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For additional analysis of the experimentally observed quantities exact
formulae for electromagnetic effects and leading log formulae for radiative
electroweak and double bremsstrahlung effects have been applied to the
results of a polarized experiment of EMC group. Their influence on the
value of Ellis-Jaffe sum rule and polarized structure function g;(x) has
been discussed.

PACS numbers: 12.15.J1

1. Introduction

In the recent years high-energy experiments with deep inelastic scat-
tering of polarized particles have attracted considerable attention. These
experiments provide additional important information about the spin struc-
ture of the nucleon. A recent measurement of the polarized proton structure
function by the EMC group [1, 2] has stimulated renewed interest in this
subject. It appears that the spin distribution of a proton into its constituents
is not as easy as was previously thought. This effect has led to a great deal
of speculations. A considerable amount of attention has been paid to the
role of axial anomaly, the gluon contribution to proton spin, the structure
of sum rule for angular momenta and the description of this phenomenon
from the standpoint of various models. In addition, in a number of arti-
cles experimentally measured quantities have been calculated. Forthcoming
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investigation of these quantities can confirm or refute a great number of
existing hypotheses (for an overview see Ref. [3] and references therein).

However, before studying the effects indicated, the investigation of
which is connected with various theoretical uncertainties we must be certain
that the physical effects whose nature is better understood have been taken
into account correctly. It is the calculation of such effects, i.e.the radiative
and electroweak effects, that is the object of the present paper. Radiative
and electroweak effects, as is well-known, have corrections relative to the
basic contribution of nearly 10-20% in the range of the EMC experiment.
In the experiment [1, 2] these calculations have been carried out in the
following way:

1. Electroweak, radiative eleciroweak and double bremsstrahlung effects
have been entirely disregarded in the range of the experiment.

2. The major contribution (the electromagnetic radiative corrections) has
been calculated by means of the Mo and Tsai formulae [4]. It was
noted in Ref. [2], that these formulae are strictly valid only for the spin-
averaged cross section, but according to the assertion of the authors of
Ref. [2] the results obtained on the basis of the Mo and Tsai formulae
for the polarized particles are very similar to those of the more exact
treatment of Kukhto and Shumeiko [5].

The cross section including these effects can be represented as follows

Oobs = 00 + Ows + Oy + Orws + 0gp + ON, (1)

where o, is the observed cross section of the scattering of polarized par-
ticles, o9 — the electromagnetic Born cross section, ows — the Born cross
section caused by Z%-boson exchange, o,ws — the radiative electroweak
effect (only Z%-exchange effects), oqp, — the double bremsstrahlung correc-
tion and oy — the nuclear corrections. We would like now to formulate the
task of our investigation more precisely. We shall examine oyws, 0rws, Tap
as corrections to the EMC data and provide a more exact calculation of o.,.

Corresponding corrections can be obtained for polarization asymmetry.

. (Uobs(TT) " aobs(Tl)) déf 0;:.5
Aobs B (Gobs(TT) + aobs(Tl)) O':i)s ’ (2)

where Agps is the measured polarization asymmetry and the arrows show
the polarization of lepton and nucleon, respectively.

After expanding the denominator in (2) in perturbative series we obtain
a correction to the data presented by the EMC group.

ép EMC — &p

1+6
§4A = AEMC 1439 - (Aw + A + Ad)(l u (3)
P
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where Agmc is the EMC data for Born spin asymmetry, &, gmc is the
polarized correction obtained by means of Mo and Tsai formulae, §, — the
unpolarized correction, §, — the polarized correction, calculated by Kukhto
and Shumeiko [5], Ay, 4;, Aq are the one-nucleon electroweak, radiative
electroweak and the double bremsstrahlung corrections, respectively, and D
is the kinematic factor.

The electromagnetic correction is the basic contribution to the overall
correction. In the range of the EMC experiment it can reach 15%, therefore,
any more precise calculation is very important for reducing the magnitude
of the systematic error. In Section 2 we discuss the difference between the
calculation of the electromagnetic correction in terms of the Mo and Tsai
formulae and those according to the exact covariant expressions in Ref. [5]
(the first item in (3)). By “exact” we understand the calculation of elec-
tromagnetic correction in next-to-Born order of the perturbation theory
without any approximation. For this purpose we need the structure func-
tions g;(z), which can be extracted from EMC experimental data with the
help of the formula

2z9:(z)(1+ R)
F2(z,07) )

Aemc + 64(g1) =

But § A, in turn, also depends on g¢;(z) from which it follows that an iteration
procedure is required. In this case for the fit of g;(z) we use the form
suggested in Refs [1,2]

Fy(2,Q?%)
2_:(1__}__21_) ’ (5)

where A, B, C are variables which are specified in each step of the iteration
procedure. This procedure converges within 4-5 steps. As a result, we
obtain a fit with the new variables A, B, C, which takes into account the
correction more exactly in the sense of the above given definition. Thus, we
shall say that we have obtained a “corrected” fit.

In Section 3 we investigate the influence of the effects of Z% boson ex-
change in the standard electroweak theory since the following corrections
are taken into account: electroweak interference, pure weak and radiative
electroweak effects. The first and second corrections are calculated accord-
ing to the formulae in Ref. [6] and the last calculation employing formula
(10), which we obtained in the improved leading log approximation. In this
case the organization of the iteration procedure demands the choice of a
model for polarized parton distributions. It has been determined that the
SU(6) relation between polarized and unpolarized parton distributions is
more convenient for this aim. As in the previous Section, the corrections to
physically measured quantities are calculated.

g1(z) = 4z®(1 - exp(-Cz))



774 1.V. AKusgEVICH, T.V. KUukETO

Continuing this outline in Section 4 we investigate the double brems-
strahlung process by using the formulae obtained in the aforementioned
approximation. The iteration procedure and the calculation of the correc-
tion, to the polarized structure function g; and the Ellis-Jaffe sum rule are
carried out analogously to calculations in Section 2.

In the last Section the obtained results are analyzed and compared with
each other, as well as with the systematic error of the EMC experiment
caused by radiative corrections [2].

We also take care of the difference in the results, which is connected
with the choice of unpolarized structure functions (see also Refs [2,7]). We
present the results for different values of R: for R = Rqcp as in Refs [1,2]
and for R = 0. The latter corresponds to the choice of the fit for F(z,Q?)
from Ref. [8], used by the authors of Refs [1,2] for analysis of experimental
data.

2. The calculation of the electromagnetic correction
by exact formulae

In order to obtain the polarized structure function g, (z) from the Born
spin asymmetry according to the formula

(+ER) (6)
F 2(2, Q2)
it is necessary to extract this spin asymmetry from measured asymmetry

by taking into account such radiative effects, which cannot be neglected.
According to Ref. [2]

Ay = 2zg,(2)

146,
156, (7)

where A,, is the measured polarized asymmetry, 4; is the Born spin asym-
metry, ép is the polarized relative electromagnetic correction, D is a kine-
matic factor, &, is the unpolarized relative electromagnetic correction. &,
and §, contain (each of them) the proton correction and the nitrogen cor-
rection. We have employed exact formulae [5] for exact calculation of &y,
where only the polarized proton correction was considered. The nitrogen
polarized correction is small and can be obtained on the basis of the formu-
lae for the one-nucleon correction. The data for §, was taken from Ref. [2]
inasmuch as the Mo and Tsai formulae are valid in this case with sufficient
accuracy.

For B = Rqcp the initial value of the first moment gy is M,

gg +05 _ o5 1+05/05 aet

Ap ~ = e
P

DA

1
= [dzgi(z) = {Q? = 10.7 GeV?} = 0.114. The iteration procedure yields
0
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the value M; = 0.113. The correction &, and the corrections from Ref. [2]
are presented in Fig. 1. The correction to spin asymmetry AA is propor-
tional to the difference between §, and &

Sp .Su
0.60 -

0.50 A
0.40 A
0.30 A
0.20 +

4
0.10 - \

0.00 T T r — x
0.01 01

Fig. 1. The polarized and unpolarized corrections to the spin asymmetry. Curves
3, 4 were copied from Fig. 4 of Ref. [2] (8 — b4, 4 — 6p). Curves I and 2 are our
results for 6, (1 — R = Rqcp, 2— R=0).

Ap 146, ° (8)
As one can see in Fig. 1 the exact calculated correction (8) has even an
opposite sign in comparison with that obtained on the basis of the Mo and

Tsai formulae. Both results are listed in Table I. As a result of the iteration
procedure we arrive at the “corrected” fit of the g;(z)

ng, Q2

91(z) = 0.9632°22%(1 - exp(—3.80z))m, (9)

and thus inserting this fit in the (6) we get the “corrected” asymmetry.

As was already mentioned the choice of F»(z, Q) corresponds to R = 0.
The results of the iteration procedure in this case are the following: §, —
presented in Fig. 1, M7 = 0.119 and the fit of g;(z) becomes

Fy(z, Qz) .

91(z) = 0.969 2°2%4(1 — exp(-3.612)) 52

(10)
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TABLE I

8 A calculated by Mo and Tsai formulae (§4;) and by the exact covariant formulae
of Ref. [5] (643)

x Q? GeV? 6A, A,
0.015 3.5 0.005 —0.002
0.025 4.5 0.005 —0.001
0.035 6.0 0.005 —0.001
0.050 8.0 0.005 —0.001
0.078 10.3 0.004 0.000
0.124 12.9 0.004 0.002
0.175 15.2 0.005 0.003
0.248 18.0 0.007 0.005
0.344 22.5 0.011 0.007
0.466 29.5 0.017 0.012

aA,%
30.00 4
20004
10.00 2
3
0.00 4
-10.00 1
-20.00 4
-30.00 r v T ——rr X
0.01 01

Fig. 2. One-nucleon corrections (curves 1-3) show the results of the iteration
procedure in three initial sets of the modified EMC data : 1 — Ago) = AFMC _
oEMC, 2 — A = ABMC gpq 3 4(0) = g4EMC oEMC. Curve 4 describes the
one-nucleon correction in the Carlitz-Kaur model

We notice that the sign and the magnitude of the one-nucleon electro-
magnetic correction depend essentially on the value of g1(z) and, there-
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fore, of A;. This dependence is shown in Fig. 2. The analysis estab-
lishes the following: if the Carlitz—Kaur model is extrapolated to the range
0.01 < z < 0.05, then Ay grows up to 10-15%. It was found that the one-
nucleon correction shows a qualitatively different behaviour (see Fig. 2).

3. Electroweak, weak and radiative electroweak effects

As we have said earlier in the Introduction all effects connected with
the Z%-exchange were disregarded when processing the EMC experimental
data. But as we shall show the contribution of these effects is considerable
and must be taken into account.

There are several ways to study the influence of the electroweak eflects
on the fit of g1(z) and the sum rules. If we had more abundant experimental
data, for example, experimental data for electroweak asymmetries defined
in Ref. [9], we could organize the iteration procedure for extracting the po-
larized parton distribution. That would allow us to estimate the quantities

1
Aq = [dz(qT(z) - ¢t (z) + §'(2) — §!(z)) and to answer the question about
0

parton contributions to the spin of the proton. Nevertheless, for such pre-
cise procedure it is necessary to have formulae with the help of which one
could calculate the radiative effects exactly.

One more method of the calculation of the electroweak effects is the
modification of the Ellis-Jaffe sum rule. That was already done by
Fayyazuddin and Riazuddin in Ref. [10]. They have found that

1
[ @472, @) - eni? (e, @) = 2# - 1) (1- 290)
0

where g7P is the usual spin dependent structure function for electropro-
duction; §;® is the spin-dependent structure function arising from the in-
terference of the electromagnetic and weak neutral current. This function
can be extracted from the data of the scattering of unpolarized leptons,
¢w = 3 — 8sin’ f,. Extracting A; in the iteration procedure from experi-
mental A,, allows one to calculate the structure functions and to verify the
sum rule. This sum rule is obtained in the limit m — 0, therefore radiative
effects can be calculated according to approximate formulae.

In this paper we do not deal with any additional sets of experimental
data. We obtain the radiative electroweak correction to g;(z) and the sum
rule using only the data of the EMC experiment. In this case it is necessary
to use a model for polarized parton distribution. We choose SU(6)-relation
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between polarized and unpolarized parton distribution for the organization
of the iteration procedure.

Auy(z) = cos O(uy(z) — 2/3dy(z)),
Ady(z) = —-1/3 cosbd,(z), (12)

where uy, dy — unpolarized valence distributions, § — valence spin-dilution
angle. If z — 1 then cos 8 also will tend to 1. We note that the basic models,
often used nowadays, are constructed on the base of the SU(6) relation (see
Refs [11-13]). The iteration procedure gives the best fit for cos 8 on each
step, meanwhile the unpolarized distributions are considered as correct.
Feynman diagrams of considered effects are presented in Fig. 3.
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Fig. 3. Feynman diagrams of the electroweak and the radiative electroweak effects

For their calculation we present our formula in the improved leading log
approximation

g 1
_a Q? 1+ 22 z; [ ou(i, i, Ei)
Arws—~§1n(f;2")'z; dzz(l-—z)z{ u(23,E)
= z;
X (A](Zi, Yiy E:) - Al(z9 Y, E))} - Aem H (13)

where 22 = zyf(z -1+ y), 21 = 222, y1 = y2 = (2 -1+ 9y)/z, 21 =
l1-y+zy, E2 =E, E; = z2E, z; = (1 - y)/(1 - zy), m — muon mass,
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oy = d*oy/dzdy — Born cross section for scattering of the unpolarized
particles. The diagrams, presented in Fig. 3, are described by this formula
(the item with ¢ = 1 corresponds to diagram c; ¢ = 2 — d). There are
no leading log contributions from the interference diagram. Function f =
f(z,y) is chosen in such a way that the electromagnetic correction calculated
by means of formula (13) in experimental points scheduled in Refs [1,2]
coincides with those calculated by exact formulae. If f = 1, then we get
the standard leading log approximation. In this case the approximation is
quite satisfactory [14].
Using (1) we obtain the “corrected” fit of g;

g1(z) = 0.962 2°205(1 — exp(-3.64 z))—22 2% 2 2(“” o ) (14)

and the correction to the Ellis-Jaffe sum rule AM = 0.0003. For large
z electroweak effects reach 2%, so one may expect an essential influence
of these effects on the value of integral in the region z > 0.7. For the
estimation of its value the authors of Refs [1,2] extrapolate their fit in the
region z > 0.7 and they obtain

1
/ dz gi(z) = 0.001. (15)
0.7

However, our calculations show that taking into account electroweak effects
do not change this value.

4. Double hard photon radiation

The next significant contribution to the considered observables is the
radiation of two hard photons from the lepton line. The preliminary esti-
mate shows that this effect can contribute to polarized asymmetry up to 5%
for 2 ~ 0.01-0.02. The six Feynman diagrams, presented in Fig. 4 should
be examined. Due to the large error of the experiment it is reasonable to
investigate only electromagnetic effect, notwithstanding the presented for-
mulae are model-independent and allow one to calculate the electroweak
effect too.

For calculation the improved leading log approximation is also used (see
also Ref. [15]). In this case we obtain the formula for the correction to the
asymmetry which does not contain infrared divergence terms.

to= (3 () £ f o f v 2L

(16)
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ky k2 k2 kq

Kk k2 k2 ki

Fig. 4. Feynman diagrams of the double bremsstrahiung

The notation used in formula and the explicit form of functions F;
and G; are gathered in the Appendix. Four items (i = 3,4,5,6) corre-
spond to different momentum configuration in collinear kinematics (i =
3—kallk2|lp1; i = 4—ka|lk2llp2; i = 5—ki|lp1, k2|lp2; i = 6 —k1|p2, k2|p1)-
In leading log approximation only collinear photons are considered. How-
ever, noncollinear photons are also of importance. They also factorize in
the similar way to (16). The presence of these photons is taken into account
by a corresponding choice of the function f which improves the approxi-
mation. In our case this function is chosen as follows. For k; — 0 formula
for calculation of double bremsstrahlung must be splitted up in two factors.
One of them corresponds to the soft radiation (k; ~ 0), and the second one
— to the hard radiation of another photon. The formula for double brems-
strahlung will be improved if the second factor coincides with the single
photon leading log contribution (13).

Let us repeat that the integrand in (16) does not contain the infrared
divergences if z; 2 — 1, because of G;(1,22) = Gi(z1,1) = 0 (see Appendix).
The result (16) contains all items of the order a? obtained after expanding
the denominator in (2). Only in this case it is possible to cancel correctly
the infrared divergences. The expression (16) includes contributions from
the single photon radiation, which were already taken into account exactly
in Section 2. For this reason for numerical analysis we extract from (16)
only the double bremsstrahlung effect.

Using for g}(z) the fit (5) we obtain the result of the iteration procedure

F 2
g1(z) = 0.957 20-220(1 — exp(-s.szz))% (17)

and AM = -0.0005.
We note that both, the exact calculation of the single photon radiation
and the calculation of double bremsstrahlung, change essentially the values
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of A; for small z in comparison with these presented in Ref. [2]. It leads to

0.01
/ dzgi(z) = 0.0018 (18)
0

instead of 0.0025 as in Ref. [2]. When calculating (18) we do not change the
form of asymptotic of g§(z) for z — 0.

5. Conclusions

We have considered various effects, which can have influence on the
measured quantities. It is important for the investigation of the physical
phenomena in deep inelastic scattering of polarized particles (real photon
radiation, electroweak physics) as well as for reducing the systematic errors
in the forthcoming experiments. The authors of Ref. [2] estimate the error
caused by radiative corrections as 1% of the measured value of spin asym-
metry and conclude that radiative corrections are an insignificant source
of error for A;. In this article we have considered effects disregarded in
Refs {1,2]. The first of them has a mathematical origin. The correction
to the EMC experimental data was achieved by treating more exactly the
electromagnetic effects. All the other effects have genuine physical origin.
They are contributions of effects, which have been disregarded in the anal-
ysis of experimental data in Refs [1,2]. In the present paper the electroweak
and double bremsstrahlung effects are taken into account as a correction to
the EMC data. All discussed corrections, in comparison with the level of
systematic error caused by radiative corrections (o5ys), are plotted in Fig. 5.

It should be noticed that the authors of Ref. [2] have evidently under-
estimated their influence on o5ys. In the region z < 0.1 the electromagnetic
correction can exceed the level of the o5y even by 25 times and the dou-
ble bremsstrahlung contribution — 5 times (see Fig. 5). In this region all
corrections have the same sign and, therefore, the resulting effect increases.
In the opposite region of the EMC range the electroweak interferences and
electromagnetic correction can exceed the level of the o5y 1.5-2 times. But
they have there opposite signs and are mutually compensated when calcu-
lating the first moment of the g;(z), thereby the correction to the moment

1
My = [dzgi(z) is small.
0

The notion of stability can be introduced for the structure function
g1(z) i.e.: how the observables change if experimental points are included
or not into the calculation? For example, if the third point of the EMC
data is excluded, the value of M; is increased by 0.006. It is clear that
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Fig. 5a,b. The corrections to the EMC data. I shows the correction due to more
precise calculation of the electromagnetic effect. 2,3,4 demonstrate the double
bremsstrahlung, the radiative electroweak and the electroweak effects, respectively.
The dashed line is the average level of the systematic error due to the radiative
effects from Ref. [2].
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the appearance of new experimental data in the case of scattered polarized
leptons and nucleons can change the situation in this area.

The authors wish to thank N.M. Shumeiko for useful discussions about
different questions concerning this work.
APPENDIX

We present the notation and explicit form of functions in expression

(16).

F3(z1,22) = % (i:—lgz — Py (zl"'2 + z;,_2 + 221 + 225 1)) W3 0(z2 — 23),
Fy(z1,22) = -‘II (31—1:) —~ Py + 224+ 22 + 222)) Wy (22 — 24),
Fs(z1,22) = %( ) Ws 0(z; — Z5),
Fo(z1,2) = 3 ( ) We 8(z2 — %),

1 +P

Gs(zl,zz)—Ps W39(Zz —23)——W11,

G4(Z],22) = P4(1 + P4 )2122 Wy 0(22 — 24) - 5W22 ’
- 1
G5(Z], 22) = 22(1 + P52) W 9(22 - 25) - §W12 ’

1
Gs(zl, Zz) = 21(1 + P62) Ws 9(22 - 26) — §W21 s (Al)

Z; 0’,_1(23,:, Yiy Ez)
zR; ou(z,y,FE)
(i = 3,4,5,6) ’

. 2 2y Zi1Z;j2  OuilOuj2 ) o
Wij = (L+2)(1+ 22) o = [4i1 + 4j2 — 244(2, 9, E)]
(i,j =1, 2) .

In the latter expression the following notations are introduced: oy;; =
ou(zijy yij, Eij)» Aij = A1(2i5,¥i5, Bij) 25 = 2i(25), ¥i5 = vi(25), Eij
= E;(z;). Ay is the Born spin asymmetry and oy stands for the cross section
for scattering of unpolarized particles. Quantities P;, R;, z;, ¥i, Ei, Z;, are

Wi = [A](Zi, Yis Ei) - Al(za yaE)] ’
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listed in Table II. z12(2), y1,2(2), F1,2(2) are defined in Section 3. The

limits of integration are:

n=z5=23 =25 =(1-y)/(1 - 2zy)

za=26=z5 =25 =1—y+zy. (A2)
TABLE II
Quantities used in formulae (A.1)
1=13 1=4 i=5 1=26
1 1 1 1
F; z1+2z22—1 —+—=1 z1+ — -1 z2+—-—1
F51 z2 z2 21
R; z1423-1 (21 + 22 — 2122)? z z3
-1
- 1 1 1- 1-—
z; 1423 -2 (1-}-———-) —g+zy y
24 oz z—zy
1-y 1—y 1—y
: 1- 1-(1-y)P - 1-
Y P, ( Y)Ps z122 z123
2 2y Ll 2y 2y
Ys Ya Ys22 Ys21
F; P3FE E nE 2 E
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