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DIFFUSIVE DYNAMICS OF A DILUTE GAS
OF INTERACTING SINE-GORDON SOLITONS*

F. MARCHESONI

Dipartimento di Fisica dell’Universita’
AND

Istituto Nazionale di Fisica Nucleare
1-06100 Perugia, Italy

(Received October 1, 1991)

The diffusive properties of the soliton gas borne by a damped, unbiased
sine-Gordon theory coupled with a dissipative heat-bath are reviewed in
the dilute gas approximation. It is shown that, contrary to the biased case,
no anomalous diffusion occurs at time longer than the soliton lifetime. The
corrections to the effective diffusion constant due to the interaction of a
single soliton with a gas of both breathers (or phonons) and (anti)solitons
al equilibrium are calculated analytically.

PACS numbers: 12.40. -y

The perturbed sine-Gordon (SG) equation (in dimensionless units)
b1t — b2z +sind = —y¢e — F +{(2, t) (1)

has been proposed [1] to describe a variety of diffusive processes in condensed
matter. In Eq. (1) the unperturbed SG equation is coupled to a heat-bath
at temperature T through a damping term —v¢¢, with 4 a constant, and a
gaussian noise with zero mean and correlation function

(=, t)(Z t')) = 2%6(t - t"é(z - 2") (2)
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(B8 = 1/kT). The constant force F is an external physical bias that breaks
the  —» —¢ symmetry of the SG potential V[¢] = 1 — cos ¢, but preserves
its multistable nature for F' < 1.

In the absence of external bias (F = 0), Eq. (1) provides an efficient
thermalization mechanism for the unperturbed SG theory [2]

Hg)=1(¢2 +62) +V]g] (3)

independently of the value of the damping constant. The unperturbed SG
equation bears both extended and localized solutions. The extended solu-
tions are phonons with continuum non-negative energy spectrum. Localized
solutions can be well approximated as an appropriate superposition of soli-
tons, ¢, and antisolitons ¢, in the limit when the separation among their
centers is very large compared with their size (dilute gas approzimation).
For reader’s convenience, we write explicitly the single soliton (antisoliton)
solution (mod 2r)

qSK(I-{)(z, u) = 4tg~ Y exp[+ cha(z — z(t))]. (4)

Here, z(t) = zo + ut, denotes the centre of mass of the solution (4), which
moves with constant rapidity a, cha = 1/v1 — u2. The energy of ¢K( R)
is given by E(u) = Eg cha, where Eg = [ H[$y(gy(z, 0)]dz = 8 is called
soliton rest mass. The soliton and antisoliton solutions (4) carry opposite

topological charge and, therefore, may only be created by the pair. The
equilibrium soliton (antisoliton) density ng reads

no(T) = (2)*/*(BEo)/?e~PPo, (5)

where the global topological charge has been set to zero for simplicity [3)].
The dilute gas approxxmatmn is thus legitimate in the low temperature limit
BEs < 1, only, when "o > 1.

bk (&) are stable under the perturbation in Eq. (1) for any value of v
and F, a part from a rigid translation, against which they are in neutral
equilibrium [3]. It has been shown [2] that in the unbiased case a single
soliton (ant;sohton) undergoes brownian motion, whereas the external bias
pulls g and ¢ g in opposite directions according to the Langevin equation.

p=—yp+2xF + Eon(t), (6)

n(t) is a zero-mean valued gaussian noise with correlation function
(n(t)n(0)) = 2DKé(t), Dx = v/BEy and p is the relevant momentum,
p = uE(u).
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In the following we assume that the system is damped, i.e.y > 1. Such
a limitation allows two major simplifications:
(i) Eq. (6) can be treated in the non-relativistic limit, that is

i=—yut IFE +9(¢), (7)

whence the mean, up = 2% F/vE,, and the variance of the ¢ K(K) speed,

((u — up)?) = (BEo)~1. The single soliton (antisoliton) mean square dis-
placement is given by the well-known Einstein law

(Az?(t)) = 2Dkt + ust?. (8)

The diffusion law (8) only applies for short times when the effects due to
the soliton-(anti)soliton interactions may be disregarded,;

(#i) the soliton-antisoliton collisions are always destructive [4]. This
suggests to estimate the soliton (antisoliton) lifetime 7z by simply requiring
that (Az?(1p)) = ng ?, whence [5]

-1
TF(F)z[DKng (1+ 1+( —F )2 } : 9

Dgno

Note that this estimate of 7r has been obtained by neglecting the pair
nucleation process which becomes dominant [5] at 2x8F > 1. Such a
further limitation has no bearing on the results of the present work.

In this paper we are concerned with the diffusive dynamics of a dilute
gas of interacting damped SG solitons and antisolitons at thermal equilib-
rium. Our derivation of 7p, (9), clearly implies that the diffusion law (8) is
valid only for t € 7. Since we are to consider time scales much longer than
the soliton lifetime, a hydrodynamical picture of the diffusive process is more
appropriate [6]. Let nt(z, t) be the local density of solitons and antisolitons,
respectively. The topological charge density p(z, t) = ny(2z,t) — n_(z, t)
is locally conserved, t.e.

3] aj
FE D+ (= 1) =0, (10)
where j(z,1) = ~Dg §2(z, t) + jr(z, t), and jp(z,t) = up[ny(z,t) +
n_(z, t)] is the driven topological charge current. Without loss of generality
we restrict ourselves to the case of zero global topological charge, (p) = ny —
n_ = 0(i.eny = ng). Here ny = (ny(z, t)) are the uniform densities of the
soliton (antisoliton) taken over a SG string of arbitrary length L(L > nj').
Krug and Spohn [7] have shown that for finite F it suffices to expand
jr(z, t) in Eq. (10) around its mean value (jp) = 2up/TF up to second
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order in the topological charge fluctuation €(z, t) = p(z, t) — (p) to reduce
Eq. (10) to a Burgers equation

de up \1/2 92 8%
5= (=) 3 tDxga (11)

with random initial conditions. The asymptotic (anti)soliton mean square
displacement associated with Eq. (11) follows a general scaling argument
[7], i.e.{Az?(t)) = At*/3, with the constant A(B, 7y, F) given in implicit
form [7]. The anomalous diffusion of the topological charge thus derived, is
the consequence of the nonlinear dispersive term on the r.h.s. of Eq. (11)
and must vanish for F' = 0, i.e.when the ¢ - —¢ symmetry of the problem
is restored.

We develop now a hydrodynamical formalism for the limit of vanishingly
small values of F, 2x3F <« ng, where diffusive many-body effects dominate
over the dispersive action of the external bias [4, 5]. We anticipate that
no anomalous diffusion is predicted. The ordinary diffusion law (8) is still
valid provided that Dy is replaced by an effective diffusion constant for the
soliton gas.

Corrections to the ordinary diffusion regime (8) are due to the momen-
tum exchange between the single soliton, whose direct coupling with the
heat-bath is described by Eq. (7), and the other excited modes of the ther-
malized SG string ¢(z, t). We distinguish three sources of interaction: the
phonon, the breather and the soliton (antisoliton) gas, respectively.

(a) interaction with the phonon gas. This problem has been addressed
in Refs [8, 9). The effect due to the coupling of a single soliton with the
phonon bath at thermal equilibrium is well accounted for by a small 7-
dependent correction of the damping constant. At low temperature, such
contributions are expected to show up at the second order T, only [9].

(b) interaction with the breather gas. It has been guessed by several
authors [10] that the breather and the phonon gas picture are equivalent
in that they lead to the same statistical mechanical description of the SG
theory. If such an Ansatzis to hold, the effective damping constant of the
single soliton due to its interaction with the breather gas should coincide
with the result of Ref. [9] mentioned in (a). We have verified that such a
prediction is correct, indeed, at least at the leading order in 7. For the
sake of brevity we limit ourselves to outlining our statistical mechanical
analysis of the soliton-breather interaction, the details of which are left for
a forthcoming publication.

We have calculated, first, the breather uniform density, ng, as the ratio
of the canonical partition function, Zpg, for the field ¢(z, t) to bear one
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breather solution,

(12)

ép(z,t) = 4tg™? [tgocos[cos Ocha(t — uz) + ¢]] ,

ch[sin Ocha(z — ut))

to the canonical partition function in the absence of breather modes, Zy, in-
tegrated over the relevant breather parameter domains, i.e.a € [—00, 400},
¥ € [0,2x) and 8 € [0, v/2]. Here, our notation is as in Ref. (10). On
expanding the relevant ¢(z, t) configurations on the complete set of phonon
modes [3] and mtegratmg over the phonon density of states in the presence

of the breather [10] 2= 81: 2B with §g(k) = 4tg~? [sinbcha/(k—uv1 + k?)] +
o(sin? §), we obtain

ng = /n(a, 6)da dé, (13a)

with
n(a, 0) = (BEo)” o) sin 6 cha(cha + sin §)2e~2PFochasing (13b)

At low temperature we can expand n(a, ) in the integral (13a) in powers
of 8 to obtain

ng = %/daha + o(T?). (14)

When properly regularized, the T-independent term on the r.h.s. of Eq. (14)
differs from the phonon density by a factor 1/2, since for § — 0 each breather
is made up of two phonon modes with wave-vector |k| = sha. Most notably,
on accounting for the next-to-leading term in §g(k) [10], we have shown that
the finite temperature corrections to ng cancel out up to the second order
in T, at least.

The correction to the effective damping constant due to the breather-
soliton interaction has been calculated explicitly by working out Eq. (10)
of Ref. [9] in the breather gas picture. Now the leading term of the force
acting upon the soliton centre of mass is given by the first term on the r.h.s.
of Eq. (7) of Ref. [9]. At low temperature, we are allowed to take the limit
of ¢5(z, t) and the breather density (13b) for § — 0, whence the following
analytical expression for the breather contribution to the effective damping
constant I

18(T) =7+ FE (15)

»N

with I %4— = 4.8-1073. Correspondingly, the effective diffusion constant
o
is D B(T) = Dk + I/B3E%. In Ref. [9] the multiplicative factor I was
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computed numerically, % ~ 4.6 -1073. (Note that a misprint occurred
in Eq. (7) and (20) of Ref. [9].) Such a remarkable agreement proves the
equivalence between the phonon and the breather gas description of the
diffusive dynamics of a single soliton interacting with a heat-bath at low
temperature. Finally, the characteristic time scale for the soliton-breather
(or phonon) interactions to affect the single soliton dissipative dynamics [9],
g ~ (28/3%xI)'/3, turns out to be much shorter than the soliton lifetime
rr. This justifies our hydrodynamical formalism for treating the soliton
(antisoliton) gas at thermal equilibrium.

(c) interaction with the soliton (antisoliton) gas. Such a diffusive mech-
anism sets in at times much longer than 1y = 7p(0) = (Dgn3)™?, only. Let
us start considering a probe soliton (antisoliton) located in X (t). The effec-
tive potential which describes its interaction with the soliton (antisoliton)
gas at equilibrium with density p(z, t) is

o0

Vo(X, ) = / p(2, )Va(z - X)dz. (16)

—00

V4 represents the interaction between two solitons (4) with the same (4)
or opposite topological charge (—) placed at the relative distance R from
one another. For R > 1 (3]

Vi ~ +2Ege 2RI, (17)

At low temperature p(z, t) is expected to vary sensibly on a spatial scale of
the order of ny! (with ng < 1), so that V,(X, t) can be approximated by

Vo(X, t) = £2Eop(X, t). (18)

The probe soliton (antisoliton) experiences an effective force
dp
Fy(X,t)= :F2an—z(X, t) (19)

which, in the damped regime yp(T')7o > 1, drives it with the instantaneous
speed 5
2 Op
iu’[p] - :F;;.B— az
obtained from Eq. (7) after replacing 2z F with F,.
Local conservation of the topological charge leads to the equation of
continuity (10), where now

(X, ) (20)

(2 t) = ~DIp)92(z, 1) + slpllp(z ). (21)
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Asshownin (a)and (b), at low temperature D[p] ~ Dpg(T) and the equation
of continuity (21) can be rewritten in its final form

20 0)= 2z [0+ loter ] ples - (22)

The diffusion law for a soliton (antisoliton) gas at thermal equilibrium,
can be obtained by assuming random initial conditions. If we replace p(z, t)
with (p) + €(z, t) and assume for simplicity (p) = 0, as we did for the biased
case, Eq. (11), we see immediately that Jim (Az?(t)) = 2D st with

Ds(1) = Da(r) + 2. (23)

In the dilute gas approximation with ny = ng, (|p|) = 2no, whence Dg =
Dgp + no /98-

In conclusion, Eqs (15) and (23) prove that in the absence of external
bias the diffusive dynamics of a dilute gas of solitons (antisolitons) at low
temperature obeys the ordinary Einstein law. In order to appreciate the
relevance of our predictions, we remark that our results apply to models
with weak thermalization mechanism [8, 9], too. For instance, if we assume
suitable noisy boundary conditions for the SG string (like in the low im-
purity density model [11]), the same equilibrium densities for the soliton
(antisoliton) and the breather gas are achieved as in Eqs (5) and (13), re-
spectively. In this case, however, the breather and the soliton (antisoliton)
contributions to the effective dissipation constant are the leading terms, be-
ing D = 0 by assumption. Verification of such predictions lies within the
reach of certain simulation algorithms available at present {12] and, in fact,
preliminary evidence of deviations from the single-soliton diffusion law (8)
has been reported recently [13].
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