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The effect of the TA coupling on the bound X hypernuclear states is
investigated in the case of the £~ hypernucleus produced in the (K=, x*)
reaction on a target nucleus with double closed shells. In both £ and A
channels, the nuclear core is represented by a system of nucleons. The
calculation of the width and energy shift of the bound I states, in which
the analytical expression for the two-particle Green’s function is applied,

leads to the conclusion that the LA coupling increases the binding of these
states.

PACS numbers: 21.80.+a

1. Introduction

The problem of the X hypernuclear states has been discussed in recent
reviews [1-3]. The existing experimental data on these states produced in
(K, r) reactions are rather scarce. Nevertheless, it appears to be established
that the states are surprisingly narrow and their energy is positive (the only
exception is the observation of the bound ground state of ';:'He reported in

[4])-

What distinguishes the ¥ hypernuclear states is the strong £A conver-
sion process TN — AN’ (we use the notation A for nucleons, P for protons,
and N for neutrons). Once it was believed that this process should lead to
very short lived ¥ states with the corresponding width I' & 30 MeV. How-
ever, it was realized later that states much narrower, with I' < 10 MeV,
should be expected because of the following factors: (i) reduced overlap
of T and nuclear wave functions for small ¥ binding, () Pauli blocking
and dispersive (binding) effects [5-9], (iii) spin-isospin selection rules [10-
11]. (Other possible factors like quenching of the one-pion-exchange (OPE)
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component of the XA conversion in nuclear matter [2,12] and SU(3) sym-
metry [13] have been discussed also.) It should be stressed that factors (%)
and (ii) reconcile the data on T hypernuclear and ¥~ atomic widths [6].

The conversion process not only produces the width but also affects the
energy of the ¥ hypernuclear states. In most of the published papers on the
production of ¥ hypernuclei in the (K, x) reactions, the LA conversion was
taken into account by adding an absorptive part i{Wg to the s.p. potential
Vy in the Schrédinger equation for the ¥ hypernuclear wave function v¥y.
If Vy alone leads to a bound state with the (negative) energy eyxq, then
adding iWy leads to a decaying state with the energy ey > ey¢. This
decrease in the binding introduced by the absorptive potential iWyg may be
understood by noticing that absorption reduces the magnitude of ¢¥s and
thus acts similarly as repulsion. However, this way of treating the coupling
to the A channel ignores the effect of the coupling on the real part Vy of
the ¥ s.p. potential.

To treat the XA conversion in a more satisfactory way, one should in-
clude the A channel explicitly into the description of the ¥ hypernuclear
states. The first step in this direction has been the extreme s.p. approach
in which both ¥ and A move in s.p. potentials V5 and V}, and both chan-
nels are coupled by a s.p. potential V,. The s.p. potentials are supposed
to result from folding the two-body interactions responsible respectively for
the TN — TN, AN — AN, and TN — AN processes into the nucleon
density of the nuclear core. In this approach applied in [13] (see also [14]),
one solves the coupled-channel Schrédinger equations for the s.p. hyperon
wave functions ¥y and v, and adjusts the three potentials to the experi-
mental (K, ) spectra. A simplified version [15] of this approach (restriction
to X bound states and applying the scheme used in [16] in the theory of au-
toionization of atoms) leads to simple expressions for the width and energy
shift of the ¥ bound states caused by the £A coupling.

The same radial shape of Vg, V3, and V, assumed in [13-15] may be
justified by the folding procedure when both ¥ and A attach to the same
nuclear core. As pointed out by Gal (see, e.g., [17]), this situation does
not occur in £~ hypernuclei: e.g., the 15N ® £~ system (produced in the
(K—,n") reaction on the 160 target) is coupled by the Z~P — AN conver-
sion process with the 1°0 @ A system, i.e., the nuclear cores are different
in the £ and A channels. The situation may occur in £° hypernuclei, but
also here because of the large momentum release in the EN — AN’ pro-
cess the emerging nucleon A" most likely leaves the hypernucleus. In other
words, the nuclear core in the A channel is most likely in an excited state.
It means that only part of the energy released in the XA conversion process
is available to A, which has been simulated in [13] and [14] by replacing

the A mass M, by a bigger mass M. In this effective A channel method
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one attempts to overcome the inadequacy of the rigid nuclear core model
by introducing an additional parameter M, whose precise value is hard to
estimate. As shown in [15], the results for the width and especially for the
energy shift (including its sign) of ¥ hypernuclear states are very sensitive
to the magnitude of My.

In this paper, we present the calculation of the effect of the LA con-
version on the bound ¥ hypernuclear states, in which the nuclear core is
represented by a system of nucleons. Thus our calculation is not burdened
by the untenable assumption of the rigid nuclear core or by the ambigu-
ity of the value of M. We consider a simple model for ¥~ hypernuclei
produced in (K~,7%") reactions (with the underlying elementary process
K~P — #1tX7) on closed shell nuclei. We assume that nucleons and £~
are bound by s.p. potentials Vs and Vgy. As the result of the conversion
process P — AN, caused by the two-body interaction V, unbound A
and N emerge. The coupling between ¥~ hypernuclear states and the AN
continuum is described within the scheme of [16]. The unbound A and N
are represented by plane waves. Our present procedure follows closely the
procedure of [15] except that the Green’s function for one free particle (A)
is now replaced by the Green’s function for two free particles (A and N),
for which the known analytical expression is applied. Results of our calcu-
lation for a simplified model of the 160 target show that the £A coupling
leads to a negative energy shift of the bound ¥ hypernuclear states, i.e., the
states become more bound (and acquire a width). The novel element of the
present approach is the explicit use of the two-particle Green’s function.

The paper is organized as follows. In Section 2, our theoretical scheme
is described. In Section 3, the calculations for the simplified model of the
160 target and their results are presented, discussed and compared with the
effective A channel method. In Appendix A, we outline the derivation of the
analytical formulae for the width and the energy shift of ¥~ bound states.
In Appendix B, we derive in the plane-wave impulse approximation (PWIA)
expressions for the cross section for the (K~,x ) in-flight reactions.

2. The theoretical scheme

We apply for the target nucleus the simplest shell model of independent
nucleons moving in a fixed central spin-independent potential. (Including
the Is coupling would not change the essential scheme of the present proce-
dure.) We shall consider the case of two closed proton shells (the general-
ization to more shells is trivial) with the orbital quantum numbers lp = 0
and I; = 1 (our model of the 10 nucleus). There are Z; = 2(2[; + 1) pro-
tons in the [; shell (i = 1, 2). Neutrons, which also are assumed to fill closed
shells, are not directly involved in the ¥ ~P — AN conversion process. They
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play only a passive role of blocking all the bound states for the neutrons
produced in the conversion process.

The s.p. wave functions of protons moving in the s.p. potential Vp(r)
in the [; shell (with the s.p. energy €}) are:

PR (FE) = Yl (M) (€) = Yim (F)RE ()G (€) (2.1)

where m and v are the orbital and spin magnetic numbers, (, is the spin
wave function, and A} = l;mv.

The simple shell model is also applied to the ¥~ hypernucleus produced
in the (K—,x1) reaction. In the absence of the ©A conversion, the £~
hyperon moves in a fixed central spin-independent potential Vy(r). Its
wave functions in the I; shell (with the s.p. energy ¢i) are:

P35 (7€) = Yhm (P () = Yium(F)RE (r)Cu (£) - (2.2)

Here and later on, we use simply the notation ¥ for the ¥~ hyperon.
We want to investigate the effect of the XA conversion on the substitu-

tional states (li_ll,-) and on the hypernuclear ground state (g.s.). In the
PX
absence of the ©A conversion, the normalized substitutional states are:

'WSE) = (Zi)—l/z Z{m"}agllimva%limylo)
= (2:)712 Y {(A}al sappil0), (2.3)

where |0) is the g.s. of the target nucleus, the operator ap, annihilates a
proton in the A state, and the operator a;g 5 creates a £~ hyperon in the
) state. The notation £{\*} indicates summation over m and v with the

fixed value of I = I;.
The unperturbed (by LA coupling) energy of the state (2.3} is:

E{ =¢h+ (Zi—1)eb + Zjed . (2.4)

(Here and hereafter, we use the convention j # i, i.e., if i = 0(1), then
j = 1(0). To indicate any value (either 0 or 1), we use the index k.) This
is the energy of T and all the protons, without counting the energy of the
neutrons in the target nucleus, which do not participate in the LA conversion
(and in the (K—, =) reaction).

The total angular momentum L of the I; substitutional state, Eq. (2.3)
is L = 0, and the total spin § = 0. With our central spin-independent shell
model potentials, and with the two-body LA conversion interaction which
we shall assume to be of pure Wigner type, the spin § of the substitutional
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state is irrelevant. However, in the (K~,x%) reaction which we shall de-
scribe in the PWIA with a simple spin-independent elementary interaction
(see Appendix B), the total spin § is conserved, and is equal to the total
spin of the target nucleus, which is zero. Thus in the (K~,n %) reaction
only the substitutional states with § = 0 are excited. We shall simply call
them the I; substitutional states (or equivalently the s and p substitutional
states for I; = lp = 0 and [; = [; = 1 respectively).

The normalized unperturbed hypernuclear g.s. (Il_ l'lo)PE is:

285y = 27123 (udaly L 9p g 10) s (2.5)

and its unperturbed energy (without the energy of neutrons) is:
ES® = €% + Zoed + (21— 1)ep . (2.6)

The total angular momentum of the g.s. (m;)is L = [, its 2-component
L, = —m;, and the total spin § = 0. The reason for considering the g.s.
with § = 0 is the same as in the case of the substitutional states.

When we switch on the XA coupling, the hyperon may be either ¥ or A.
Thus the state |¥) of our system has two components, the Hamiltonian H
becomes a 2 X 2 matrix,

)= (Ilgig) A= ("’lAE): : ijxA) ’ (27)

and the Schrodinger equation for the state |#g) with energy E is:

1) = (7 pha) e, (2:9)

where A = (Mg- + Mp — My — My) 2.

By hy and hy we denote the s.p. Hamiltonians in the T and A channels.
They consist of the nuclear shell model Hamiltonians and the s.p. Hamilto-
nians of ¥ (Tg + Vg) and A (Tp + Vj) respectively. Since A = 80.45 MeV,
the ©A conversion leads to an energetic A, not much affected by V4 which
we neglect in our model (also in [13] the influence of V) was found to be
only marginal).

By Vax = V we denote the coupling potential responsible for the & — A
conversion. Similarly Vs = V't denotes the coupling potential responsible
for the A — X conversion. We have:

V=) {aprs}(v5¥5 |v]vavy) “I\ﬁaltwap-y“za , (2.9)
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where v is the two-body conversion potential and, e.g., a;“ is the creation
operator of a neutron in the state described by the s.p. wave function 1{:6
may be a scattermg state (normalized in unit volume) with the asymptotxc
wave vector ky and spin projection vy (6=kn= = kn, VN) and with energy
en(kn) = A2k2 ~/2My, or one of the bound states (§ = %) which, however,
are blocked by the target neutrons.

We present our procedure of solving (2.8) when the unperturbed state
|@) (i.e. in the absence of V') is the substitutional I; state: |¥o5) = |¥is),
|#9a) = 0. In the case of the hypernuclear g.s., the procedure is essentially
the same, and we shall present only the final results.

To investigate the effect of the £A coupling on the unperturbed sub-
stitutional I; state, we make for |#%w) (the & component of the state [¥#%)
which evolves from the unperturbed substitutional I; state when the cou-
pling is switched on) the Ansatz:

[¥55) = A (E) |¥55) - (2.10)

Our Ansatz for |¥4;,) (the A component of |#})) consists of all states
|#) directly connected with |¥is) by the coupling V. To determine these
states, we act with V, Eq. (2.9), on |#{g), Eq. (2.3), and get (with the
notation ’\i(b) = limgp)Va(b)):

VIZin) = (Z:) 7Y {kakn i}
x [3 DI (wh, VR lo1v3 ¥~ Yxi¥ag) [2(anAAL))
+ 3 R, Vi vl ¥35) lé(kAgNAg’A:;»], (2.11)
where i
|8 (kaknAXL)) = aly, akigy2prrapail0)- (2.12)

Notice that both neutron and A are produced in the conversion process in
the continuum, because all neutron bound states are occupied in |0), and
because in our model there are no A bound states (V4 = 0).

Our Ansatz for |#}, ) is thus:

1952) = 3 S {kabNMAFYBE (B, kb AiNE) [ B (kaRnAFAL)) s (2:13)
k=1,j

with B (E’&A&NA:;A;;) =-B* (E,&A&N)‘g’\i) .
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Notice that
|8 (kp kN ML) = —|B(kp kN AAE))-

To determine the unknown quantities A and B, we insert (2.10) and
(2.13) into Schrédinger equation (2.8), and use the ortho-normalization
properties of the states |#) (for k = ¢,j and k' = i,7):

(B (AR X) |2 (ka by NN0))

=6 (K, kp) & (ki kx) [6( ,,,,,\,,) 6( i a) § ()\ ,\;',) 6( a,,,\k)]

(2.14)

where, e.g., § (Ab, s A ) = 61;,111: L mbb',,/ v+ In this way, we get the following
system of equations for A and B:
|Bs - ek] 4°(E)

= Y {kakn NN HFix |V B (kaknAEAL) ) B (B, kp kN AL AE), (2.15)
k=i,j

[EE +A+ep—ep(ka)—en (kN)] 2B* (B, kpknAiA})
= ((kaknAi2e) |V|T55) A° (B),  (2.16)

[Eg +A+ed —ep(ka)—en (kN)] B (E, kyky Ao M)
= (B(kaknA]AY) |V |¥55) 4 (B) (2.17)

where . ]
Ex =E—(Z;—1)ep — Zje}, (2.18)

is the energy E minus the unperturbed energy of the proton core in the
substitutional I; state. Here E is the energy (without rest masses) of the
system in the ¥ channel without counting the passive neutrons. In the
absence of the ZA coupling E = E} and Ex = e&; (see Eq. (2.4)).

In solving Eqs (2.15-17) for A and B, we follow closely Fano [16]. Eqs
(2.16-17) are satisfied by:

B (B, krkyAiNf)
= c;H{P/e* + 2z (E)6(e*) } (B (kpaknMEN) |V |¥is) AT (E), (2.19)
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where e* = Eg +A+51’§ —ep(ka)—en(kn), and ¢; = 1+ 8;%. To determine
z;(E), we insert expression (2.19) into Eq. (2.15), and get:

%(E)=2x [Ex - ef - F' (Es)| /T (Es) , (2.20)
where
Fi=Y{k=i,}2:F'®, =) {k=14,j}2:'P®), (2.21)
Z, Fi(k)

2, (R } = cie D_{kaknAAG)
k

Ple*k
) (ek) .

To determine A%, we use the ortho-normalization condition:
(Vi) = 4° (E')" A¥(E) + )
k=i,j
x 3 {kpknAiAEYeie B (B, kr kLAY “BY (B, kaknAiAE)
=§(E'-E). (2.23)

¢ (B A V| X { (2.22)

After inserting into this condition expression (2.19), and using Eq. (2.20),
we obtain our final result for A*(E):
I'(Eg)

|4F(B)[? = (2m) - )
) ) ([Ez-EE—F‘(EE)]zJF[Fi(EE)m)

(2.24)

As long as F* and I'* are slowly varying with Eyg, they represent the
energy shift and the width of the I; substitutional state, implied by the LA
coupling.

With the help of the identity 1/(z + in) = P/z — ixé(z), we may write
expressions (2.22) for Fi(*) and I'(F) as a single expression for F (k) =
Fi(ky _;i(k) /2.

FiO) = (cqzp) ™
X Z{kAkNAf/\i}K@(kAka\f'\i)IVlwgz)lz/(ek +in), (2.25)
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and Eqs (2.21) as:
Fi=Fi—irij2 = 72,70 4 7, 70) (2.26)

From Eq. (2.11), with ortho-normalization properties (2.14) of the |#)
states, we have:

(B(kpknAEN) |V|%55)
= Zi_llz ("/’QA'I’ENI”W;‘J;‘/)E: - 5ki¢§z¢§i) . (2.27)

Since we have neglected V) in our model, the A scattering states ¢£N

are simply plane waves. Similarly, in our calculation of F*, we approximate
the neutron scattering states 1/1?N by plane waves (the energetic N produced

in the XA conversion should not be much affected by V). Thus we have:

Yie, (F1&1) = ez, (M) Gy (61)
Vi (T262) = o (72) oy (€2) (2.28)

where (7) = exp(ik7).
Using expression (2.27) and approximation (2.28), we may write (2.25)
in the form:

FiO = (2;2,)7 S (A / d(1)d(2)d(1")d(2")$3; (1) (2)v(1,2)

X Gt apes (1512 0(12) [zp» ()5 (2) — kT (105, (2')]
E(Zizk)_ Z{A;Ab} ¢)‘i¢A:|ng‘E+A+¢gvl¢)‘:’l¢A: - ik")b/\;"'l/)l;i)’
(2.29)

where 1 = 71£1,...,2' = 7,'¢}, and G is the Green’s function of two non-
interacting particles A and N,

Ge(12;1'2') = § (€1, €1) 8 (€2, 83) Ge (P 71'7') (2.30)

[ @Endiner, (i) ex, (2 e, () o3, ()
[€ — ea (ka) — en (kN) + in]

Ge (i 71'7') = (27)°

(2.31)
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If the coupling potential is central and spin-independent (which we shall
assume in our model calculation),

v(1,2) = v(r12) , (2.32)
then we may carry out the spin summations, and we get:
Fi® (Bg) = F§P (Bz) - 38752 (Es) , (2:33)
where
FRB (Bx) = (2 +1) (20 + 1)) Y {mams}
X / 41 iy dy iy B, (71) E g (72)
X 0(712)9E2+A+,k (7‘17'2, ' ) ("12) '/’z img (-’ ') '»bl,,m,, (’_"2')
= [(2 + 1) (2l + 1] 7 ) _{mamy}

z* P* - b P
X <¢lima¢1kmb|ng3+A+e;‘, (1‘17‘2; 1'1_,1‘2') v|¢l¢m¢¢lkmb) ’ (2‘34)

FRD (Bg) = (2 + 1)) {mamy}
(1‘[,1 m¢¢l mblng2+A+¢‘ (7‘17'2) Ty 7‘2 ) 'U|¢1 mb¢l ma.)' (2.35)

Notice that for ¢ = 0, i.e., for I; = |y = 0, .7-';’3(:) = .7-'2)(0), and thus
F0(0) _ 1 _7_-0(0)

A 51m1lar procedure in the case of the hypernuclear g.s. (m;), Eq. (2.5),
leads (for central spin-independent v) to the result:

|48*(E)|2 = (2r) ! I'es (Ex) 30)
([Ez — €% — Fe&s (Eg)]” + [I'ss (Ez)/2]2)
where
F8 = F8% (Eg) — iI'® (Ex) /2 = Zy F o(o) (Eg) + (Z1 - 1)}_?)(1)(1472) ,
and the connection between E and Ey is given by: (2.37)
Eyp =E - Zoep ~ (Z1 - 1)ep.- (2.38)

Notice that A8* does not depend on m;. In the absence of the XA coupling
E = E§® and Eyx = €, (see Eq. (2.6)). The connection between E and Eyx
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is for the g.s. the same as for substitutional p state (Eq. (2.18) for i = 1),
but the ranges of Ey relevant for A8* and A! differ by about e} — €%.

By using the known analytical formula for the two-particle Green'’s func-
tion [18-21], one obtains for fgk) and F I:S::) expressions involving threefold
integrations. These expressions are derived in Appendix A.

3. Results and discussion

For the A coupling potential v responsible for the 2 ~P — AN process,
we assume the central spin-independent Yukawa form:

v(r12) = xexp (- pr12)/pr1z, (3.1)

and thus in expansion (A.10), we have

vr (rir2) = ji (iur<) B (iprs) (3.2)

where jz, is the spherical Bessel function, h(Ll) the spherical Hankel function
of first kind, r< = Min(r1rz) and r5 = Max(ryr3).

For the range parameter u, we use the OPE value: u = m_4+c/h =
0.7 fm~?, and for strength parameter x the value: y = 28.6 MeV. With
these parameters, the total cross section o for T~P — AN, calculated in
Born approximation, coincides at pg(lab) = 300 MeV/c with the nuclear
total cross section of 4.87 mb calculated with model D of the Nijmegen
hyperon-hyperon interaction [22]. Also at higher momenta py, where the
Born approximation is more justified, our Born results agree satisfactorily
with the model D results. This is shown in Fig. 1, taken from [22] with
added Born results (broken curve) obtained with our v.

We assume Vp(r) and Vx(r) to be square well potentials of radius
R = 3 fm, which should simulate the 60 target. For the depth of Vp(r) we
use V2 = 60 MeV, which leads to the s.p. energies ) = e = —44.3 MeV
and ¢}, = e} = —28.5 MeV. The corresponding empirical proton s.p. en-
ergies in 180 are: —44 MeV in the s/, state and —19(—12.5) MeV in the

P3/2(P1/2) state (see [13]). For the depth of Vg(r) we use V3 = 20 MeV,
which is compatible with the estimates based on model D of the Nijmegen in-
teraction (see [1]). The corresponding s.p. T energies are: ¢} = ¢§ = —10.0
MeV and ¢}, = ef, = —1.0 MeV. The Coulomb interaction is disregarded in
our calculations. . .

In calculating the functions .F;D(k) and fé;), we applied the formulae
collected in Appendix A. First, we calculated and tabulated the functions

A:‘({; )lz 1(r) by performing the single integration over a, Eq. (A.17). Next,



802 J. DABROWSKI AND J. ROZYNEK

Z-p -~ AN

100

S0

o o o e e

0.2 03 0.4 05 0.6
R.-[Gevic]

Fig. 1. The D model results (solid curve) and our Born results (broken curve) for
the total cross section (X~ P — AN) compared with the data of the Massachusetts
group [23]. The datum with the black square is from the Heidelber group [24]. The
dashed data have been calculated in [22] from the results for AP — X°P [25].

we calculated the functions fi(k)(nlllg,LL' ; £) by carrying out the twofold
integration in (A.16). The Simpson rule was used in all integrations. The
summation over the orbital quantum numbers in (A.12) and in the analogi-
cal expression for .7-';5(.;) (severely restricted by the triangular conditions and
parity rules obeyed by the Wigner 3-j and 6-j symbols in Eqs (A.18-19))
was performed for each value of n within limits assuring a sufficient accu-
racy. The sum over n in (A.15) was restricted to n = 0,1,2 (in the case of
A = 4A terms with n = 4,5 were also included), which assured the overall
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5-10% accuracy of our results. In general, the accuracy of our results for
the imaginary part of F* (hence for I') is better than that for the real part
(hence for F*). Furthermore, the accuracy of our results for 7° (hence for
F9, I'°, and F85, I'8%) is better than that for ! (hence for F1, I'!).

After inserting into expressions (2.26) and (2.37) the calculated values
of FX¥)(Eg) and FiD(Eyg), we get for F¥, I', and F*, I'¢* the following
results (in MeV):

F* (e4) = -1.6, FP(e})=-05, F& (e)=-15,

3.3
Ir*(eg) = 5.1, IP(R)= 34, I®(cf)= 438, (3:3)
where we use the notation s for i =0 and p for p = 1.
Our results for |A(E)|? for the substitutional p state and for the hy-
pernuclear g.s., Eqs (2.24) and (2.36), are plotted in Fig. 2 as functions of
Eg = E — 2¢ep — 58’1;. Results for the substitutional s state are similar to

those for the g.s. They are shown in Fig. 3 (here Ex = E — ¢ — 6¢8).

0.2 T T - ; T T [

substitutional p state

[Mev™)

|A(E)|?

0 1
-20 -10 Es [MeV] 0

Fig. 2. Distributions |A(E)|? for the hypernuclear g.s. and the substitutional p
state, obtained with energy dependent F’s and I'’s (solid lines) and with constant
F’s and I'’s (broken lines).

All the F’s and I’s are functions of Ex. However, this energy de-
pendence is very weak, particularly for the I'’s. This is seen in Fig. 2,
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where in the solid curves this dependence is taken into account, whereas
the broken curves have been obtained by using for all the F’s and I'’s the
constant values given in (3.3) (thus they are Breit-Wigner distributions).
The small difference between the “exact” distributions (solid lines) and the
Breit—-Wigner distributions (broken lines) is irrelevant for our discussion in
which we shall identify the F’s and I"’s in (3.3) with the energy shifts and
widths. (The curves in Fig. 3 have been obtained with constant values of
all the F’s and I"s.)

08 T T T T T T

>
"

LA

[A(E)IZ [MeV-1)
[ S

0 A " 1
-20 -10 Es [MeV] 0

Fig. 3. Distributions |A(E)|? for substitutional s state obtained with 4 = A and
A =4A.

Our results for the widths, I' ~ (3 — 5) MeV, appear reasonable com-
pared with the widths observed in experiment. In the case of the substitu-
tional s state, the state of the nuclear core (s state hole in 160) is by itself
unstable with the width I'. of about 14 MeV [26], and thus the observed
width should be I'* + I'. & 19 MeV, i.e., much bigger than I'*.

Our results for the energy shifts F' are of the order of 1 MeV and are
negative. This means that in the presence of LA coupling the binding of
¥ increases. On the other hand, the rigid nuclear core model [15] with
A = 80 MeV leads to positive energy shifts. To simulate the excitation of
the nuclear core in the A channel, a smaller value of A (denoted by A) was

also consider in [15], and for A = A/4 the resulting energy shifts were found
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to be negative (and the resulting widths bigger than for A = 80 MeV). In
our present model, the non-rigidity of the nuclear core is fully taken into
account. Consequently, we expect to obtain results comparable with those
of the rigid nuclear model (wnth A = 80 MeV), if in our present model
we replace A by a bigger value : A. Let us consider the value of A = 44,

obtained by replacing M, by M, = 0.88M, and My = 0.88My. In this
case we get (in MeV):

Fe (e3) = 0.70, Fe (e3) = 0.65,

- - (3.4)
I’ (eg) = 0.81, Ies (e4) =0.75,
The resulting distribution {Z"lz is shown in Fig. 3. As expected, the present
results obtained with A = 4A are in a qualitative agreement with the rigid
nuclear core results of [15] (obtained with A = 80 MeV). The energy shifts
F are positive, and the widths IF<r.
The dependence of the energy shifts F and A (increasing of F with
increasing A) is easy to explain. Let us consider, e.g., the contribution of

F(®) to F*, i.e., ReF*(®) (the same reasoning applies to other contribu-
tions) which may be written in the form (see Eq. (2.34)):

ReF*(® (e3) = 1 (21)° / dfpdiy

P 2,P)|2
X T T A ea(ha) = ew ()| PEAPER[PI¥5 ¥ ) (3.5)
where 9, stands for ¥, withl =m = 0.

Let us divide the su:-dunensxonal momentum space of ch and kN into
regions I and II defined by:

>0 inregionl ,

in region II. (3.6)

5A+5N+A—5A(kA)—eN(kN){

Since the contribution of region I to the integral in (3.5) is positive and that
of region II is negative, the value of ReF 5(s) increases when we increase the
size of region I (a.nd thus decrease the size of region II). This is exactly what
happens when we increase A.

Another factor affecting the magnitude of ReF #(#) is the square of

the Fourier transform of v|¢§¢f’), I(cpkAgokNl |¢?¢f l , which for our v,
Eq. (3.1), decreases with increasing A and N momenta, enhances the contri-

bution of region I compared to that of region II, and thus makes the energy
shift larger (algebraically).
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This effect is stronger when the Fourier transform decreases faster with
increasing momenta, which may be realized by increasing the range of v(r).
Our v(r), Eq. (3.1); has the OPE range which appears to be the longest
range physically acceptable for the LA conversion interaction. Thus the
negative energy shifts F' listed in (3.3) would become more negative for
more realistic v containing components of shorter range.

The discussion of the widths I’ is similar. F.g., the contribution of
F3(4) to /2, ie., —Im F*(®), may be written as

—Tm 74 =1x(2r)7° /dEAdENs(e;3 +eb+A—ep(ky)—en (b))

x |z, er, 01790 - (3.7)

Here only the A and N momenta contribute, which satisfy the condition
eh +ep + A —ep(ka) — en (kn) = 0. With increasing A, these momenta
increase, and the square of the Fourier transform decreases. Thus with
increasing A, the width becomes smaller. Similarly as in the case of the
energy shifts, this effect of the Fourier transform is stronger for v(r) with a
longer range. The widths I' listed in (3.3) would decrease if we used v(r)
with a longer range (with x readjusted to preserve the fit to the =P — AN
cross section).

In Fig. 4, we show the double differential cross sections d*g/ dfc,dE,,
at @ = 0° and pg = hkg = 450 MeV/c for the (K—,n) reactions on
our “160” target, leading to the ¥ hypernuclear g.s., and to the substitu-
tional s and p states. The cross sections have been calculated in the PWIA
with zero range for the elementary process K™P — L~ xt. The respec-
tive formulae are derived in Appendix B. The cross sections are shown as
functions of AM = (Mgy — Mrt)c? (see Eq. (B.10)). For comparison, the
corresponding values of ¥ binding energy By, Eq. (B.19), are also shown.
In calculating the |A4|? factors in Eqs (B.7), (B.15), the energy dependence
of the F’s and I'’s was taken into account. The units on the ordinate axis
are arbitrary (only counting rates are measured in experiment). In case of
no LA coupling, the T hypernuclear states become discrete, and instead of
the double differential cross section, we have the single differential cross sec-
tion do/dky for transitions to these discrete states, whose magnitude and
position is indicated by the vertical lines in Fig. 4.

The cross section for the transition to the hypernuclear g.s., Eqs (B.15),

(B.17), contains the factor |(RY |j1(gr)| RY) ]2 which makes it much smaller
than the cross section for the transition to the substitutional p state, which

contains the much bigger factor ’ (RF |jo(qr)| RY) |2. For kaon momenta pg
closer to the “magic momentum” of about 270 MeV/c, the relative proba-
bility of producing the substitutional p state (compared to that for the g.s.)
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T T T T T
substitutionat p state

subst. s state

gs
270 280 AM [MeV] 290 300
By 16 6 -110

Fig. 4. The double differential cross sections d’a’/dic,,dE', at 8 = 0° and
Pk = 450 MeV/c for the excitation of the g.s., and the s and p substitutional
states in the (K, x%) reaction on our model of 180 target. Vertical lines are the
respective differential cross sections da‘/dic,r in case of no LA coupling.

would be even more pronounced. For the substitutional s state, we also
have a large factor |(R¥ |jo(qr)l R};’)!z, however Z; = 2(2l; + 1) in expres-
sions (B.7), (B.12) makes the cross section for the s state about three times
smaller than that for the p state.

In the more realistic case of the presence of the Is coupling our scheme
would have to be slightly modified. In this case the peak in Fig. 4 corre-
sponding to the substitutional p state would split into p; /; and p3/; peaks,
and the g.s. peak would be smaller — its height would be proportional to
the number of protons in the py/; shell, Z, , =2 (instead of Z; = 6, see
Eq. (B.15)).

In the effective A channel approximation, the present scheme was ap-
plied in [15]. The conclusion was that because of the LA coupling the &
hypernuclear bound states not only acquire a width, but may be shifted to
positive energies, which would explain the pion spectra observed in (K, )
reactions. This conclusion, however, should be questioned for two reasons.
First, the results of [15] have been sensitive to the value of A which could

1/2
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not be determined precisely. Second, for those values of A for which the
¥ bound states are shifted into continuum, the following difficulty arises.
Whereas the starting assumption in [15] was that one may restrict oneself
to ¥ bound states (Ansatz (4) in [15]), the end result was a I state in the
continuum.

The two difficulties of [15] do not exist in our present approach. First, it

does not contain any adjustable parameter A. Second, the energy shifts ob-
tained in the present approach are small and negative. Thus the restriction
to bound states in the ¥ channel (our Ansatz (2.10)) appears justified.

The present paper suggests that the XA coupling shifts the ¥ bound
states to even more bound states and thus can not explain the peaks ob-
served in (K, ) reactions, which correspond to I states with positive en-
ergy. In reaching this conclusion, we have assumed that we know the ¥
s.p. potential Vg, although in principle it should be derived from the full
hyperon-nucleon interaction

(" vaman)

Thus in the present approach, as in the approach of other authors, V3
is treated more or less phenomenologically. In this situation, the precise
position of the £ bound states in the presence of the LA coupling is uncertain
because of the uncertainty in Vg.

Appendix A

Ezpressions for fgk) and Fg '(z)

With the transformation

N|H
N

-

k (2MA/h2) 1, 1_"1 = (h2/2MA) _‘1 ’

~|..a

1
Fy = (2MN /hz) 2k, (rﬁ /2MN) B, (A.1)
we may write expression (2.31) as:
32 L L.
Ge (P 7y'7y') = — ((@Ma/B?) @M /1)) Gu(fiiiHR),  (A2)

where

' , 1k1(r1 -7 ) + zkg(rg - T ))
Gn(“172;?1 -’2 ( ) /dk] /dkz
k2+k§—-n2—in)

(A.3)
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where x = £1/2,

It appears that an analytical expression for two-particle Green’s func-
tion (A.3) was first derived by Sommerfeld {18]. Later it was derived again
by Chew [19]. Here, we shall apply the results for G and its partial-wave
expansion as presented by Morse and Feshbach [21].

We denote the polar coordinates of (i = 1,2) by r;, 9;, @i. Notice
that the polar coordinates of 7; are r;, ¥;, ;, with the same angles 9J;, ¢;,
and with

L= (h2/2MA) % rn, ry = (h2/2MN)% r. (A.4)

We denote by r the length of the six-dimensional vector 7 = (#172), t.e.
r=(r# + r#)!/2, and introduce the angle a by the relations:

rn =rcosa, r, =rsina, 0<a<n/2. (A.5)

We may describe the two vectors 7;, F2 by the two-particle hyperspherical
coordinates r, a, 91, @1, U2, p2. We have:

/ d, / ary = [(#2/2My) (h2/2MN)]3/ ’ / a7, / i
0o ®/2
= [(fﬁ /2MA) (h2 /2MN)]3/ ’ / drr® / da cos? asin’ a / d#y / dis,(A.6)
(1} 0
where [ di; = [di; = fow dd; sin¥; fozw dp;.

The partial-wave expansion of G in the hyperspherical coordinates is:

Gx (A3 HF) = ) {hlem1ima}Yyym, (71) Vit m, (71) Yigm, (72) Yim, (72)

. 2
X [nr/ (rr") ] 9 i (nr2sriny) , (A7)
oo
9x 1, (nr2snr) = Z Cn 11, cos't asin’? a cos' o' sin'? o
n=0

12+'2-

3 sin? a)

xF(—n,11+12+n+2

1
X Jiy 1y +2n+2 (Ar<) Hz(13.12+2n+2 (krs), (A.8)
where r5 = Max(r,r'), r« = Min(r,r'), J; denotes the Bessel function and

Hl(l) the Hankel function of first kind, F is the hypergeometric function,
and '

c (h+lh+2n+2)(h+bL+n+ 1) T (lb+n+3)
l = .
m i n (L (b +3)]° T (h+n+3)

(A.9)
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To calculate }'gk) defined in Eq. (2.34), we insert into this equation
expression (A.2) with G, expanded into partial waves, Eq. (A.7). For the

coupling potential v(r12) = x¥(r12) (x = strength parameter, # = shape
function), we use the expansion:

v(r12) = —4mx Y {LM}vp (r172) Ying (F1) Yime (72) - (A.10)

After taking into account (A.6), and introducing the notation:

1
= (Eg +A+ ef,) Z, (A.11)
we get:

fgk) (Eg) = —ix2C Z (l]lzI/L') Ri(k) (I]lzLL'; rek) Xb(k) (I]IzLL') ’

(A.12)
where C = (7 /4) (hz/\/JTIM)s,
R (11, LL'; k)
oo o x/2 ®/2
= %/drrs'/ dr'r’3/ dacoszasinza/ da' cos? o' sin? o
0 0 0 0
Rf. (fx)Rﬁ (r2) vL (r172) 9w 131, (rr2s rirg) vpe (r73)
x RE. (r1) Ry, (r3) (A.13)

results from the integration over ry, rz, r{, r;, and

XE® (11,LL") = (4n)? (20 + 1)(20 + 1)
X Z (lflgma}flkmb ‘YI:MYLM‘ Yhlelzmz)
(Yhmelzmz |Y£’M’YL’M'| Ylimaylkmb) » (A.14)

(the summation is over all magnetic numbers) results from the integration
over #y,fg, 7}, 5.

Similarly, we get for Fii Ex (Eg) Eq. (2.35), an expression identical with
expression (A.12), but with X i(i) replaced by X 1(') . In turn, the expression

for X ( ) is identical with expression (A.14) for X;)('), but with |Y, Yi;m, )
replaced bY 1Ymy Yi;ma)-
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Using expression (A.8) for g, ;,1,, we may write Eq. (A.13) in the form:

RO (LLL' k) =Y Cayty B (il LI k), (A.15)

oo r
fi(k) (’nlllzLLl; K,) = /drrsﬂfllll2+2n+2(ﬂ I') / dr'r'3Jll+12+2n+2(nr')
0 0

Qi k i(k i(k
X7 [ Wty )A:'t(lx)lzL’(r’) + A:ftl)zzL'(’)Ayle)z,L(")] »  (A.16)

where
/2
:Slt)ng(r) / da cos't 2 o sin'z 12 aF(—n, L+l +n+2]l;+%] sin? a)
0

XRE(r;)Rf;(rg)vL(rlrg). (A.17)

Notice that r; = (h2/2MA)1/2rcosa and r; = (h?/2My)'/?rsina. For
L = L', Eq. (A.16) is simplified because the two terms in the square brackets
in Eq. (A.16) are identical.

A straightforward calculation leads to the following expressions for Xp
and Xg, in terms of Wigner 3-j and 6-j symbols:

XEPWLLLY) = (2L +1)(2h +1)(2k + 1)

2 2
L L\ (I &2 L
(0 0 0) (3 . 0) §prry  (A.18)

XD (LI = (2L + 1)(2L' +1)(2h +1)(2k +1)(3’ ; 16)

ol L\(L I I'\( b D\[L I, L
X(o 0 0)(0 o o)lo o o)\ vy 19
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Appendix B
PWIA for (K—,n%) in-flight reactions

Let us consider in PWIA the production of the [; substitutional state.
The initial and final states are:

0 = exp(ifcr) (). 1F*’>=exp(i;m(‘4’(l§;”f”>). (B.1)

We assume a zero-range spin-independent interaction for the elementary
process K™P — x 3~ (with a constant T matrix denoted by t), and obtain
for the transition amplitude

(FIT|T) = t4*(E)* (¥}5

[ @ [ & exp(-ianaboge(olo), ®2)
where the momentum transfer
§=kr — kg, (B.3)

and @g(f’f), &p (7€) are the operators of ¥ creation and P annihilation at
Ty &t

8L (76) = Y {As}abs ¥R,(FO)",  8p(7E) = D {plapag ¥y (7E).
(B.4)
The continuum states are not included in expansions (B.4), because they
are irrelevant in the present considerations.
When we insert expansions (B.4) into (B.2) (notice that with our form of
¢§'E and 1[)1;2, Eqs (2.1-2), the ¢ integration (summation) results in §,5,p ),
and use for |¥;s) expression (2.3), we get:

(FITIT) = t4'(B)* Y- {tp mp I my 5} [ dF exp(—i27 10 g (I (7)

X (Z':)_l/2 Z{my}(Ola;lgmvazl;mvagzlzm:ﬁaplpmpf/ IO)

= LA} ()" (2:)"/* (R} |jo(ar)| BE), (B.5)
where
(REian)|BE) = [ arr*Rian)EE ()

With transition amplitude (B.5), we get for cross section:

do? : . )
; = C|AY(E)Z:|(RY|jo(qr)|BD) | B.7
(dk,,dE,,) |4*(E)|* 2| (B |jo(ar) | Ry;) | (B.7)
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where
C = |t)? [EKE,/ (2«7:%2)'“’] k—", (B.8)
kx
1/2
EK(1r) = [(MK(,‘.)CZ)2 -I- (cth(w))z] . (B.Q)

The pion energy E, is connected with Ex by energy conservation (the
recoil of hypernucleus is ignored in our model):

Er = Ex - AM, (B.10)

where AM = (Mygy — Mg)c? is the difference between the mass of the
hypernucleus Myy (in the I; state) and the mass of the target nucleus Mt
(in its g.s.). In our model

AM = Ex + M};C2 - (€i:> + Mpcz). (B.ll)

Consequently, for a given kaon momentum ki and a fixed cosf = kokx,
the pion energy E, (and momentum k), the momentum transfer ¢, and
Eyx are functions of AM.

If we switch off the ZA coupling (v — 0), we have F* — 0, I — 0,
|4%)2 - §(Eg — ¢%), and the substitutional I; states become discrete. The
differential cross section for the transition to these discrete states is

do \* . p\|?
<E) =CZ; (Rl‘_ljo(q'r)|Rli)t . (B.12)
The discrete value of AM is then:
(AM)g = ¢k + Mgc® — (eb + Mpc?). (B.13)

A similar procedure in the case of the transition to the g.s.(m;) leads
to:

(ng(ml)lTH) = tA®*(E)* 4,‘.,'—11}’[1 m (q‘)\/i(R;""

in(er)|ER), (B.14)

(dk,rdE ) E{ ) (dk dE, )SS(ml)

= ClAs'(E)l zll(Ro ‘j,l(qr)lRﬁ) ‘. (B.15)
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AM = Ex + Mgc? — (ep + Mpc?). (B.16)
If the XA coupling is switched off, then

do \ %
()" =cnl(=
(AM)o = e} + Mgc® — (ep + Mpc?). (B.18)

If we denote by By the separation energy of ¥ from the hypernucleus
(in its ground or excited state) with the nuclear core left in its ground state,
then AM = Bp — By, + Mgc? — Mpc?, where Bp is the proton binding
(separation) energy in the target nucleus. In our model, we identify Bp
with -—e%,, and have:

2
, (B.17)

J'zl(qr)IRz)

AM = —Bg + Myc? — (Mpc® +¢3). (B.19)
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