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VARIOUS FORMS OF RADIAL EQUATIONS
FOR THE DIRAC TWO-BODY PROBLEM*
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The first- and second-order radial equations, derived from the two-
body Dirac equation (called also the Breit equation), are described. A new
Klein~Gordon-type form of the second-order radial equations is reported
on. This is convenient for numerical calculations and may be also useful
for a general discussion of the order of energy levels is quarkonia. Beside
the usual perturbative case of weak Coulombic potential, the less familiar
case of strong Coulombic potential is briefly discussed.

PACS numbers: 11.10. Qr

In this paper, we return to the two-body Dirac equation and its first-
and second-order radial equations, the latter arising when redundant radial
components of its wave function are eliminated from the former. We report
on new, Klein-Gordon-type, second-order radial equations derived from the
two-body Dirac equation. These have a convenient form for numerical cal-
culations and may be also useful for a general discussion of the order of
energy levels in quarkonia, following the method developed in the case of
Schrodinger equation [1] and Klein-Gordon equation [2].

The relativistic wave equations for a system of two spin-!/zparticles
such as a leptonium or quarkonium, interacting through a vector potential
V, resists an exact analytic treatment [3] because the Sommerfeld polyno-
mial method of solving the second-order differential equations [4] does not
work in this case. For the Coulombic potential V = —a/r it is caused by a
singularity at » = —a/E that, though regular, appears in the analytic ex-
tension of the respective radial equations in addition to the familiar regular
singularity at » = 0 and irregular singularity at r = oo.
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The two-body Dirac equation (called also the Breit relativistic equation)
[5]
[E-V(7) - (61— &2)-F~ (B + B2)(m+ 35(P)]¥(H =0, (1)

where 7 = 7} — T2, P = p1 = —p2 and m = m; = mg, offers the simplest
relativistic wave equation for a system of two spin-!/;particles with equal
masses, interacting through a vector potential V() and a scalar potential
S(7) in the centre-of-mass frame. Although, in contrast to the much more
complicated Salpeter equation [6], it does not include the hole theory, one
can argue that in the case of static potentials V and § it is pretty well
applicable (deviations from the hole theory being manifested only when the
nonstatic corrections depending on &; are added to the static potentials and
treated beyond the lowest-order perturbative calculation [5,3]).

In the case of central potentials V(r) and S(r), when using the mul-
tipole method of eliminating the angular variables 7], one can split the
Eq. (1) into the following three independent subsets of radial equations [8]:

(i) subset !j; with total parity n(—1)7,

HE-V)$ ' = (m +35)¢°,
HE-V)$ +i(d+ 2)ep+i¥ g, = (m+ 18)9,
HE-V)¢p +ife° = 0,
3(E - V)py, - ¥ D g0 = 0, (2)

(ii) subset 3(j F 1); with total parity n(—1)7+1,

HE-V)xe +ifx’ = (m+ 185)x%,
F(E-V)xr - i@x" = (m+ 18)x%,
YE -V + Y0 g0 = (m+ 18)xE,
HE-VIXg - (& + 1ok = (m+ 35)xz,
FE-V)x = 0,
HE-V)IX*+i(£+Yxe + i@n = 0,
$(E-V)éum = 0,
HE- V)b + Y0 L (L4 )y) = 0, (3)
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(iii) subset 3j; with total parity n(—1)7 ( > 0),

HE-V)xm = (m+ 38)x%
HE- Vit Y00 4 (4 1)e) = (m+ 30
UE- V) + YD 0 = 0,
HE-V)¢) - (#+ Dy = 0. (4)

The spectroscopic signature 22+1{; of the subsets (i), (ii) and (iii) refers
to the “large-large” wave-function components involved. The total parity
is nﬂlﬂg(—l)' with the eigenvalues 3132 = *1. For a fermion-antifermion
system n = —1.

5.5
Denote by ¢;i;: (3**11;) the radial components of wave function ¥

corresponding to the states 2°+1l; (where s = 0, 1, and I =3 JF1),
additionally labelled by the elgenvalues B182 = £1 and 7172 41 (of
course, the matrices §182 and 71 72 commute). Then, one gets

¢ } = 1/’3:(1.7.)),

,/ (6 - 15) + \/ ¢*(( +1)5),
\/ 2]]—:_111/1:‘:( (- 1)1) + V T 1¢:t( 7+ 1).1)

AR
)
¢g,}

= v=(’5) (5)
and
%} =vici,
) = [t C- 0+ ZEReECa ),
)= 2 ut06 -0 + e ),
b= ut i) (©
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Note from Egs (3) that ¢ps = 0 and x = 0 (in the case of m; = mz). One
can see from Eqs (5) and (6) that the “large-large” components (superposed
with the “small-small” components) are contained in ¢ and ¢° as well as
XE> XL, Xum and x%&, x%, x%s (which correspond to 8182 = +1). Other
¢’s and x’s (corresponding to §182 = —1) are superpositions of the “large—
small” and “small-large” components. The labels E, L and M of s =
1 components stand here for “electric”, “longitudinal” and “magnetic” to
mark some analogy with the multipole expansion of the electromagnetic
field.

Eliminating from the subset (2) all components but ¢° one obtains the

equation

] 1 dvd
[—(E-—V)2+———r——-— (m+ ls)2+m¥d—r]¢° =0, (7)

where s = 0 and [ = j. Similarly, from the subset (4) one gets the equation

1 . 1 d  j(+1) 1 en2 1 dved 1\] .o, _
[4(E~V) t+ r-r—z—(m+2S) +E-V dr (dr+r) xm =0,
(8)

where s = 1 and ! = j > 0. From the more complicated subset (3) one

deduces in the simplest case of j = 0 (where xz =0, x2 =0 and ¢3, =0,

while xg, X} = ¢$(3Po)) the equation
142 2

Lo yye 19 2 1632
[4(E V)+rdr2r r2 (m+325)" +

()]0 @

where s =1 and I = j + 1 = 1. In the general case, eliminating from the
subset (3) the components x% and xr by the algebraic equations contained
in Eq. (3), one obtains the system of four first-order radial equations:

d
[3(E - V)? = (m + 15%|xp + H(E - V)Lix’

(m+385)¥=— j(’;ﬂ)rﬁ"

M

[1E - V)= (m+ 1)) - 3E- V) + 1) ohe
ViGED, o
[}(E -y -2t 1)] i - HE-V) (o D)xe

= (m+35) XL Dy

r

= (m+ 35)

]
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[%(E—V)z J(Jr+1)]¢M+2(E V)( 1)X(I),

r

=—(m+ %S)MXE ; (10)

where s = 1 and | = j F 1 for “large-large” components. In the case of
j = 0 this system gives Eq. (9) by further eliminating x°.

All radial components of ¥(#) discussed above are so normalized as ra-
dial components of the (two-body) Dirac wave function should be. There-
fore, when divided by /E — V(r), they are normalized with the weight
E -V (r), like radial components of a (two-body) Klein-Gordon wave func-
tion. For such truncated functions, Eqs (7), (8) and (9) lead to the following
new radial equations:

for 1j; states

ar s 2
[ (E V)Z dd J(]+1)_(m+%s)2_%( %‘F, )

r2

=0, (11)

e

r
"E-V vVE-V

v | 24V
F'*'— ,] r¢?

for 3j; states (j > 0)

v 2
1 2 dz' j(j t 1) . 1 2 3 dr

r2 E-V
a2V
_1 T _r;_t_g\_ff_zo (12)
2E-V|JE-V

and for % P, states

.1_(E_V)2+d_2_1 (m_*_lg)?_?_ % 2
4 dr?2 g2 2 4\E-V

T G T 14 [

dr rdr

— — = - 1
2 E-V } BV 0 (13)



48 W. KROLIKOWSKI

When applying to Eqs (11), (12) and (13) the perturbative approach, one
may use the convenient identity

o0

/rzdr (E - V)1 d F

/ VE—-V rdr? JE-V
i r2drF|= 14 L(_%F 2 F 14
/ lrat ti\E-v (14)

0

valid for F(r) real.

If in these equations the two last terms are omitted, they go over into
the radial equation corresponding to the (two-body) Klein-Gordon equation
with the potentials V' (r) and S(r). Then, in the case of Coulombic potential
V = —a/r and S = 0 one gets for bound states the familiar energy spectrum

bt

_ a2 17z _1 . 142 203
EKG—Zm[1+(nr+7KG) ] with yke = 3 + [(7 + 3)° - («/2)?] %,
(15)
where n, = 0,1,2,... and j = 0,1,2,... . Thus, in general, Eqs (11), (12)
and (13) can be viewed as radial equations corresponding to (two-body)

Klein—-Gordon equations with some energy-dependent effective interactions.
For instance, such an interaction in Eq. (11) is

2
1 1, 1., 3( % 1 AV
T=3BV -3V +mS+4S +4(ﬁ teg-v U9

In the case of Coulombic potential V = —a/r and § = 0, Eq. (16) gives

l1aE 1a® 3 a?

I "= iA@E Ty (17)
since AV = 47wad3(7) and r63(7) = 0 (unless (L)AV/(E — V) in
Eq. (16) is perturbatively replaced by (}2)AV/2m = (xa/m)63(i"), while
(3/a)(dV/dr)?/(E — V')? is perturbatively neglected). So, in the Coulombic
case Eq. (11) describing parastates takes the form:

1, @ jG+1)—(e/2)* , laE
ZE+dr2— r2 —m+2r
3 a? r¢?

" 472(Er+ a)? VE+ ofr =

(18)
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This equation implies for » — 0

rg®
VE+ar

and for » — o0

~rTwithy = 3+ (145G +1) - (a/2)/2  (19)

.
vVE+alr

the latter when bound states are considered. By the substitution
r¢?//E + a/r = rYexp(—xr)g one can transform out from Eq. (18) the
behaviour of ¢° at » — 0 and r — oo, obtaining the equation for g:

d? v d laE-4ry 31 a 2
{p“(:-")zﬁa—?—*zrz[l‘(Er+a) ]}9""' (21)

Here, the last term can be rewritten as (3/4)E(Er + a)/[r(Er + 2a)?].
Hence, one gets g ~ 1 for r — 0 and

e " with k = [m? — (E/2)*]'/?, (20)

mrA(14 2 ) witha=2E o 4 A(4- _3
gt (1+2m)w1thA— -1, a=Ad-1+2m) -7 (22)

for r — oco. Thus, r¢°/\/E + ajr ~ r®F/4%exp(—kr) when r — oo.

: -1/2
Evidently, E = 2m [1 + (a/2)% /(A + 7)2] / is the exact form of energy

spectrum, but A stands here for an unknown parameter (dependent on the
state).
It is not difficult to derive from Eq. (21) its other equivalent forms:

d? 1KG d 1laFE - 4kvkg
[zﬁ“(T"‘)zﬁ 2

3 a?

s |Gy =
4r2(Er+a)7]r g=0 (23)

as well as

£ 7-3 \d laE-ax—} 7-3
[Eﬁ+2(.—r—-—n)c_l;+-2- r T2

-

+r(E:+a)(-;_r l;_%_")}fzo (24)
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d? d laF-4
[ (7KG K) - +§0 rn‘YKG

a 4 we-—1_ v—3-me s _
NP S

1
where f = VEr+ag = r2,/E+afrg. Here, r¢* = rYexp(—«r)
1
X /E+ afrg = r7"2 exp(—&r)f = r7KG exp(—&r)r’ " 277KG f Note that

f ~ 1 both for r — 0 and r - —a/F, while f ~ r"H'% for r — oo (cf.
Eq. (22)).

Since in the analytic extension of Eq. (21) there is a (regular) singularity
at r = —a/E in addition to the familiar regular singularity at » = 0 and
irregular singularity at » = oo, this equation can be reduced neither to the
hypergeometric equation nor to the confluent hypergeometric equation. In
consequence, there is no argument to look for its exact bound-state solutions
g in the form of polynomials and so to make the power A in the asymptotic
formula (22) equal to n, = 0,1, 2,... . It seems that numerical methods
remain as a way out, if the coupling constant a becomes too large to keep
the perturbative expansion in a reliable. Of course, a general qualitative
discussion like that in Refs [1, 2] may be useful for various potentials V()
and S(r).

Nonstatic corrections to the Coulombic potential, responsible for hfs of
energy levels modifying considerably their fs, are another serious problem.
As is known, in order to obey the hole theory the Breit terms must not
be treated beyond the lowest-order perturbative calculations, if handled in
the framework of the two-body Dirac equation [5, 3]. On the other hand,
the Salpeter equation, though fully consistent with the hole theory, is much
more complicated. Such are also the resulting radial equations (cf. two last
Refs [6]).

For an illustration, in the case of Coulombic potential V = —a/r and
S = 0, the perturbative energy spectrum for parastates described by Eq. (7)
or (11) has the form

E=2m-—

a’m  a*m |3 n(1-6j)

S- 0(a®). 2
ek ] +0(a") (26)
For j > 0 it coincides up to the order O(a*) with the Coulombic spectrum
(15) following from the (two-body) Klein—Gordon equations with the po-
tentials V. = —a/r and § = 0. The lowest-order nonstatic correction for
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parastates from the Breit terms

Vg = o~ (& - d + (&1 - #)(dz - 7)] (27)

atm n(3+ §j0) 6
Eg = Tond [2—-—1_—:%—-—]-{'0(0 ). (28)
This gives
E+Ep=om-Sm om(ll_ n Y, 500 (29)
B= an? " 4nt \16 j+1 ’

what is the well known perturbative result for parastates [5]. Radiative
corrections come in the order O(a®) {9].

The influence of the fatal singularity at r = —a/FE can be neglected
not only in the weak coupling limit of a/Er — 0, but also in the less
familiar strong coupling limit of a/Er — oco. In the latter case, where
(Er+a)™! - a~! and

(7‘2)[1712‘“;?(_15%?)] - (7‘g)r(ErE+a) - (“"g)'fi

Eq. (24) tends to

d? d 1(a+3/a-2 E-4
[8—"3'{-2(%——&)2;-{- _2_(01 /a :/a) my]f: 0, (30)

implying the energy spectrum

1
2

E= 2m[1 + (%a + ?:l/ra+—727/a)2} 7 (31)

where n,. =0, 1,2,...and j = 0, 1, 2,..., while v is given as in Eq. (19).
This formula is valid asymptotically in the strong coupling limit, but, on
the other hand, a = 2 at most, as a = 2 is here the Klein—paradox critical
value at j = 0. In the case of a = 2, for the ground state (n, = 0, j = 0)
Eq. (31) gives Eg = 0.632m.



52 W. KROLIKOWSKI
REFERENCES

[1] B. Baumgartner, H. Grosse, A. Martin, Phys. Lett. 146B, 363 (1984); A
Martin, J. Stubbe, CERN preprint, TH. 5843/90 (1990).

(2] H. Grosse, A. Martin, J. Stubbe, CERN preprint TH. 5914/90 (1990).

[3] Cf. e.g., W. Krélikowski, Acta Phys. Pol. B20, 119 (1989).

[4] For a monograph cf. A. Rubinowics, Sommerfeldsche Polynommethode, Sprin-
ger, Berlin-Heidelberg-New York and Polnischer Verlag der Wissenschaften,
Warszawa, 1972,

[5] Cf. e.g., H.A. Bethe, E.E. Salpeter, in Encyclopedia of Physics, Vol. 35, Sprin-
ger, Berlin-Gottingen-Heidelberg, 1957. .

[6] E.E. Salpeter, Phys. Rev. 87, 328 (1952); cf. also W. Krohkowskl, J. Rzewuski,
Nuovo Cimento 2, 203 (1955); 4, 974 (1956); G. Feldman, F. Fulton, J. Town-
send, Phys. Rev. A8, 1149 (1973); W. Krélikowski, Acta Phys. Austr. 51, 127
(1979); Phys. Rev. D29, 2414 (1984).

7] W. Krélikowski, Acta Phys. Pol. B15, 131 (1984) and references therein.

8] For other methods of eliminating the angular variables from the Breit rela-
tivistic equation ¢f. W. Krélikowski, J. Rzewuski, Ref. [6]; Acta Phys. Pol.
B7, 487 (1976); H. Joos, P. Leal Ferreira, A.H. Zimmerman, Nuovo Cimento
4, 57 (1957); P. Leal Ferreira, A.H. Zimmerman, Ann. Acad. Bras. Cienc.
(Brasil) 30, 281 (1958).

[9] Cf. e.g., C. Itzykson, J.-B. Zuber, Quantum Field Theory, McGraw Hill, New
York- ... -Toronto, 1980.

[
[



