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Our purpose is to study the impact of chaos-generators on the dy-
namics of nonlinear systems. As an example two simplified models of
chemical reactions have been chosen with different coupling to the ex-
ternal noise. Numerical analysis together with analytic predictions for a
stationary situation show possibility of noise induced periodicity.

PACS numbers: 05.40.+j,05.45.-+b

1. Introduction

Nonlinear dissipative systems exhibit natural strong sensitivity to the
influence of external noise. It has been found both theoretically [1] and
experimentally [2] that the effect of external noise may lead to interesting
and nontrivial effects. Deterministically observed stationary states of the
system may be shifted and the noise may create new states which have
no deterministic analogue. Moreover, the noise can induce transitions be-

tween stochastic states [3] which may be further investigated in terms of
“stochastic rate laws” [4].
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The effect of multiplicative noise in oscillatory systems has been con-
sidered in a great variety of physico-chemical examples [5]. In the case of
a well understood electrical parametric oscillator [2], experimental results
reported stabilization of the non-oscillatory regime in the presence of noise.
The theoretical explanation of these findings has been based on the detailed
analysis of the Hopf bifurcation by use of a reduced system of equations
leading to a universal normal form [6]:

dz = (a+iN)z — Kz|z|?, (1.1)

where z is a complex amplitude and a, £ and K are real fluctuating pa-
rameters. Exact solutions to the Fokker—Planck equation describing the
dynamics ‘of fluctuations near instability has been obtained for a class of
models [5] by imposing white noise perturbations on the model parameters
a, £, K.

The goal of this paper is to study a similar type of a noise-induced
behaviour in “real” oscillatory system in which a and {2 are complex di-
mensionless combinations of physical and chemical parameters describing
the process of combustion.

We do not limit ourselves to a gaussian white noise idealization of fluctu-
ations in the parameters. Instead, we investigate dynamic properties of the
system perturbed by a more realistic shot-noise generator, whose statistical
properties and longtime behaviour are well known [7], [8].

In Section 2 we briefly present the model and discuss stationary prop-
erties of fluctuations imposed on the system.

The simulation results are represented and analyzed in Section 3. Some
comparative analysis of the dynamics with a more primitive model of a
chemical reaction exhibiting oscillatory states (Brusselator) is discussed.

Finally, concluding remarks are found in Section 4.

2. The model
The model consists of two consecutive first-order chemical reactions
a2, xBD gL, (2.1)
converting an initial reactant A into a final product B through a single

intermediate species X. The second reaction is exothermic and the rate
constant k;(7) obeys an Arrhenius temperature dependence

ta(T) = Hexp (- 25 (2:2)
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where E is the activation energy. For simplicity we have assumed that
the first reaction is thermoneutral and has zero activation energy (ko does
not vary with temperature); as for the energy transfer we have assumed a
Newtonian cooling (i.e., proportional to the temperature difference).

Dimensionless form of mass and energy balance for (2.1) leads to a set
of equations [9]:

d 8
;& = B~ raexp (m) )
%o = aexp (Tf'l}—e) -9, (2.3)

where § stands for the dimensionless temperature rise, a represents dimen-
sionless concentration of X and u, K, ¥ are parameters. In particular v
represents the ratio ¥ = RT,/E, where R is gas constant, T, is ambient
temperature and E — activation energy. A typical value of 4, being a
dimensionless measure of the activation energy, is less then 1.

The model can display oscillatory behaviour and the conditions for the
Hopf bifurcation require [6,10]:

o () e (i)

ut = K6, (2.4)

where 87, is a stationary-state temperature rise.
Direct analysis of (2.4) shows that Hopf bifurcation cannot occur if the
activation energy E becomes too small in‘comparison' with the thermal
energy RTy, i.e. if E < 4RT, or equivalently if v > 1 (¢f. Fig. 1).

Close to the bifurcation point the system (2.3) can be linearized to the

form:
()= G +(). o

where z, y measure excess of «, 8, from their stationary values ayg, f55. The
system can be easily transformed to the form (1.1). A real part of the
complex coefficient K can be expressed in terms of partial derivatives of
functions f, g:

1-
ReK = o ((fazs + foyy + Gooy + 9yus)

+%(fzy(fzz + fyy) - gzy(gzz + gyv) — fr2gzz + fy'ygyy))- (2’6)
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Fig. 1. Positions. of Hopf bifurcation points of the model (2.3} in k — u parameter
plane for v = 0.21. Outside the curve stationary solution for any parameter values
is a stable focus, inside — a stationary state is unstable and is surrounded by a
stable limit cycle.

According to the Hopf bifurcation theorem [6], periodic solutions of (2.3)
parameterized by p,x and 4 are stable limit cycles if Re K < 0 and are
repelling if Re K > 0.

With the full Arrhenius dependence, the model yields [11] the following
form of the stability parameter Re K:

1-6;, —27(3 - 26;,) - 81%6;,(4 - 6;,) — 67°6;2
8(1 + 70:3)6

From the above expression it becomes readily understood that some com-
binations of the dimensionless activation energy and the stationary-state
temperature rise may change the stability of the limit cycle emerging in the
system via the Hopf bifurcation. -

In the following we examine the behaviour of the system when the
parameter v fluctuates according to regular perturbations y(t) imposed on
its average:

Re K =

(2.7)

7(t) = 70 + oy(2) (2.8)
and

g(t) = ""Tc—o:ty(t) +¢,
£=r1/? Z zn0(t — n1), (2.9)

Teorr defines an intrinsic relaxation time of y, 71/2z,, stands for the intensity
of “kicks” £ whose distribution is assumed to be generated by a logistic map:

ZTny1 =Tzp =222 - 1. (2.10)
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For 7 — 0, Egs (2.9) (2.10) are known [12,13] to be equivalent to the
Langevin equation, provided initial z¢ is distributed according to some
smooth probability distribution and T has so called ¢-mixing property (in
particular, p-mixing property is inherent for the mapping (2.10)). The pro-
cess y(t) converges then to the continuous time Ornstein—~Uhlenbeck process
in velocities (and 7(t) represents an “integrated” O-U process in positions).

Statistical properties of y(t) can be easily verified [13] by use of a “prop-
agator” \:!

n—1

Un = Ayo +71/2 3" A1y,
=0
,
A=exp (- Tcorr) (2.11)

and integration is done between subsequent time steps nt < t < (n+ 1)1
(for extended analysis of the process (2.9), see e.g:[12]).

The first moments and correlation functions of z, can be derived
straightforward basing on the ergodic properties of the map (2.10) [7,8]:

(zn) =0,

(znl, zn;) = %6(7"1) n2) ’

(TnysTngs Tng) = % Z 6("*’1’"": + 1)6("*1,"3 + 1) y o (2.12)

P(i1,i3,i3)
where EP(iz,iz.ia) is the sum taken over 3! permutations of indices.
From (2.11) and (2.12) we get following expressions for the averages:
(y‘?t) = Anyo ’
2 1-—- A2n

() = (\"w0)" + 31757

1 - \3n 1 —)\3n
(W) = (\"a0)’ + 4 T i T A (213)

which in the long time limit (n — o) tend to:
(ya) =0,
r
1—exp (- 27/Tcorr) ’

T
(y?,)—*'%l_,\z =%

3/2 Az_____;_ 3/2 exP("ﬁrZ:n,)
1-A3 4 1—exp (-3 )

Teorr

(va) = 7 (2.14)

! By integrating (2.9) with (2.10) one gé’ts the recurrence relation used in our
numerical analysis pf the noise: yn41 = Ays + 71/32,.
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Fig. 2. Stationary probability distribution of ¥ = ¥(t) — ¥ = oy(t). Parameter
values: (a) — A =08, ¢ =01, r=1,(b) —A =05, 06=01,7=1, (c) —
A=0.1, ¢ =0.1, 7 = 1. Dashed line stands for function (2.16).

Asymptotically, stationary prebability distribution of y, Py(y), can be ap-
proximated by a Gaussian and deviation from it can be represented by the

Gram-Charlier expansion [14]:

Pi(y)= —-———-—77—-—&:(:(2;):‘?) (1'+ 1.2_0 el k(?/))’ . (2.15)



Effect of a Shot-Noise Generator ... 9

The functions H;, are Hermite polynomials, o stands for the dispersion
of y, and the coefficients ¢, are determined by the moments {(§y)"), y =

= {y)- _
Direct use of (2.14) yields:

P(y) =(— '\2)1/2 exp (- y*(1- %))
«(1+5 iz,\s (v*(1 = N - §(1 - X%)%y)

+ 513'('1—})\_2 -3) (4 (1 - 2% —12(1 - AB)y? 4 3)). (2.16)

Figures 2 (a), (b), (c) present stationary probability distributions of ¥ =
7(t) = 70 = oy(t) affected by fluctuations y(t) with distinct parameters
Teorr (¢f. (2.11)). One can see that for A ~ 1 formula (2.16) gives quite
satisfactory results, whereas for A — 0 the distribution does not remain
gaussian.

3. Impact of a shot-noise generator on the dynamics
of a Salnikov model

Typical behaviour of the model and its dynamic properties viewed in
functional dependence of the parameters u, x have been discussed elsewhere
[10], [15]. Our aim is to check evolution of the system in the domains of
deterministic determined regions os steady states (cf. Fig. 1)

For a value of 79 = 0.21 (chosen to fulfill the Hopf bifurcation criterion:
70 < 0.25), and 4 = 0.04, & = 0.015 (the conditions sufficient to get deter-
ministic, stable limit cycle oscxllatlons), we have operated with numerically
generated noise {y(t)} by varying values of o and 7¢orr (cf. Figs 3, 4).

The trajectories of the system (2.3); (2.8), (2.9) have been generated in
the iteration of about 10° steps. At the same correlation time of the noise
Teorr and by varying intensity of the noise o, we have observed emergence of
a stochastic driven stable limit cycle with the amplitude increasing with o.

Due to complexity of the system (nonlinearity of Eq. (2.3) does not
allow for a standard evalnation of a respective normal form close to the.
bifurcation point in the presence of noise), one is not able to determine
parametrically conditions for occurrence of a “stochastic Hopf bifurcation”.
In fact, exponential form of the kinetic equations would require an -infinite
series of moments used in the elimination of noise variable. We are assuming
therefore that the system is exposed to-a longtime limit form of the noise
whose stationary properties are then well known {13].

In particular, for a stationary noise {y(t)} we get:
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(r) =170,

)=+

o? T

2 l—exp(— 21-)’
3/2 exp(- Tf:")
1-exp (- 22)

1
l—exp(— ) (3.1)

3
() =R+ 3o

+ Eaz T
2 70 2T
Tcorr

For the parameters chosen
70 = 0.21 and & = 0.015 < k%, = (1 — 47)e~2 = 0.022,

which is the maximum value for Hopf bifurcation to occur at a given g
parameter, deterministic steady state is a stable limit cycle which looses
stability along the upper branch of Hopf bifurcation points? (bifurcation
degenerates). In fact, from (2.7) one gets change of the stability of the limit
cycle at the value 6}, = 9.344 (which is the upper branch of Hopf bifurcation
points) if at the same time x becomes smaller than the corresponding x*
obtained from Eq. (2.4), i.e. & < k* = 2.767*1073. The lower branch
of Hopf bifurcation points consists (for commonly chosen parameters) of
nonphysical states (6 < 0).

In the presence of noise, the determinant of the quadratic equation for
6%* (see numerator in Equation (2.7)) depends on averages (7), {(7%), (73).
For the set of parameters, 79 = 0.21, s = 0.015, g = 0.040, after imposition
of the noise, we observe appearance of a limit cycle shifted in the phase
space as compared to the position of its deterministic analogue (cf. Fig. 3).
The corresponding value of 47}, at which Re K changes the sign, can be
calculated by use of (3.1) and reads 8} = 22.3, i.e. the noise stabilizes the
position of a deterministic Hopf bifurcation point.

Figs 4 (a),; (b) present a different situation where before the noise has
been imposed on <, the system possessed a single stationary state, i.e. a
stable focus (now we have chosen vyp = 0.21, & = 0.015, u = 0.035). Noise
generated in 7 is shifting again the phase diagram of the system, so that one
observes a limit cycle induced by external noise at, effectively, lower values
of p.

? Upper and lower branches of Hopf bifurcation pointscan be derived from (2.1)
as the only solution for which x.= 0.
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Fig. 3. Phase portrait of the system (2.3) in the region of limit cycle oscillations
(# = 0.040, x = 0.015, 4o = 0.21) in the deterministic and stochastic case.

(a) — deterministic LC, x — X =0.1, ¢ =005, r=1, *—A=0.1, 0o =
0.1, 7= 1. (b) — deterministic LC, A — A =0.1, ¢ = 0.05, 7 =1, x —

A=08, c=0.05 r=1.
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Fig. 4. Phase portrait of the system (2.3) in the region of one stable stationary
state (4 = 0.035; x = 0.015, vy = 0.21) in the deterministic and stochastic case.
(a) OJ — deterministic stationary state, + — A = 0.5, 0 = 0.1, 7 = 1, * —
A=0,0=0.1 =1 (b) [0 — deterministic stationary state, + — A =0.5, o =
0.1, 7=1,*—A1=05,0=0.08 r=1.
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This qualitatively new characteristic of the system is due to the very
coupling of the dynamics (2.3) to the external noise in 4. It is only because
of the highly nonlinear form of the evolution equation (a(t), 6(t)) that
one observes occurrence of qualitatively different steady states in the region
where, deterministic, their emergence would be forbidden. This behaviour is
by no means a general phenomenon; instead, it is fully generic, depending
on a particular form of a nonlinear evolution equation and the form of a
coupling to the noise.

As a counter-example let us use the same type of noise to check sta-
tionary behaviour of a less complex model of a chemical reaction, i.e. the
Brusselator, whose dynamics is also known to produce limit cycle oscilla-
tions. The model is described by the set of equations:

X=A4A-X+X% - BX,
Y =BX - X?%. (3.2)
For the sake of clarity we chose A = 1. The system (3.2) is equivalent to:
é=y+2zy+z2y-z3,
y=-z, (3.3)
where z and y determine variations from steady state (X,,Y;) = (4, B/A) =
(1,1) known to undergo Hopf bifurcation for B, = 1+ A% = 2. Let us assume
further that B fluctuates, B = B, + v = 2 + 4, where v is described by
(2.8), (2.9) with v = 0.3 (3.3) reads then:
i=y+22y+2iy-2°,
y=-z. (3.4)
To analyze behaviour of the system close to the Hopf bifurcation point,

we restrict ourselves to the flow of (3.4) within the center manifold. By use
of a smooth coordinate to produce eventually Eq. (1.1) with:

azl,
2
_ —13- 1/2
!)—(1 4) )
3 7
ReK = -—g - ﬁ'y. (3.5)

As it can be easily seen from the form of Re K, stationary (longtime limit)
fluctuations of 7(t) are not going to change stability properties of the emerg-
ing limit cycle provided intensity of perturbations is not too big to change
the character of the bifurcation point (¥ has to be smaller than 4).

Fig. 5 presents results of the simulation of (3.3) with the noise of the
form (2.9) imposed on the parameter B = B, + 7. Obviously, this time the
noise stabilizes the limit cycle observed in the purely deterministic case.
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Fig. 5. Limit cycle oscillations in the Brusselator model; deterministic ~— —— ,
stochastic simulations — *. Parameter values: A= 1, 75 = 0.3, B = 2.3.

6. Conclusions

The concept of noise-induced transitions has achieved wide interest and
has found numerous applications in theoretical studies of the effect of ex-
ternal noise in nonlinear systems. On the other hand, domains of chaotic
motions embedded in mechanical processes driving time-evolution of a phys-
ical system are known to influence its dynamic properties [13], [7] in the
similar way as it is observed in the presence of noise. This rises the question
when and under what conditions chaotic motions can be source of a random
behaviour and wether that could imply existence of a unified theoretical de-
scription in terms of mechanics and the theory of stochastic processes.

Theoretical and numerical investigations presented in this paper reveal
richness of behaviours which so far remain unexplored and would require
further experimental justifications. Noise, understood as a limit of a purely
deterministic dynamic process (with the inherent chaotic regimes) is not
simply a source of a disorder in a nonequilibrium system. Its presence may
induce (even at relatively low intensities) quite organized behaviours and
transition phenomena.
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