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Two independent methods are employed to deduce the multiplet struc-
ture of a higher spin superspace. The first is based on the usual theta
expansion. A general diagrammatic method is developed for working out
the various components of the superfield. The case of the superfield with
a vector spinor SUSY coordinate is worked out in detail. The second ap-
proach utilizes the Wigner method of induced representations. The two
approaches are shown to give analogous results for the representations.

PACS numbers: 11.30. Pb

1. Introduction

It is well known [1] that conventional SUSY is based on generators
that belong to the spin half representation of the Lorentz group. How-
ever, consistent SUSY algebras with generators belonging to higher spin
can be constructed [2, 3] provided the assumptions underlying the Haag,
Lopuszaiiski and Sohnius theorem [4] are relaxed. These algebras must also
satisfy the constraints imposed by the Coleman Mandula theorem [5]. Ex-
plicit demonstration of this algebra has been shown to occur for the case of
a vector spinor generator, Q,q, of the Lorentz group, where u is a vector
index and a is a spinor index. Here we show that the algebra also leads to a
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superspace [6, 7, 8] with vector spinor SUSY coordinates. Furthermore, we
construct the superfield and discuss the particle content of the multiplet.

The particle content in a higher spin SUSY theory can be determined in
at least two different ways. One is based on the supercoordinate expansion
and does not require a priori knowledge of the algebra. The second method
involves the Wigner method of induced representations [9, 10], and requires
a priori knowledge of the SUSY algebra. In what follows we employ both ap-
proaches and determine the component fields for the 1,2 < j <3/,superspace.

In Section 2 we work out the superspace formalism for the (1, 1) +
(})2, 1) case explicitly. In Section 3, the theta variable expansion of the
superfield is determined by the diagrammatic method. In Section 4 the
Wigner method is applied to the algebra. It is shown that the two indepen-
dent methods lead to the same particle content.

2. (1,1/2)4(1/2, 1) superfield

Let Qqq represent the (1, }/2)+(%/2, 1) fermionic, i.e.supersymmetric,
generator; P,, the four-dimensional translation generator and M,;, the four-
dimensional rotation generator. The algebra which has been shown to close
under the Jacobi identities is as follows:

[Mapy M.g] = —i(nacMbd — MaaMse + MpaMac ~ MscMad) 5 (2.1)
(M4, P.] = —i(NacPs — NbcPa) (2.2)
[ abs Qea ] —‘(7ubQ ) i(ﬂacha - ﬂchaa) ’ (2°3)
[ abs Qc] +3 (Qc'Yab) i(’lacQ_g - ﬂbcéaa) ’ (2'4)
[Pay Py) = (2.5)
[Pa, Qba] = 0 = [Pa: Q?] ’ (2'6)

{anu Q_f} = a[’labtpg - %‘(7an + 7bPa)i + ésifabcd('rc'rs)ﬁpdj' (2'7)

This algebra contains negative norm states. The handling of the negative
norm states will require the same techniques used in quantum electrody-
namics and string theory i.e.either the Gupta-Bleurer method or the BRST
operator method. However, in this article we do not attempt to construct a
Lagrangian for the superfield. Therefore, we will present the detail of how
to get rid of the negative norm states in a future publication. The Q. is
assumed to be Majoranic, i.e., Qfa = (CQE)Q = Qqq. Furthermore, being
a (1, 12)+(=, 1) charge, it is transverse in spinor space, i.e., obeys the
identity v%Q4)a = 0.

Associated with the irreducible vector-spinor charge Q4 are the vector-
spinor coordinates @,,. The vector-spinor coordinates belong to the irre-
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ducible (1, 1/2)+(}/2, 1) representation of the Lorentz group and are Majo-
rana spinors,

Oua = (CO]),, - (2.8)

Since the @-coordinates are Grassmanian, they obey the following relations:

{Oucs Opg} = 0= {Osa, 6F}. (2.9)

The superspace is taken to consist of four bosonic coordinates z, and
twelve fermionic coordinates @,,. These coordinates can collectively be
referred to as z. Also, for ease of writing, we will suppress the spinor index
on the fermionic coordinates @ and e. A superfield on this superspace is
denoted by #(z) and is related to $(0) by exponentiation:

&(z) = &(zay Oaa) = exp(z®P,) exp(0,Q%)$(0,0)
= exp(z®P, + 6°Q,)%(0,0), (2.10)

where we have used the commutativity of P, with Q. to arrive at equation
(2.10).
Next, we introduce a supersymmetric transformation operator acting
on $(z) which will take ¢(z) to #(z'). One can write
exp(z') = exp (£*Q.) exp(z), (2.11)

where the ¢,, is an anticommuting, Majorana spinor parameter. As with
any (1, 12)+(/2, 1) irreducible spinor, the following general property, 7%¢,
= 0 = &9,, holds.
Equation (2.11) can be simplified using the algebra given in Egs (2.1)
to (2.7). Using equation (2.11) and the identity
exp(4) exp(B) = exp(4 + B + (4, B)), (2.12)
where A and B are arbitrary operators, one can show that

exp (€Q.) exp(z) = exp (€°Qa + 2°Po + 0°Qq + %[E"Qa,@be]) . (2.13)

Furthermore, the commutator on the right-hand side can be worked out
using equation (2.7); one obtains after some Dirac algebra:

[€*Qa, 0%°Qs] = ©{Qa, Qs}0°
= a[é“}’@a + -g—ieabcd€“7‘75@"Pd] , (2.14)

where we have used the property that 9260, = 0 = &v,.
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The second term on the right-hand side of Eq. (2.14) can be further
simplified by using the identity

Yabe = ieabcd‘yd'?'s
= 5 {7abs7c} = —Tbac = +Ybea - (2.15)
Again after some Dirac manipulation, a remarkable simplification results
2icabea®® 7150 Pe = T2iP%e {v,5,74}0°
= & (PYe740® + Ple®7,0,)

= {epo,. (2.16)
By substituting the result of Eq. (2.16) back into Eq. (2.14) we obtain
[ Qa,0 be] 5‘1€ 7a@bPa (217)

Therefore equation (2.13) now reads

exp (£°Qa) exp(z) = exp ((z* + 3&7°04)P, + (0% + )Q.), (2.18)

where the coefficient “a” has been set equal to unity without loss of gener-
ality.
A supersymmetrically transformed superfield can thus be expressed as

$(z') = exp(z')$(0,0) = &(2 + 1829°0,,6° + &), (2.19)

where we have allowed equation (2.18) to operate on $(0,0). One sees that
we have not only a translation in spinor space but also an ordinary space-
time translation of the amount%?b'y“@ - Following customary procedure we
next expand (2.19) in a Taylor series about the point (z%,0%) to obtain:

P(2') = 8(2) + @d,P(2) + 190, ¥(z). (2.20)

The spinor partial derivatives d,, are defined as d,, = 8/00°%.
The action of a supersymmetric variation with infinitesimal parameter
€aa can now be ascertained from equation (2.20). The result reads

§(¢Qa)#(2) = ¥(2') — #(2)
= &d, + 18%7°0,8;) ¥(z) . (2.21)

A supersymmetric covariant spinor derivative can be found using the above
(1, *2)+(*/2, 1) transformation law. It assumes the explicit form

Doo = doo — 3(P09a) , + 1 (10°) L85 (2.22)
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and one can easily demonstrate that the covariant derivative of a superfield
transforms as the superfield itself with the help of a little Dirac algebra.
We can also show that the anticommutator of (2.22) gives

{Daa’ DbB} = PapNab — %(7086 + 7baa)aﬁ . (2.23)
Note that the result is symmetric under simultaneous interchange of
(a ¥ b) and (a <« B). From (2.23) it follows that

DaaDyp — (“ — b) =0. (2.24)

a«—f

Therefore

Da(;)pb-(aH b)zba(“‘;”)p,,_(ae—» B)=0. (2.25)

We allow this identity to act on an arbitrary superfield:

D (;) Dy =0. (2.26)

From a study of electrodynamics, specifically how the vector potential fol-
lows from an antisymmetric fieldstrength, it should be clear that the general
solution to this equation is

$,, = Lo, =LD,d. (2.27)

Again the electromagnetic analogue is the vanishing of the fieldstrength,
an antisymmetric tensor, from which the general solution for the vector
potential follows. We have demonstrated this for the left-handed superfields,
the same can be demonstrated for the right-handed superfield. We see that
instead of the ordinary left- and right-handed scalar chiral superfields in
the (12, 0)+(0, 1/2) case, we now have left- and right-handed vector chiral
superfields for the (1, 1/2)+(/2, 1) case.

3. Expansion in the (1, 1/2) variable

In equation (2.8) we introduced the (1, 12)+(1, 1) coordinate @,
associated with Q.. Like Q.4 it is transverse in spinor space, i.e., 720, =

0 and represents twelve components. The Majoranic @,, can be written in
SL(2, C) Weyl spinor formalism as

Oue = ( ) ) : (3.1)

O*(ABC)
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where @(,p¢) (0*(‘4’30)) are the left- (right-)handed chiral projections of
Ooa. In SU(2)xSU(2) notation these are the (1, 12)+(}/2, 1) components,
respectively. They are transformed into each other by parity transforma-
tions.

The @, are anticommuting coordinates as seen from equation (2.9);
written out in SL(2,C) formalism we claim that

{@(ABC.), @(DEﬁ')} —o0, {@*(mc‘:), @(Dm‘*)} =0, (3.2a,b)

{@(ABC) ’ @:DE.IE')} =0 ’ {@*(ABC) ’ OFDE.I:")} =0 ’ (3.2C’ d)

where the indices 4,B,... = 1,2 and 4,B,... = i, are SL(2,C) Weyl
indices.

In ordinary spin (1, 0)+(0, }/2) SUSY an anticommuting @, implies
that a superfield #(z, @) can be expanded in a finite power series in @. The
same holds for our new superfield #(z, @,) where now the anticommuting
@, must be used. To keep things as transparent as possible we consider
only a left-handed chiral multiplet where the expansion variable is @ 4p¢) =
(LO4)a- This projection represents only six components.

To find which fields are represented in a (1, }/2) supermultiplet we first
have to find those bilinear, trilinear, quartic, ... terms in (LOg)a = O(435¢)
that are irreducible. We expect for (L@,), (LO,)?, (LO,)3, ... the follow-
ing number of irreducible components. (LO,)™ gives (z) = 6![n!(6 — n)!]~?
irreducible components. For example, (LO,)* implies 15 irreducible com-
ponents fields. (L@,)7 and higher powers vanish because of the nilpotency
of spinors. There is no way to successfully antisymmetrize a 6-component
field seven times. '

We now give the result leaving the proof for the subsequent discussion.
The result is

L = $1 + 04145y + OUPIO 5y 2
+OUPRIOCP 4 6o anop) + OAEIOE 50 by 4pe)

+0PT 005 5005: ) 0y i5c) + OUTDIOPE 1,055 V02 ane)

+ @(ABé)@(CFE)@(DFG')‘Pz(ABGDE.) + @(ABE.)@(BCﬁ)@(cDE)@(DAﬁ)qb:’

+ @(AHE)@(BFE.)@(C 7518 H&)P3(4BCD)

+ @(AHE)@(BFE)@(Faé)@(aﬂb)¢3(43éb)

+0UPMOEENG 1,7 1076 651y P3(ancy

+0UpNE (D9GP 1 O 5 OF iy (3:3)
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Note that the superfield expansion (3.3) contains component fields with
spin greater than two. However, this is not a worry since these higher spin
component fields have mass dimensions greater than those of the spinor
field (M3/2). This follows from the fact that fermionic coordinate @ is of
mass dimension M ~1/2, In the above ¢;, ¢2, ¢3, P4 are spin (0,0) scalars;
P148¢) P2(anc) and P34pc) are spin (1, 1/2) spinors; ¢2(ascp) $3(amcD)
are spin (2, 0) conformal tensors, ¢;4pcp)y P3(apcp) are symmetric spin
(1, 1) tensors; p5(4ip¢) is a spin (0, 3/2) spinor and, finally, ¢y 4pcpg) is 3
spin (2, 1/2) spinor. All tensors are designated by ¢... and are characterized
by an even number of symmetrized SL(2, C) indices. All spinor have been
designated by ¢... and have an odd number of symmetrized Weyl indices.
Even powers of ©,p¢) in (3.3) always have bosonic components associated
with them; an odd number will lead to fermionic components. As in any
supersymmetric theory the total number of fermionic components equals
the total number of bosonic. In this case we have 32432 giving a total of
64 components. The fields in expansion (3.3) can be given in the order of
increasing @ as they occur in (3.3). We have in SU(2)xSU(2) notation:

(0,0)/(1, ) /(2,0) + (1, 1) + (0, 0) /(2, 3) + (1, 3) + (0, 3)

(2,0) +(1,1) +(0, 0) /(1, 3) /(0,0) (3.4)
5+9+1 6 1

The number of components associated with each field is specified below the
field in (3.4). In general in SU(2)xSU(2) notation, the total number of
components represented by (ji, j2) is given by (2j+1), where | j1 — j2 [<
7 £ (j1+72). With (3.3 and (3.4) we have reproduced the results of previous
work by means of a new but equivalent method.

We now prove that the expansion given by (3.3) is unique. We start
with the bilinear form in (LO,),. Initially we have a total of 6x6 or 36
components for a bilinear form in & 4p¢). They are given in SU(2)xSU(2)
formalism as:

(1, ) x (1, ') = (2,1) + (2, 0) + (1, 1) + (1, 0) + (0, 1) + (0, 0) . (3.5)

The first term on the right-hand side corresponds to zero contractions in
SL(2,C) indices between the @’s the second to one dotted contraction, the
third to one undotted contraction, the fourth to one dotted and one undot-
ted contraction, etc. ... until no more contractions are possible.

Next we consider each of the products in turn. The first, (2,1), implies
a symmetrized product in (ABCDEF) but

@ABC) g(PEF) 4(ABCDEF) _ _g(DEF )@(ABé)fﬁ(ABéDEF")

= —QUBNQPERNG | iancy-  (36)
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In the first line we have used (3.2a); in the second we have relabeled in-
dices. Clearly the vanishing result is because the indices are symmetrized
for ¢. (All irreducible fields in SL(2,C) notation are characterized by fully
symmetrized indices; otherwise they are reducible.)

The second product, (2,0) implies one dotted contraction. We obtain
that

@(ABC)@(AEF)¢(BEC_'F) — —@(AEF)@(ABC)d’(BEéF)
= +@(AEF)@(AB'C}¢(BEC'&) (3.7)

does not vanish. The third product on the right-hand side of (3.5) does not
vanish for similar reasons. But the fourth gives

@(ABC)@(D86)¢(AD) = -@(DBE)@(ABC)¢(AD)
— _@(DBE)@(ABé)¢(AD) =0. (3.8)

Continuing in this fashion demonstrates that only the bilinear forms con-
tained in (3.3) are nonvanishing. Because of the antisymmetry of the O, ¢,
upon interchange with another & ,zy) we note that all zero and even num-
bered contractions must vanish.

We now associate with every 0,p¢) a blob:

A 8

OBy = \7/ (3.9)

¢

where solid (dotted) lines represent undotted (dotted) indices. What kind
of fully symmetrized Weyl field can be obtained if one contracts one 0,54,
with another @ pz)? The analysis above indicates that only an odd number
of contractions between any two @’s (or blobs) are variable. The result is:

(1, YR)x (1, ) =
A 8 A 8
NSo . >>é--f<< . =D
s N C ¢
& b c 0

(3.10)
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There are no others. At least one contraction is always necessary in
order to antisymmetrize. Expansion (3.3) shows that these are exactly the
represented bilinear terms in @. The fields associated with these bilinear
forms are characterized by the exposed indices in (3.10): (ABCD), (ABCD)
and (-).

We continue the analysis using this diagrammatic method. Consider the
trilinear forms in (L@,). Antisymmetrizing gives (1, 1)x(1, 12)x(1, )=

A 8 A c
*

) 8 8t
o 0 o 9
ivi v \{{/ (3.11)
£ FOfE 6
e i@

These are the only odd-numbered contractions which are possible be-
tween any two @’s. Also all @’s are necessarily contracted at least once
in order to antisymmetrize. The exposed fully-symmetrized indices char-
acterize the fields associated with these trilinear forms. These are given in
Eq. (3.3) as the “coefficients” of the (L@,)3.

This line of developments can be continued. The following results must
hold. First the quartic terms, give (1, }2)x(1, 12)x(1, 12)x(1, Y2)=

A 8 A . B
B B E_E € _E
A C H (3 H F
& * HLo F ¢ H F (3'12)
° D ¢ 07 £ N

These are represented with their associated fields in the expansion given
by equation (3.3). No two individual blobs or @’s are contracted more than
twice with each other. There are no other quartic terms possible.

For (LO,)® we obtain (1, }/2)x(1, 12)x(1, }2)x(1, 12)x(1, f2)=

(3.13)
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This term is given in (3.3) along with the (L&,)® term. For the latter
one obtains

(3.14)

This concludes the discussion of the expansion in @(,g¢).

4. The Wigner method

It is convenient to express the algebra (2.1) to (2.7) in Weyl SL(2, C)
notation. Explicitly,

[Map, Mcp)| = i(ecaMpp + ecMup + €paMcp

+ eéppMca), (4.1)
[MAB, Z-D] =0, (4.2)
M35, Mgl =ieciMpy + ecsM™ + €piMze
+ €pB Ac) ) (4.3)
[MAB, Po¢] = i(ecaPpe + €cBPa¢), (44)
[M3s, Peel = ieciPes + €csPei)». (4.5)
[Pai» Pgpl=10, (4°6)
[M(aB); Qcényl = i(chQ(Bc'D) + €c8Qacp) t €0aQ(céB)
+ GDBQ(céA)) ) (4.7)
[M48), Q’(‘c(‘;b)] = i(GCAQZB(}j)) + GCBQ;A(}I'))) ) (4.8)
[M&f,), Qceny) = i(eciQusep)y + €¢5Qicn)) » (4.9)
(M (AB)’ Q(cco)] = z(‘fc,t.Q(cuw) + GCBQ(CAD) + 6DAQ(CBC)
+€55Qcacy) » (4.10)
[Pady Qeeny] = 0= [Paiy Qcenyl (4.11)
{Q(AA'B)’ Q(cc’:o)} =0= {QZAJB)’ QZcéb)} ’ (4-12)
{Quisy Qceny} = —*fs(eaceic Pisp) + €aceic Pan)

+ €ac€ipPpey + esc€inPlacy (4.13)
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where A, B,...=1,2 and 4, B,... =1, 2 denote Weyl SL(2, C) spinor in-
dices. Furthermore, M(45) and M} ;, represent the irreducible (1,0)+(6,1)
generators of the Lorentz group; P, ), the (Y2, 1/2) generator of transla-
tions and Q(,ip) With Q‘("‘1 iB) the generators or charges associated with

spin (1, 14)+(Y2, 1) SUSY. €4B = ¢,5 and eA? = ¢, are the SL(2, C)
antisymmetric tensors used to raise and lower indices.

The independent generators are (Q(ui), Q('ui)a Q(ni), Q(xzi), Q(zzi)a
Q(223)) and the set (Qp;3), Qaiiy @risy P0aizy P0ussy P(assy) and their
nontrivial contributions (from equation (4.13)) are the following:

{Q(ui), Ql('zii)} = —8/5P11 ) (4.14)
{Q(ui), Qaii)} =P, (4.15)
{Q(ui), Q{zéi)} = _8/5Pzé ’ (4-16)
{Q(zzi), Ql(tlii)} =15 Py3, (4.17)
{Q13) Qz'zii)} =1%P;, (4.18)
{Q(ui), Q’('zii)} =45 Py; . (4.19)

We only consider the massive case here. One can transform to the rest
frame of the particle, i.e., take P, = (m, 0). Then P,; = (o), P, gives
P = Py3=mand Pj3 = P,; =0. (6 = (1, &) = (04) 44 are the Pauli spin
matrices). Our equations (4.14) to (4.19) reduce to

{Quiiy Qiz} = %M, (4.20)
{Qqu2iy Qiz)} = M, (4.21)
{Qqu2i)s Qpaszay} = —*6 M, (4.22)
{Qqa2iy Quaz)} = °%6M, (4.23)
{Quus) Qpaiiy} = M, (4.24)
{Q(123)s QZzii)} =4sM. (4.25)
The particle spectrum is given by
|0},
Q(AB&)|0> ’

Quuse)QwEm0) >

Q186)Qe#Qerinl0),

Q)R QernQuki)0)
Q(AB(':)Q(DEF“)Q(GHI‘)Q(JKL)Q(MN())|0) ’
Q(AB(L')Q(DEII')Q(GHI')Q(JKL)Q(MNO)Q(PQR)|0> ’ (4.26)
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where |0) represents the vacuum. The series terminates because of the
anticommuting nature of Q(,p¢s). One obtains 64 components, half bosonic

and half fermionic. The Q(45¢)|0) generates a (1, 1/2) particle which has six
components; the Q45¢y@(pr#)|0) generates a 6 X 6 antisymmetric number
of component states or (63(5) 2 = 15. Three Q’s acting on |0) give a 6 x
6 x 6 antisymmetric (upon interchange of the Q’s) number of particle states,
rendering (6)(5)(4)/((3)(2)) = 20 components. Continuing in this fashion
gives us the total number of components, namely, 1+6+15+204+15+6+1
particle states, corresponding to |0), Q[0), QQ|0), etc.

All the representations except the first two in equation (4.26) are re-
ducible. Their decomposition is given as follows:

Quse)@pes|0) = (2,0) + (1,1) + (0, 0),

Qusc)QwenQernl0) = (2,12) + (1,'2) +(0,%%),
Que)QwEerQeri@uxiyl0) = (2,1) + (1,1) +(0,0),

Qu86)Q0e#)@crnQukiyQumne)0) = (1,2),
QuBe)RwernQ@euiQuki)@mno)@reryl0) = (0,0). (4.27)

We can identify the right-hand side of the above decomposition as the
particle content of the theory. These exactly match the component fields in
the theta expansion of the superfield, equation (3.3).

5. Conclusion

Two independent methods have been used to determine the particle
content of a higher spin superspace, the theta expansion method and the
Wigner method of induced representations. Both methods are shown to
give a similar multiplet as worked out explicitly for the spin (1,%4)+(Y2,1)
SUSY. In all sixty-four components interact, half bosonic and half fermionic.
A greater than spin two particle is generated; being an auxiliary field, how-
ever, it cannot propagate.

The former method does not require an explicit knowledge of the algebra
and it should be clear how to generalize the diagrammatic method to any
higher spin superfield. Perhaps the new fermionic symmetry will prove
interesting in ordinary gravity as regards attempts of renormalization. For
grand unified theories the particle content may play a fruitful role.
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