ad6bct} . (3-4)
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Thus the tree amplitude grows like s, the energy squared, and the unitarity
limit is reached at around 1 TeV [4-6]. Concerning the one-loop amplitude
for W Wy, scattering we would at this point only like to remark the follow-
ing: from Eq. (2.1) we see that since the tree amplitude grows like s, the
one-loop amplitude grows like s2.

Of course, we also could have used the equivalence theorem (see Eq.
(1.1)) and derive the leading energy term by calculating the amplitude for
¢ scattering (¢ = Higgs ghost). The equivalence theorem is valid in the
energy region of Eq. (3.3), since this theorem is also valid in the large Higgs
mass limit [13], as long as the energy of the interacting vector bosons is
much larger than their mass.

Consider now ¢¢ scattering in the non-linear model at the tree level.
The only term of the Lagrangian of Eq. (A.6) contributing to this order is
given by

and the tree amplitude is again given by Eq. (3.4). We see that this is
exactly like 77 scattering if we replace v = 2M /g by Fy;

AO(‘K' ':T - T 7l’d) 12 {6,156“18 + 5“6,,411 + 6ad5bct} . (3.6)

4. Low energy 7nr scattering

In this Section we will review the physics of 77 scattering. We first
discuss the partial wave analysis, needed to study the energy region where
the p resonance is located. We then proceed by discussing the analysis
considered by Brown and Goble [20]. Derived from the tree amplitude of
Eq. (3.6) and the bootstrap method, they obtained the o resonance in the
I = 0 and the p resonance in the I = 1 channel to within 30% of the
experimental values. Due to its success, this analysis, therefore, suggests
that details concerning higher order interactions are not relevant. We then
discuss the analysis of Ref. [21]. It is then shown that the analysis of Ref. [20]
is not correct and that the prediction of the resonances do depend on higher
order interactions. Indeed, as shown in Ref. [21] the resonances may be
derived, by considering the =N interactions, to within 30% accuracy of the
experimental values.

4.1 Partial wave analysis

In the I = 1 channel for n7 scattering it was found experimentally
that there is a resonance, called the p resonance, located at an energy of
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0.77 GeV, while the width is found to be 0.15 GeV. At an energy well
below the p resonance, the physics of 77 scattering may be described by an
effective Lagrangian, containing not only the non-linear o-model but also
7N interactions [21]. In order to consider the energy region up to about 1
GeV, which includes the p resonance, the #x amplitude may be expanded
into partial waves, which is unitarized. Thus

T(I) =327 i(ﬂ 4+ 1)P,(cosB) - ] (s),

(s) = (cot 67(s) — i) (4.1)

Here I = isospin index. The isospin amplitudes T'(I) are defined as follows:
Let the amplitude be given by (compare with Eq. (3.6))

A = 8,40caF1 + 8ac00aFs + 6040y Fs (4.2)
then
T(0)=3F, + F; + F; I =0 channel,
T()=F-F; I =1 channel,
T(2)=F+ F;3 I = 2 channel. (4.3)

Next we need to derive the expressions for ¢/ (s) of Eq. (4.1). This may be
done by using the effective range approximation and cot §f is expanded at
s = 0. In the expansion of Eq. (4.1) we only need to include the I = 0,2 §-
waves (I = 0) and the I = 1 P-wave (I = 1). The expressions for the ¢/(s)
are given by

H(s) = 550 / dzP(=)I(I), (4.4)

where t/ = t3, ¢!, t3. The t/’s need to be determined to order s? and we
may write

t](s) = A](s) - s{1 + B/(s)-s}. (4.5)
Here the B/(s) may depend at most logarithmically on s. Using Eq. (4.1),
we obtain for cot &/

1 B}
cot §/(s) = s ;é . (4.6)

The resonance is located at s = M? where cot §/ vanishes;
cot & (s = M?) = 0. (4.7)

The tree amplitude, given by Eq. (3.6), determines the terms linear in s and
for A] we find
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o_ _1
°7 167 F2’
W
17 96nF2’
-1
A2 = . .
° 327 F? (4.8)

The B{(s) terms (thus the s terms) may be obtained by calculating the
one-loop amplitude. Then besides the direct =7 interactions (see Fig. 2a),
7N interactions contribute as well (see Fig. 2b).

Fig. 2b. Nucleon loop contributing to the xx one-loop amplitude.

4.2 The Brown-Goble analysis

Brown and Goble [20] derive the s? terms by considering the tree ampli-
tude together with the bootstrap analysis and thus without any knowledge
about the nN interactions. They obtained

s Als s O
t{:A{s{l-—ﬁl;+—;—-(ln(E;)-nr)} : (4.9)

where the A/, as derived from the tree amplitude, are given by Eq. (4.8).
Thus three unknown parameters M; have been introduced, such that the
resonance is located at s = M}?. The values for M} were subsequently ex-
plicitly calculated by using subtracted forward dispersion relations. The
obtained results were found to be in reasonable agreement with the experi-
mental values for M}?;

2 _
M; =m;,

2
M?=m}. (4.10)
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Furthermore, in the I = 2 channel as in agreement with experiment, they
found no resonant value for MZ.
Expanded at s = 0, Eq. (4.9) reads

8 S S ]
2 = 14+ ——————In—
o 16ng{ T (47rF,)2“m3}’
TR SO N S A S

967 F? mi  6(4rF;)2 m}

—8 8 1 3 8
t2 = 1- = In . 4.11
0 321rF}{ mi t 2 (anE) 1m§{} (4.11)

Note that all the expressions for t/ contain a logarithmic dependence on s.
4.3 The Lehmann analysis

Let us now turn to the analysis as given in Ref. [21]. Through the use
of dispersion relations the expression for the one-loop amplitude is derived
up to two unknown parameters 3, and [,;

A(m°m® — 17?) = 8ap8caF(8yt,u) + 62cb5aF(uyt, 8) + 8aabpc F(t, 5,1),
(4.12)
where

F(s,t,u) = F2

(3s*(Ins — By) + £(t — u)(In t — B) + u(u — t)(Inu — B;)} . (4.13)

967 2F“

Note that two arbitrary parameters have been introduced. Only one sub-
traction is needed to make the occurring integral convergent, thereby intro-
ducing the first unknown parameter. A second finite subtraction has been
made, thus introducing the second arbitrary parameter.

Using Eqs (4.2) and (4.3) we may derive the expressions for the isospin
amplitudes T("), where for example the T(!) amplitude is given by

t —
1) = ( qu) SS:S 2;,l{slns~1»tlnt—§—ulnu—33;3}, (4.14)
where
B=PB2—P. (4.15)

Using Eqs (4.4)—(4.6) we then proceed by deriving cot §/(s). Expressed in
terms of the unknown parameters a and 8 we have

167 F? 25 1 11
cot §3(s) = . ~ 4+ mln.s ~ 36n (a + ?) , (4.16)
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96xF? 3 1
o) — LA — 4.
cot 8;(s) . - (ﬁ 9) , (4.17)
-32xF? 20 2 faa 183 1 7
Hs)= —— 4+ —Ins—— |-+ —L+=) - —. (4.
cot §5(s) + gwln.s o (5 + 3 + 3) 8r (4.18)

As before f = 3, — 8;. Furthermore, a = 338; + 178;. The two unknown
parameters 3, and 3,, or equivalently o and 3, may be fixed experimentally
such that the resonance in the I = 0 channel is located at s = m? and in
the I = 1 channel at s = m2. For example for the I = 1 channel we derive
the following value for 3;

32x2F? 1
cotéj(s=ml)=0=f= 5 +§_5. (4.19)

P

We note that, after having fixed a and § in this way, no resonance can occur
in the I = 2 channel at any value for s. Furthermore, from Eqs (4.16) and
(4.17) we see that two parameters are indeed necessary in order to be able
to reproduce both, the o resonance and the p resonance. One parameter
would have been insufficient.

It is now a straightforward matter to derive ¢/, expressed in terms of
m, and m,;

©-_° P S L
° " 167 F? m2z  18(4nrF,)? m2 [’

T

1_ ¢ 2
h= 967 F2 {1+m2}’

P

—~3 47 s 8 7 s 10 s 3
t2 = ——f — —— ) - — ) — A
° = 357 F? {1 5 (mg t mg) 36 (47 F,) T 0 (anF)? P } (4.20)

When comparing Eq. (4.20) and Eq. (4.11) we see that they do not agree.
For example for ¢} the In s term appearing in Eq. (4.11) should not even be
there! Recently, this has also been noted by Dobado, Herrero and Truong
[19, 22]. We now realize that the experimental success of the analysis by
Brown and Goble is no more that a coincidence.

Finally, to conclude the analysis of Ref. [21], the values for B; and
B2 were explicitly calculated by evaluating the one-loop amplitude for =7
scattering from perturbation theory. #x and 7N interactions need to be
considered and diagrams of the type of Figs 2a and 2b were evaluated. The
results obtained were in reasonable agreement with the experimental values
for 8, and G,.
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5. High energy W Wj, scattering

In this Section we discuss W Wy, scattering in the TeV region in the
absence of a Higgs particle. We assume that the physics in the energy region
below 1 TeV is described by the effective Lagrangian of the SU(2) model in
the large Higgs mass limit, where the one-loop correction is still a reasonable
approximation. In order to examine W, Wy, scattering in the TeV region we
consider the partial wave analysis, just as it was done in the previous Section
for low energy w= scattering. As it has been made clear from the analysis
discussed in Section 4.3, we not only need to derive the tree amplitude but
also the one-loop amplitude, both evaluated in the energy region

M? & s, t,u €< m?. (5.1)

In this energy region we may apply the equivalence theorem of Eq. (1.1),
which is valid in all orders of perturbation theory. The leading energy term
of the tree and one-loop amplitude for W Wy, scattering may thus be found
by calculating the leading energy term of the tree and one-loop amplitude
for ¢¢ scattering.

Consider now the amplitude for ¢¢ scattering as derived from the La-
grangian of Eq. (A.6), where the large Higgs mass limit has been taken in
the tree level Lagrangian. This thus corresponds to the non-linear o-model.
The leading energy term of the tree amplitude has already been evaluated
in Section 3 and is given by Eq. (3.4). In order to find the leading energy
term of the one-loop amplitude, we only need to consider one diagram. This
diagram is precisely the diagram shown in Fig. 2a if we replace F, by v.
While in low energy == scattering the #N interaction leads to the contri-
bution of the diagram shown in Fig. 2b, such a diagram is absent in high
energy ¢¢ scattering. The SM Lagrangian does not contain such a heavy
Nucleon contribution. The evaluation of the leading energy term for the
one-loop amplitude, using the dimensional regularization scheme, is given
in Appendix B. Together with the tree amplitude, the result may be written
as

A(W;W:‘ - Wiwi) = abach("’ t, ‘U) + 6ac6bdF(u’ t, 3) + 6ad66cF(t7 S, u) H
(5.2)
where s
F(s, t, u) = ;);

1
962yt

and

{3s*(lns — B;) + t(t — u)(Int — B2) + u(u — t)(lnu — B;)} (5.3)

—
—

bh=4+

y

|
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B =4+, (5.4)

Here A is the pole term in dimensional regularization and is defined in
Eq. (B.3). This divergent term is cancelled by adding a new term to the La-
grangian, which contains an arbitrary finite part. When comparing Eq. (5.3)
to the result obtained in Section 4.3 (see Eq. (4.13)) we see that up to the
two known parameters §; and f3;, there is complete agreement if we replace
F, by v, thereby confirming the analysis of Ref. [21]. Thus the expressions
for cot §/ as given by Eqs (4.16)—(4.18) may be used here, except that we
need to replace F, by v and with 3, and 3, as given in Eq. (5.4).

Consider now the I = 1 channel. The I = 1 amplitude is given by (see
Eq. (4.1)):

T(1) =327 i(ﬂ + 1)Py(cosb) - t;(s),

ti(s) = (cot & (s) — )77, (5.5)

where the expression for cot 8] is given by

cot 81(s) = 96’:”2 - %(g - ;1)— (5.6)

As usual f = 3, — B;. In low energy = scattering the p resonance is located
at around 0.77 GeV and corresponds to a value for 8 of 5. Therefore, a
resonance located at

m=m,: (;;};) =2TeV, (5.7)

also corresponds to 8 = 5 (see Eq. (4.19)).
Let us now consider the value for 8 as derived from the non-linear
model. From Eq. (5.4) we derive

B = :1; (5.8)

We see that 8 does not depend on the pole term A and seems to be a
well-defined quantity. This value for 8 is much too small to account for a
resonance at around 2 TeV. From the discussion preceding Eq. (5.2) we,
therefore, could argue that for low energy 7r scattering, the large value for
B is due to the diagram containing the Nucleon loop (see Fig. 2b).

Concerning the I = 0 channel, the occurrence of a resonance depends
on a which is given by

o =336, + 178, = 504 + 292/3. (5.9)
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We conclude that due to the dependence of a on the pole term A, « is an
arbitrary parameter and needs to be fixed by experiment.

The value for § may, of course, also be derived by considering the
SU(2) model Lagrangian of Eq. (A.2), which contains the linear g-model.
In the evaluation of the one-loop amplitude for W Wy, scattering only the
leading Higgs mass terms are kept. This calculation has in fact already been
done by Veltman and Yndurain [9] and independently also by Dawson and
Willenbrock [10] and Passarino [6]. The resulting amplitude is again given
by Eq. (5.2), with F(s,t,u) as in Eq. (5.3), however, the expressions for 8,
and §, are in this case

B =tn(m) + 3 +9( 2= -2)
B2 = In(m?) - § (5.10)

Here 8, and B, both contain the divergent term Iln(m?), which corresponds
to A of the non-linear model. From Eq. (5.10) we derive for 8

B=-2-9 (—% - 2) = —0.32. (5.11)

Just like in non-linear case, we find that 3 is independent of the divergent
term. Observing that this value for 8 has an extra minus sign, we find that
it can never produce a resonance at any energy. However, when comparing
Eq. (5.11) to Eq. (5.8), we find that the numerical values for 3 are different
and that thus the result seems to depend in which way the large Higgs mass
limit is taken.

It is may be interesting to observe that in low energy 7= scattering a
finite subtraction has been made, thereby introducing a second arbitrary
parameter. Here we seem to have a similar situation; there is one arbitrary
parameter corresponding to In(m?) in the linear model, or equivalently A
in the non-linear model, but at the same time there is a finite arbitrariness.
This would then correspond to the second arbitrary parameter. This imme-
diately raises the following question: if we known of a third way that we can
take the large Higgs mass limit, does this mean that we could obtain a value
for B of say 57 In the next Section we investigate this problem somewhat
further.

6. Arbitrariness of the large Higgs mass limit and the U-particle

The fact that when evaluating the amplitude for some process, the
result depends on how the limit of a large Higgs mass has been taken is
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well-known. For example in the calculation of the two-loop correction to
the p parameter (J. van der Bij, M. Veltman in Ref. [2]), the result obtained
by keeping the leading quadratic Higgs mass terms differs from the result
when calculating the quadratic divergencies as obtained from the non-linear
model.

As we have seen in Section 5, this arbitrariness already shows up at
the one-loop level for W W, scattering. Part of the problem is due to the
self interaction of the Higgs particle. For example the diagram of Fig. 3 is
responsible for the /3 term, which appears in the value for 8 as derived
from the linear model. The non-linear model does not give such a term.
In order to understand this result, we first derive this v/3 term. We then
consider the U particle {9], which may be interpreted as a tool to examine
what the diagram of Fig. 3 precisely does. We find that the U particle
explicitly demonstrates the arbitrariness of the large Higgs mass limit. In
Section 6.3 we briefly discuss the arbitrariness of 8 as taken from the point
of view of the non-linear model.

il

Fig. 3. Higgs self energy diagram.

6.1 Derivation of the v/3 term in B from the linear model

The tree diagram for Wy, Wy, scattering, containing the Higgs propaga-
tor, is proportional to 1/m? and, therefore, vanishes in the large Higgs mass
‘limit. However, at the one-loop level this is not the case. The diagram of
Fig. 3 does contribute, since the Higgs tree point vertex is proportional to
m? and thus cancels the 1/m? term coming from the propagator.

P e

Fig. 4. One-loop Higgs exchange diagram.

The one-loop diagram is shown in Fig. 4 and the corresponding expres-
sion is given by

4
9
AL = #(p1)e* (92)€* (Pa)€” (4)bapbea —— =

167r38B°(k’m’ m). (6.1)
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Note that for the sake of the argument we consider only the §,,8.4 piece.
The one-loop integral Bo(k, m,m) is defined as

1 1
=—Id
Bo(ks m, m) in? / nQ(qz + mz){(q + k)z + m2} ?

with k£ = p, +p,. In the limit M? < s,t,u, we may write for the polarization
vector €*(p;) of the external longitudinally polarized vector boson

(6.2)

(p) = PE
(p;) ~ v (6.3)
We remark that although the above approximation is good enough here,
this is not always the case [11, 13]. Substituting Eq. (6.3) into Eq. (6.1) we

arrive at 1

T 96m2vt
where v = 2M/g. We see that due to the fact that the longitudinal po-
larization vectors are proportional to their momenta in the limit of a large
energy, the one-loop diagram of Fig. 4 contributes to the s? term.

We now need to take the large Higgs mass limit in the one-loop integral
By(k,m,m). The result of the non-linear model is obtained by taking the
limit m — oo before evaluating the integral of Eq. (6.2). The result is
obviously zero and the diagram of Fig. 4 will not contribute in this case.
The result of the linear model is obtained by taking the limit m — oo after
evaluating the integral, keeping only the leading Higgs mass terms. The
result will not be zero. Of course, when we evaluate the contribution of the
diagram of Fig. 4 in the linear model, we need to renormalize and introduce
a counter term. This counter term may be fixed for example by requiring
that the Higgs mass m is located at the pole of the propagator. This then
amounts to the following contribution to the one-loop amplitude for W Wy,
scattering:

Al SapbcaM?g? - (35%) - 9Bo(k, m,m), (6.4)

1
A:en = m6456cd . (382) -9 {Bo(k, m, m) - Bo(k, m, m)lk:=_m2} . (6.5)

Using dimensional regularization the result for By in the limit —k? < m? is
—k?
Bo(k,m,m) = A —In(m?)+ O (-;2—) (6.6)

and evaluated at k? = —m? we find

Bo(k, m,m)|ksmms = 4 — In(m?) - (-\’/'—5 - 2) . (6.7)
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We see that the v/3 term is derived from the counter term when we evaluate

the one-loop integral at k? = —m?. Substituting Eqs (6.6) and (6.7) into
Eq. (6.5), we obtain for the renormalized one-loop amplitude

1 T
A:en = m6¢56¢d(332) -9 (ﬁ - 2) . (6.8)

Now compare this result to Eq. (5.3), then we find that the diagram of
Fig. 4 gives the following contribution to 8, and S,:

es(5-)
By=10 (6.9)

and the contribution to G is

B=p—Pr=-9 (%—2) : (6.10)

6.2 The U-particle

By introducing the U-particle [9], we will now examine the Higgs self-
energy in the large Higgs mass limit, taken according to the linear model.
The U-particle is coupled to the Higgs with a strength m?. Furthermore
the U-particle is not coupled to the W. The corresponding Lagrangian is
given by

L(U)=-1(8,U)* - im{U? — gguaMU*H —~ ;g*gyaU*(H? + ¢%), (6.11)
with a = m?/4M? and gy is the parameter associated with the U-particle.
Now if my = m — oo, then the U-particle becomes completely invisible and

thus in principle the result for the one-loop amplitude for W, Wy, scattering
should remain unchanged.

P

Fig. 5. Contribution of the U-particle to the one-loop amplitude.
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It is very easy to see what the influence of the U-particle will be. At
one-loop there is only one diagram. See Fig. 5. Following the analysis of
Section 6.1, the corresponding expression can immediately be written down;

(332) {Bo(k,my,my) — Bo(k,mu,mu)lk==~m=} .

(6.12)
Let us now take the limit my = m — oco. With the help of Eqs (6.6) and
(6.7) we find for the one-loop amplitude

ren(U) = gU96 244

(V) = 65 gemr8) - (5 - 2). (6.13)

We see that in the limit my = m — oo, a finite piece proportional to g7
remains. This shows clearly the arbitrariness of the large Higgs limit, since
we can take for gy any value that we want. If we add the contribution of
the U-particle to 8 of Eq. (5.10), we obtain

B(U) = -2 - (Hgé)(-—% -2). (6.14)

If we take g7 = 3.5, then we have 8 = 1/3. If we take g = 28.6, then
B =5.

Thus through the U-particle, we now have 3 as a function of a finite
arbitrary parameter. Note that had the limit of a large Higgs mass been
unique, then g would have been independent of gy.

6.3 Arbitrariness of B and the non-linear model

Through the U-particle we have demonstrated in the previous section
the arbitrariness of 3 as taken from the point of view of the linear model.
If we now take the point of view of the non-linear model, then it may be
very easy to see that J is indeed an unknown parameter.

The amplitude for Wi W, scattering may be written as follows (compare
with Eq. (5.3))

A = cop® + e1p*A - In(p?)] + c2p* + ... (6.15)

Here p denotes a characteristic momentum and A is defined in Eq. (B.3),
which corresponds to an unknown parameter to be fixed by experiment. For
clarity, we have not written down the isospin indices explicitly. According
to the studies of the non-linear model, it is well known that the coefficients
¢o and ¢; are uniquely determined, however, the coefficient ¢, is not [23].
The parameter (3 is precisely derived from the ¢, term and we must therefore
conclude that 8 is not uniquely determined.
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7. B as a function of the cross-sections
Consider once again the amplitude for the process Wi W} — Wi Wi,

including the one-loop correction:

A(W{Wg — W{Wﬁ) = 8ap6caF(8yt,u) + 8a.8paF (uyt, 8) + 8aabsc F (8, 8, u),
(7.1)
where

F(s,t,u) =

{3s%(In s~ ) +t(t—u)(Int—B)+u(u— ~t)(lnu—p,)}.
(1.2)
As explained in the previous chapters, the location of a resonance in the
I = 1 channel in the TeV region depends on the value for 8 = f, — 3y,
which may be measured below 1 TeV. For the isospin I = 1 amplitude of
Eq. (5.5) we have plotted in Fig. 6 the absolute value of ¢{(s) as a function
of the center of mass energy /s for various values of 8. Fig. 7, showing

more clearly the sensitivity of the amplitude to 8 in the perturbative energy
region, is the part of Fig. 6, where /s < 1 TeV.

v2 967:'2 4

In order to be able to measure 8, we need to derive a relationship
between 3 and cross sections. We first need to derive from Eq. (7.1) the
amplitudes for the various processes involving the W* and W°. We have

—iw?), W- +iW?),  W°=W?3. (7.3)

Lo _ 1 un
= 25w = 5

For the amplitude A we so obtain
A, =A(W}FWL - WHWL) = F(s,t,u) + F(t,s,u),
A; =AW W[ —» WIW?) = F(s,t,u),
Az =A(WFW? — W+W L) = F(u,t,s),
A(WI_JW?.. - WL Wg) - F(uatas) ’
Ay =A(WFWE - WHWE) = F(u,t, s) + F(t,s,u),
AWLWp - W Wi) = F(u,t,s) + F(t,s,u),
A(WYW? — W2W?) = F(s,t,u) + F(u,t,s)+ F(t,s,u). (7.4)
The cross-section is defined by

TS

1
A;?
= /dcos&!—n—l-. (7.5)
21
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Fig. 6. Absolute value of t}(s) of Eq. (5.5) as a function of /3, the center of mass
energy, for the following values of 8: line a: 3= —2; line b: 8 =0; line ¢: 8 =2;
line d: 8 =5.

A factor 1/2 needs to be included if we have identical particles in the final
state. The Mandelstam variables u and ¢ may be expressed in terms of the
scattering angle 6 as follows

t= —-%(1 — cosf),
u= —§(1 + cosf). (7.6)

In order to determine 3, the differential cross-section needs to be measured
at two different values of the scattering angle. As an example consider the
process Wi WL — W{WQ. The differential cross-section is given by

ddg

dcoso—Cx{-—Cz(3(1ns ﬂ1)+( %) 1t ;) + 22 t)(lnu )}
(7.7)

where C; and C; are defined by
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Fig. 7. Same as Fig. 6, but here /s < 1 TeV.
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If we take cos@ = 1 and cosf = 0 as our two measuring points, then g is
given by

C; = (7.8)

B =

1 {daz(cosﬁ =1) 4 doy(cosf = 0)} N 61 (7.9)

C.C, dcosf 3 dcosd C,’

Let us now turn to the total cross-sections. Performing the scattering angle
integration, we find

o1 = cl{ +Cz<%—7(lns—ﬂ1)—lg(lns—ﬁ;))} (7.10)
{1+a(- %—ﬁ(lns—ﬂl)——(lns—ﬂ,))} (7.11)
o3 = Cl{ +6a( - g 3(1ns—ﬁ1)+—(1ns—ﬁ,))} (7.12)
{1+Cz(———+4(1n3—,31)+—(1n3—,32))} (7.13)

o(WiW? —» WIW?)=0. (7.14)

o, =C,
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To determine 3, only two cross-sections need to be measured. For example
from Eqs (7.12) and (7.13) we derive

1 1 1 1
B= _(03—504) —-6’672-}-'9'- (7.15)

Let us now consider all four cross-sections. Due to the relation
Ul+0'4:0'2+0'3, (7.16)

B may be expressed in terms of just three cross-sections. For example

1 1
:B 1301 (501 6(72+4U3)— ‘2—6
1
130 (50'1 602 +4U3). (7-17)
1

8. Concluding remarks

We have shown that within the framework of the partial wave analysis,
the occurrence of a resonance in the I = 1 channel for W Wy, scattering far
above threshold depends on the value for 3, which is measured near thresh-
old. Similarly, the occurrence of a resonance in the I = 0 channel depends
on the value for a. a and S are thus parameters of great phenomenological
importance. When W Wy, scattering is observed, it will also be at relatively
low energy. If at this point the parameters a and 8 can be measured, then
we are able to predict at what energy a resonance will occur (if at all) in
each of these two isospin channels. If, for example, we measure that 8 = 5,
then we know that a resonance will occur in the I = 1 channel at around 2
TeV.

Since these values for a and  are derived from the one-loop amplitude
for W, Wy, scattering at low energy, the various models that are currently
being considered may be tested by what they predict for a« and 5. In
this paper we have considered the SM Lagrangian in the large Higgs mass
limit. We found that in the I = 0 channel the parameter a depends on the
divergent term In(m?) as derived from the linear model (or equivalently A
as derived from the non-linear model). Therefore, although an experimental
measurement of a may tell us what will happen at higher energies, it does
not test our model. The situation concerning the I = 1 channel is far more
interesting, since the parameter f§ is independent of the divergent term. We
are thus able to calculate an actual number and may therefore, in principle,
put a more stringent test on the model considered. However, as has been
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demonstrated by the U particle in the case of the SM Lagrangian in the
large Higgs mass limit, 8 is an arbitrary parameter. Nevertheless, it is an
interesting fact that of the two known standard ways that we know that
we can take the large Higgs mass limit, no resonance will occur at around
2 TeV in either case. For example, from the non-linear model we derived,
using dimensional regularization, that 8 = 1/3. This would correspond to
a resonance at around 9 TeV!

What our analysis has shown, is that the occurrence of a resonance in
the I = 1 channel at around or below 2 TeV is by no means guaranteed and
that it only emphasizes the importance of an experimental measurement of

B.

We wish to thank Prof. H. Lehmann for the many interesting discussions
and for a critical reading of the manuscript.

APPENDIX A
The SU(2) Lagrangian

In this Appendix we give the expression for the SU(2) Lagrangian. We
then show briefly how the non-linear model is obtained and state the result-
ing Lagrangian.

The simple SU(2) Lagrangian is obtained by taking the weak mixing
angle 6, equal to zero in the Standard Model Lagrangian and thus disregard
the U(1) contribution. In the SU(2) model the Lagrangian is given by

L= Liny—3C*+ Lpp, (A.1)
where L;,, is the part of the Lagrangian that is invariant for the gauge trans-
formations for the fields. £;,, contains the linear o-model as the Higgs sec-
tor. —C?/2 is the gauge fixing term and Lpp is the corresponding Faddeev-

Popov ghost Lagrangian. The explicit form of the invariant part of the
Lagrangian is given by

Liny =[G4 Gy = IMPW? — J(3*H)? — Im*H? — }(8"¢a)(D49)
+ 3gWI(HO ¢o — $.0"H) — 3g*W(¢* + H?) - JgMW’H

~ DOH($ + H) = A + H) ~ My, 0" W

—7{%(H2+¢2)+3—21H}- (A.2)

Here
W?* = Wiwy, ¢ =4¢"¢",
Gt = "W, — "W + gean WEWY
Di = 0%, + geur WS, . (A.3)



692 H. VELTMAN, M. VELTMAN

Furthermore, X is the Higgs self coupling, A = m?/v?. v is the vacuum
expectation value (v.e.v.), with M = gv/2. 7 is a constant and is fixed
such that the total tadpole contribution is zero. In the lowest order v = 0.
The Lagrangian containing the non-linear o-model is obtained by taking
the large Higgs mass limit in the tree level Lagrangian of Eq. (A.2). The
Higgs is removed by requiring that that part of the Lagrangian which is
proportional to the Higgs mass m is zero. Thus

#*+H*+20H=0. (A.4)

For the expression of the Higgs field H we find

¢2
HZ—U'{-‘UVl-ﬁ. (A.5)

Substituting this result into the Lagrangian of Eq. (A.2) we find
Lin = 362 Go" = ;M*W? — 3(9%4) (D) - MpuO*W

1., &?
g’ {1+

1
to b SMWE (046" — $0%¢. +..). (A6)
APPENDIX B
One-loop calculation for ¢¢ scattering in the non-linear s-model

Here we will derive the one-loop amplitude for ¢¢ scattering in the
I =1 channel, using the dimensional regularization scheme. The reason for
giving the calculation is that only one diagram needs to be evaluated to find
the leading energy terms (terms of order s?). The corresponding one-loop

i x] + crossed

Fig. 8. ¢¢ one-loop amplitude in the non-linear model.

diagram is given in Fig. 8. The Feynman rules (needed to derive the expres-
sion for the diagram) are found from the Lagrangian of Eq. (A.6). They are

ropagator: P p =t
¢-propag a__r __t PP+ M?
a c. 1
¢-four vertex: P \\\ /,// P3 —;;{5.;55“(?1 +p2)?
ps .-~ > pa + 8aclha(pr + pa)’

E/ ~
B a + 82465 (p2 + p3)’}
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For the one-loop amplitude A we have (5.2)

A= 6ab6ch(3’ t, u) + 6ac6bdA(ua ta 3) + 6ad6bcA(t, 8, u) )

where

1 1 1
4= (27)% 20 / d"q(q’ + M?){(g + p1 + p2)* + M?}
X {5ab5cd{332 —s(q - Pa)2 —s(g - P4)2}
+ 8actoa{(p1 + 9)*(¢ = s)* + (¢ + p2)* (g — pa)’}
+ baaboc{(g+ P1)°(¢ — Pa)* + (¢ + p2)*(g — ps)*}}
+(bec,ppeopi)+(de b, py o p). (B.1)

In the dimensional regularization scheme, we have, for example, for the
scalar two-point function in the limit of small vector boson mass M

1
Bo(p, M, M) = ,/d"q(q2 + M?){(q + p)* + M?}
=ir*{A —In(-p*) + 2}, (B2)
where
A=-—2. (B.3)

It is now a straightforward matter to evaluate the expression for the am-
plitude A, keeping only the terms of the order s and neglecting the vector
boson mass M. Consider the §,,8.4 piece;

1 20 23
A(S, t, u) = —W{ - 4A(‘U.2 + ut + tz) - ?ut bt ?(uz + tz)
+ 3s’Ins + t(t — u)Int + u(u — t)Inu}. (B.4)

As usual s,t and u are the Mandelstam variables. We have

s=—(p+p2)", u=—(pr+ps)’, t=—(p1 +ps) (B.5)
and the one-loop amplitude is evaluated in the energy domain
M? & s,t,u.
Compare now expression (B.4) with Eq. (5.3);

1

Alstu) = —ges

{3s*(lns—B,)+t(t—u)(nt—B;) +u(u—t)(lnu—B,)} .
(B.6)
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We then find the following expressions for 8, and S3,:

11
hi=At7

13
B:=A+ 5 (B.7)

and for 3, the difference of 8, and S,, we find

1
p=3- (B.8)

The amplitude T'(1) in the I = 1 channel is given by the 8,48, — dacba Piece
given by Eq. (4.14);

T(1) = A(¢, s,u) — A(u,t,s)
t—u
:—W{sm$+tlnt+ulnu—3sﬂ}. (B.9)
If we had evaluated the one-loop amplitude for ¢¢ scattering using the
Standard Model Lagrangian, keeping only the leading Higgs mass terms,
we would have obtained

B :ln(mz)+%+9(%-2),
B2 = In(m?) — g, (B.10)

with
T

=-2-9(J=-2).
g 3
Thus the ln(m?) terms in the linear model correspond to the A terms in
the non-linear model. However, the remainder of the leading energy terms
do not agree.

Note added in proof: After completion of this work, we received a
paper by R.S. Willey (PITT-91-06), that covers much of the same subject.
In particular, in there it is also emphasized that the p resonance is related
to the Nucleon contribution.
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