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LONG-LIVED PERIODIC TRANSIENTS
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A critical behavior before saddle-node bifurcation is examined. The
existence of long-lasting periodic transients near not-yet-born periodic
orbils is shown. Influence of external small perturbation is discussed.
Properly chosen perturbation may stop escaping from neighborhood of
these orbits. In such dynamical system we can store well-determined
amount of energy for reasonably long time and by switching off external
perturbation we can release this energy.

PACS numbers: 05.45.+b

Unstable periodic orbits play a fundamental role in the analysis of
chaotic dynamical systems [1,2]. It is well known that strange hyperbolic
attractors or repellers can be regarded as a closure of the set of all unstable
periodic orbits. Such orbits offer a clear insight into the hierarchal organiza-
tion of these complicated fractal sets. Knowing the number and the stability
of unstable cycles one can determine the whole spectrum of dynamical in-
variants, like generalized dimensions, entropies, and Lyapunov exponents.
For example, by simply counting the number of unstable m-cycles it is pos-
sible to estimate the topological entropy Ky

. 1
Ky = mlg)noozlnM(m), (1)
where M(m) stands for the number of all unstable orbits with period m.
Fortunately, the dynamical characteristics seem to converge fast enough
with the increasing length of period and therefore K can be obtained with
quite good accuracy from relatively short cycles [3].

Varying continuously the control parameter XA of a given dynamical sys-
tem we can observe how different periodic orbits are born, evolve, and even-
tually die. Many unstable orbits are a reminder of stable ones which lost
earlier their stability as A was changed from the previous value to the cur-
rent one. Sometimes, when )\ passes over a critical value A*, a phenomenon

(147)
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called the boundary crisis can occur and chaotic transient is observed {4,5,6].
In the boundary crisis case the basin of attraction of chaotic attractor is de-
stroyed, the basin boundary is rendered and trajectories escape the region
coinciding with the basin just before the crisis. The stability of attractor
is lost and instead of an attracting invariant set we have a repulsing one,
called repeller. The escape time of a particular trajectory depends strongly
on the choice of initial point, but starting with sufficiently many different
points from a given region, one can construct the appropriate statistics and
calculate the averaged lifetime which depends only on system parameter .
The distribution of lifetimes of particular transient trajectories is given by

L(n) ~e™ ™, (2)

where L(n) is the number of trajectories not yet escaped from the given
neighborhood of the repeller after n iterations. Coefficient x is called the
escape rate from the given region and is connected with the mean lifetime
(n) as & = (n)~'. This quantity is related to other dynamical invariants
which, as stated above, can be extracted from the knowledge of unstable
orbits [4].

In this paper we are interested in another range of the control parameter
A, in which stable periodic orbits start to exist via saddle-node bifurcation
when ) is passing through a critical value Ag from below [7], see Fig. 1. In
some sense the control parameter A measures the ‘age’ of cycle: all unstable
orbits are ‘old’, because they had enough ‘time’ to lose their stability if they
were not initially born as unstable ones. Here, we investigate very ‘young’
stable cycles which have just been born or even in their ‘prenatal’ life,
when A is close to but less than Ag. We call these not-yet-born orbits as the
precursors [8] of stable periodic orbits (periodic precursors). In what follows,
we limit our considerations to the two-dimensional dissipative smooth maps,
although extension to higher-dimensional systems is straightforward.

Let us consider a dissipative 2-d map Ty

Tptl = Tz, (3)

where T, is a smooth map and A stands for a control parameter of the map.

Let us assume that at A = /\gm) a stable m-cycle is born via a saddle-node
bifurcation. One then finds an «* for which

* _ *
z —flj\"gm)z . (4)

For simplicity let us choose m = 1 and denote A\q = Agm) (considerations
for m > 1 are nearly the same and numerical results for m = 2 and m = 3
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Fig. 1. Schematic phase portraits for control parameter near the saddle-node bifur-
cation where a pair of stable and unstable cycle is born. Additionally, there exist
an attractor in the whole discussed here range of A\: a — A < Ag; b — A = Ag; ¢ —
A > Ao

will be given). For A < A¢g Eq. (4) has no real solution in the neighborhood
of 2*()\o) and one can observe a systematic drift of successive images =, of
point 9 = z*(Ag), see Fig. 2. However, if A is close to A\g one can make the
approximation #, ~ #* 4+ §,, where the time evolution of vector length
|6« || is linear in a suitable range of n

[6zall = (1 + na(A)). ()
The drift velocity a(A) can be expanded up to the first order
a(A) = (Ao — A), (6)

with the condition a(Ag) = 0.
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Fig. 2. Drift of nearly periodic evolution near precursor of period one (marked by
cross) for A = Ag—AA. Here, the map T, is given by Eqs (7), (8) and @, = (ua,6n).
60 x 60 initial points are iterated n; times and if after next n, iterations their
images fall into the given neighborhood of precursor they are plotted. The value
of parameters: AX =2 x 10™%,n; = 10, and a — nz = 30; b — n, = 60.

Thus, in the subcritical region of A, just before the saddle-node bifur-
cation, the situation is as follows. We have an exponentially fast attraction
along the contracting direction and a slow linear drift along the other. These
two different time scales cause a very surprising effect. Trajectories starting
from a given neighborhood of * are initially attracted to this point which
will soon become a normal attractor as A passes Ag, then they spend a cer-
tain time in the close vicinity of this point, and finally they all leave this
region and never return to it. We can define the lifetime of a single transient
trajectory as the largest number N such that ||[§zx]| < ¢, where p > 0 is a
small constant. The value of N depends both on the initial point and on the
value of the control parameter. For A closer to Ag one can observe longer
and longer periodic transient, see Eq. (6). A drift velocity a measures how
fast trajectories leave the region around #*. Thus, a may be regarded as a
counterpart of the escape rate s for chaotic transient.

Below we demonstrate this type of behavior on the example of the
bouncing ball model [9]. In this system a ball is jumping in constant gravi-
tational field on periodically vibrating surface hs(#). The dynamics of the
ball can be reproduced by iterating the following two-dimensional dissipa-
tive map

Ung1 = k(270 = vn) + (L + B)hs(Ont1)y  Ont1=0n+mn, (7)

where A, is the velocity of surface and 7, denotes the time interval between
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two successive impacts satisfying the relation

—73, +vnTn + hs(gn) = ha(on + Tn)- (8)

Here, the dimensionless variables 6,, and v, denote the phase and the ve-
locity with which the ball starts to fly just after the n-th impact, k stands
for the coefficient of restitution and is kept constant (k = 0.86), while A is
proportional to the amplitude of surface vibration and is used as a control
parameter. Trajectories generated by the introduced above map are usually
observed on [un,8y] or [Ty, 0,] plane, where u, = v, — h,(0n), because
these variables are accessible in the real mechanical experiments [9]. For
hs(8) = A/(1+ k) cos 8, which is used in the current study, the map can
be reduced to the standard Zaslavsky map if we neglect the changes in the
position of the vibrating surface at the moment of impact, i.e., hy,(6,) =0
but h,(8) # 0. In this model there are many different coexisting attractors
and the structure of their basins may be very complicated [10]. Fig. 3 gives
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Fig. 3. A part of bifurcation diagram 7, vs A where stable cycles are born: a —
one-period; b — two-period; ¢ — three-period; d — another three-period. In the
whole range of A exists also attractor defined by 7, = 0 (‘mute’ mode [9]).

the bifurcation diagram in the range of the control parameter A where the
lowest stable 1-cycle, 2-cycle, and two 3-cycles are born. For period-one we

know the value of AV explicitiy as well as the position of the periodic point
0
z* = (6*,7%)
Agl) = (1 — k)2, (9)
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and
/\(1)
™ =2nr, sin@* = --—:’\— . (10)
Thus, period one denotes the simple sequence of regular jumps on the vi-
brating surface with constant period 7*. There are also possible other fixed
points of period one, for which

ABD) = (1 - ky2r, (11)

and ]
A(lsJ)
™ = j2r, sino;-' = - 0)\ , (12)
where j = 2,3,4,...,jmax, and for a given A and k the highest allowed
excitation of period-one is determined by

Fmax = VA ine - (13)

For the other m-cycles only numerically determined values of /\gm) are avail-
able. Let us mention here that dynamics of the bouncing ball seems to be
much more complicated than that generated by the logistic map. In the
latter case the number of cycles with period one is independent of the con-
trol parameter and is equal to two. Similarly, the number of other cycles
is bounded from above by 2™ for all value of the control parameter, while
such an upper bound is not known to exist in the bouncing ball case.

In our model the numerical calculations are performed in the following

way. We determined with a given accuracy the value of /\gm). Then we

choose A close to but still greater than Agm) and we determine the basin of
attraction for the m-cycle, Next, we slightly decrease A below the critical
value and we iterate forward the starting points placed in the region coin-

ciding with the basin of attraction for A > Agm) . First n; iterations are
discarded, and if after the next nj iterations we find trajectories inside a
small ball of radius € around the points of stable cycle, i.e., the cycle which
starts to exist and be stable at A = Agm), we plot such starting points
on the {u,,0,] plane. The results shown in Figs 4,5 confirm the existence
of long-lived periodic transients. Depending on the starting point and the
value of )\ one can see even hundreds of repetitions of nearly the same peri-
odic points, Fig. 5d. These regular sequences are always ended by a sudden
transition to another period, on which the system stays forever. Of course,
periodic precursors are not the real stable orbits and therefore the ‘basins’

of attraction for A < /\gm) cannot be regarded as the usual ones.One should



Long-Lived Periodic Transients 753

6.4 T T T T
55 60 55 6.0

Sn On

Fig. 4. A part of ‘basin’ of attraction of three-cycle on [u, 6] plane. 80 x 80 starting
points are iterated nm; times and if after it the distance to any point of cycle is
less than € they are iterated n, times further. The starting point is plotted if its
image after ny + n iterations is still within the ball of radius € centred at any point
of three-cycle. The value of parameters: A = 3.2819,n; = 25,¢ = 0.1 and a —
nz = 10; b — ny = 100.

rather think of the ‘basin’ of attraction for periodic precursor as of a set of
all initial points which tend to precursor and stay in its close neighborhood
during at least ny iterations. Let us notice that with n, larger and larger
the volume of basin is not shrinking uniformly, see Fig. 4, and some parts of
basin disappear very quickly (for small ny) while others are more persistent.
In order to check numerically that the periodic transient is caused by
two different time scales along the attracting and non-attracting direction,
we verify Eq. (5) for the lowest 1-cycle where (6*,7*) and /\gl) is given
analytically by Eqgs (9), (10). Indeed, the results shown in Fig. 6 confirm this
explanation. On the vertical axis the quantity ||§2,||/||6=¢|| — 1 versus the
number of iterations n is plotted (§z is the vector of small initial deviation).
After a short nonlinear part of evolution, which corresponds to the initial
attraction in the stable direction, one can see the linear dependence in a large
range of n. It corresponds to a temporary locking on the periodic precursor.
The ending part of the evolution is again nonlinear and it describes the
escape from the neighborhood of *. According to Egs (5), (6) one can see
that the slope of linear part of evolution depends strongly on the value of
control parameter A. Thus, one can observe longer periodic transient for A

closer to bifurcation point /\gl), see Fig. 6.

Described above behavior near a saddle-node bifurcation seems to be
very similar to the critical behavior near tangent bifurcation where intermit-



754 M. FRANASZEK

—
e
—

...;_
4—:;—::::::_;’-*

—,

{a}
0..
.

(b}

d)

T U ¥ T T Y T T L

0 10 20 30 40 50 60 70 80 96

Fig. 5. Examples of transient trajectory initiated inside the basin of attraction of
different periodic precursors. The variable 7, versus the number of iteration n is
plotted: a — X\ = 2.44,u; = 3.5,6; = 2.8; b — XA = 2.44,u; = 3.54,0;, = 2.8; ¢
— A= —0.001,u; = 5.95,68, = 4.6;:d — A = 3.2819, u; = 7.605,8, = 5.6715.
In the last case we discarded 380 initial iterations during which the trajectory was
locked on precursor of period three. The final attractor is 7, = 0 for a — ¢, and

T = 2x for d).
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Fig. 6. Growth of the length of deviation vector §z, = #*(Ao) — ©,. Here z*
is the lowest one-cycle, ||6@o|| = 0.01 and A = Ao — AX: a — AXA =10"% b —
AX =2 x 1075, On the vertical axis the quantity ||62,||/||6®0|| — 1 is plotted, see
Eq. (5). Notice the increase in the range of n for b).

tency occurs. In both cases one can observe a long lasting, nearly periodic
evolution, which is suddenly interrupted. However, there is an essential dif-
ference between these two types of behavior. In the intermittency case we
observe alternating chaotic and laminar sequences. After irregular evolution
the system is again reinjected to the regular one and so on. On the contrary,
the critical behavior described above near a saddle-node bifurcation has no
such vivifying mechanism. This is caused by the fact that the final attrac-
tor, on which a transient trajectory finally settles down, is a very simple one
(a single point characterized by T = 0 or 7 = 2, see Fig. 4). If this final
attractor were a fractal one and if it could penetrate the neighborhood of
periodic precursor (its ‘basin’ of attraction), then observed behavior would
have an intermittent character. Therefore, because of the difference in crit-
ical behavior near the saddle-node and the tangent bifurcation, we use the
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name ‘periodic transient’ for the first phenomenon, as it shows better anal-
ogy with chaotic transient: trajectories have only one and abrupt transition
from one kind of motion to another, but in contrast to chaotic transient the
observed motion is now periodic.

Up to now we discussed the behavior of dynamical system without any
external perturbation. However, when control parameter is close to crit-
ical value the presence of perturbation has an essential influence on time
evolution of dynamical system. Periodic transient can be viewed as a slow
systematic drift near periodic precursor. Thus, applying a proper small ex-
ternal perturbation acting against this drift we can delay or even completely
stop escape from vicinity of periodic precursor. Instead of Eq. (3) we have
now

Tnt1 = Tazn + Py, (14)

where p,, is small external perturbation. In order to get a full compensation
of drift and observe stationary behavior of system this perturbation should
fulfill following condition: if for a given n ||* — || > go, Where gg > 0 is
a small constant, then p,, is such that ||&* — ,+1]| < go. This condition is
very general and nearly periodic stationary evolution can be sustained by
any specific perturbation. In particular, perturbing signal may be periodic
as well as aperiodic. Thus, even small but properly chosen perturbation
can change qualitatively the global character of evolution — from transient
to permanent nearly periodic oscillation. Transient behavior may occur
if the above mentioned condition for p,, is not fulfilled at few successive
moments n,n + 1,.... In this case external perturbation can be effectively
directed downward or upward to the drift and in comparison with a free
nonperturbated drift observed escape from neighborhood of precursor may
be accelerated or delayed, respectively.

Numerical investigation of the bouncing ball model with added small
perturbation confirm all discussed here kinds of behavior. We choose pa-
rameter A close to Ag, where the lowest stable cycle one starts to exist.
Next, we begin to iterate initial point from the ‘basin’ of attraction of cor-
responding precursor and we stop this process before transient trajectory
starts to leave fairly the close neighborhood of precursor (n < 15 in Fig. 5¢).
The last iterated point is chosen as a point of reference 2z, = (6,,7,). At
this moment we switch on an external perturbation and start to iterate
Eq. (14). As a specific realization of perturbation we choose the following
one: p,, = fB(®r — £n—;)0n1, where §,,; is the Kronecker symbol, j > 0 and
B stands for scale factor (0.8 < || < 1.2). Successive nonzero kicks occur
for n = lj,l2,... and by proper choice of I; we can deal with periodic or
aperiodic perturbation. Typical mean amplitude of ||p,|| does not exceed
2x 1073, When transient trajectory starts to leave neighborhood of precur-
sor and ||p,,|| becomes larger than a certain number (~ 5 x 1072) we stop
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external perturbation and continue iterations of original map (3). Choosing
different values of parameters 8 and j we can reproduce all described ear-
lier kinds of behavior. Generated in this way pictures are quite similar to
this one in Fig. 5¢, the only difference concerns the range of n where rapid
transition takes place from higher energy state (1, = 2x) to the ground
state (7, = 0). Now, in contrast to free drift shown in Fig. 5¢, we can keep
the region of transition under control and by proper choice of parameters
B and j we can shift this region to the right or left, i.e., we can make pe-
riodic transient arbitrary long or shorter comparing to the unperturbated
one.

Although described phenomenon is demonstrated on peculiar mechani-
cal model, similar behavior is expected in any dynamical system for control
parameter close to critical value, where configuration in phase space looks
like in Fig. 1. Such system with properly selected perturbation has a very
interesting property. It can serve as a storage of energy which can be re-
leased on request. Because the initial and final state have unambiguously
determined energy, transition between periodic precursor and periodic at-
tractor is connected with well defined amount of energy. In order to get this
energy it suffers to switch off external perturbation. Of course, in order to
sustain nearly periodic oscillation we must pump into the system an extra
amount of energy. Its total quantity depends on our requirement, t.e., how
long we need to prevent the natural escape from vicinity of periodic precur-
sor. In particular, this energy can be arbitrary large for infinitely long time.
It should be noticed however that drift near precursor is very slow and av-
eraged amplitude of perturbing kicks p,, is few orders of magnitude smaller
comparing to available transition energy. Thus, during the time scale of
practical interest we do not need to pay high price for keeping dynamical
system ready to emit energy.

It should be stressed that dynamical system has this useful property
only for properly chosen control parameter and initial conditions. Any
other transient behavior, for example chaotic transient, or intermittency
does not have these features. Although in the case of intermittency we
can apply similar external perturbation and we can sustain nearly periodic
oscillation as long as we wish but transition energy between two states is
not well determined due to chaotic character of one of the states (counter-
part of permanent attractor in the case of periodic transient). Therefore
only periodic transient with added proper perturbation can be used as a
storage of strictly determined quantity of energy which can be released on
request.

Application of properly selected external perturbation is very similar to
the recently proposed procedure known as the controlling chaos [11]. This
procedure is based on the standard concept of chaotic attractor as a set of
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unstable periodic cycles. Assuming our knowledge (based only on experi-
mental observation) about position and stability of a given cycle as well as
our ability to change the control parameter in a small interval around its
given value, we can force dynamical system to leave chaotic evolution and
follow this particular cycle. This procedure can be applied to permanent as
well as transient chaos [12]. In the last case the controlling is even easier
because a time in which control is achieved is shorter comparing to perma-
nent chaos. Described here periodic transient is the simplest case and we
can control it not only by one specific perturbation but by a very vast class
of small external perturbations. This is due to the fact that permanent and
transient chaos are very sensitive simultaneously to a value and a direction
of the perturbing kicks while for periodic transient the dependence on a
perturbation amplitude is much weaker.

The last remark concerns the relation of periodic precursors to the ‘old’
unstable orbits. From purely theoretical point of view the existence of
precursors should not be dangerous. However, in practical applications
when one must deal with experimental noisy time-series or wants to extract
the dynamical invariants from the numerically determined periodic unstable
orbits, some problems may arise [3]. In both cases one can overestimate the
number of ‘real’ unstable orbits. In order to estimate the entropy K of the
strange set, only ‘old’ unstable orbits should be counted and therefore all
periodic precursors, if by chance recorded or numerically found, should be
discarded . This situation can be especially dangerous for systems which
have many saddle-node bifurcations at values which are not well separated

on the axis of control parameter A. Then, the different subintervals Az\gm) R
in which the corresponding not-yet-born orbits exist, may overlap and for
a given fixed value of control A many such orbits can simultaneously have
their own ‘basins’ of attraction and finite, nonzero lifetimes (see Egs (11),
(13) when & — 1). This may lead to essential errors in estimating the
topological entropy. Similar phenomenon was recently found in another
high dimensional dissipative system (laser system), where something like
‘drifting repeller’ was observed [13]. Normal repeller can be viewed as a
set of all unstable periodic orbits. Thus, periodic precursor and periodic
transient may be a prototype of more complicated behavior.

Summarizing, we can conclude that a counterpart of chaotic transient
arising after boundary crisis is the critical behavior just before asaddle-node
bifurcation. Both transients can have very long lifetimes. The existence of
periodic transients and periodic precursors may probably be easier to over-
look because they behave initially like normal stable cycles and seem to be
much less interesting than chaotic transients and repellers. However, if the
population of coexisting precursors is high, then their existence is of great
importance. Periodic transient may be arbitrarily prolonged by properly
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selected external perturbation. Mean amplitude of perturbing kicks is few
orders of magnitude smaller comparing to transition energy between pe-
riodic precursor and periodic attractor. Therefore in such system we can
store precisely determined amount of energy for reasonable long time and
by switching off perturbation we can release this energy.

I am grateful to T. Tél, G. Eilenberger, and Ch. Jung for valuable
discussions. Main part of this work was done during my stay in Kern-
forschungsanlage Jiilich as a fellow of Alexander von Humboldt Foundation.
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