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Time evolution of hoop-like configurations of the classical string with
rigidity is studied. Emphasis is put on effects which are due to the pres-
ence of higher derivatives in the theory. Trajectories close to Nambu-—
Goto trajectories and tachyonic trajectories of the string are found. It
is pointed out that the dynamics of the hoop-like string with rigidity is
probably non-integrable.

PACS numbers: 11.17.+y

1. Introduction

In the present paper we continue our studies of the classical string with
rigidity. Recently, this kind of string has been considered in connection
with a string-like limit of vortices [1-6], low energy QCD [7,8], and statis-
tical physics of random surfaces [9-11]. In the previous paper [12] we have
considered some rather formal problems of Lagrangian and Hamiltonian
formulation of dynamics of the classical string with rigidity. In the present
paper we study trajectories of this string in four-dimensional Minkowski
space-time,

Equations of motion for the classical string with rigidity are very compli-
cated. They form a set of four, nonlinear, partial differential equations with
derivatives of the fourth order for four functions X #(r,0), n = 0,1,2,3, of
the two variables 7 and o. Here o € [0,27] is a parameter along the string,
and 7 is the evolution parameter. We assume that the string is closed, i.e.,

X#(r,0) = X#(r,2r)

* Paper supported in part by the Polish Ministry of Education grant
Fiz.UJ 16/1991.
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for all 7. Because the model possesses local reparametrization invariance,
we have also to choose a gauge condition. Models with equations of motion
of the order higher than second were considered many times in the past,
see e.g. [13-15], and always they were rather problematic. We regard the
string with rigidity as an approximation to a vortex. One might wonder
whether some new terms could be included in the Lagrangian of the model
to the effect that the model would be more satisfactory. Till now no such
improvement of the string with rigidity model is known to us.

In order to simplify the problem we adopt a specific Ansatz for the
trajectories of the string. Namely, we consider only closed strings of hoop
shape with variable radius of the hoop. We also restrict possible motions
of the center of the hoop to a straight-line, e.g. to the z3-axis. Thus we
abandon many other classes of trajectories. However the set of trajectories
we are left with is sufficiently large to allow for nontrivial dynamics. As
we shall see, there is a coupling between the radius and the position of the
center of the hoop degrees of freedom. Such coupling is absent in the case
of Nambu~Goto string. Because of this coupling the hoop-like string with
rigidity can have tachyonic trajectories.

The main our findings in the present paper are the following. We find
a family of solutions which are close to Nambu-Goto trajectories in a finite
time interval. These solutions depend analytically on a rigidity parameter
a. We give some characteristics of the tachyonic trajectories of the string.
We point out that the equations of motion for the hoop-like string are of
nonintegrable type.

In Section 2 of our paper we briefly recall basic formulae for the clas-
sical, closed string with rigidity, and we present the hoop-like Ansatz for
the trajectories of the string. In Section 3 we show that the equations of
motion for the hoop-like string can be written in the form of a nonintegrable
set of Newton-type equations of motion with the second order derivatives
only. Section 4 contains a discussion of the radial motions of the string.
In particular, we present there the family of solutions which are close to
Nambu-Goto trajectories. Section 5 is devoted to the tachyonic solutions.
Section 6 contains several general remarks with which we would like to
conclude our investigations of the string with rigidity.

2. Basic formulae for the string with rigidity and the Ansatz
Lagrangian for the string with rigidity has the following form: [7,9]

L =+/=g(—7+aAX*AX,), (1)

where a and v > 0 are constants. Parameter a is called the rigidity pa-
rameter. For a = 0 we obtain the Nambu-Goto string. In formula (1)
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g = det(gqp), where

9ob = 0a X 0 X, (2)
is the metric tensor on a world sheet of the string, and
AXF =1, (\/——gg“bBI,X“) (3)
Ve

is the Laplacian of X #(7,o). We use the compact notation

0 1 9

u =T u =o, BGEW'

We assume that g < 0.
Euler-Lagrange equation of motion following from Lagrangian (1) can
be written in the following form [12]:

(7 - aAXYAX)AX, + 20 (D(AX,) - 9 X% X, p0(AX,))

~40g°%g*4(AX,) s X%Va X, 0 = 0, (4)

where
Va.Xy,d = -Xu,ab(6z. = ngX::iXu,c) (5)

is the covariant derivative of X, 4 corresponding to the metric g,; [12]. It
is clear that any solution of the Nambu-Goto equation,

AX, =0, (6)

also obeys equation (4).
Conserved energy-momentum and four-dimensional angular momentum
M, of the string are given by the following formulae [12]:

2r

P, = /dap“, (7)
0

2r
M, = /da’(Xp,Pv + 2'a\/:'g'(Xu,oy°° + 2Xv,1901.)AX#) —(pev), (8)
0

where

Pu =vV—99"%(7 — aA X AX%)X b + 2080(v/—99°° A X )
+20v/=gg°*g* A X X5y Xy o + X} X2 o DX ,). (9)
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We see from formulae (7), (8), (9) that the energy-momentum and the
angular momentum of the string with rigidity in the case of Nambu-Goto
trajectories, i.e., the ones obeying equation (6), have the same values as for
the Nambu-Goto string described by Lagrangian with a = 0. In this sense,
the Nambu-Goto string is fully embedded in the model of the string with
rigidity.

It is clear that equation (4) is too complicated for a general analysis
of its solutions. In particular it is not known, whether there exists a gauge
choice which would linearize equation (4).

In the following we will consider the string with rigidity of the circular
shape, with the center which can move along the z3-axis. The radius of the
circle may vary in time. The appropriate Ansatz for the X *(r, g) functions
has the following form:

(X*(7,0)) = (r,r(7) cos o, 7(7) sin g, 2(T)). (10)
We have chosen the evolution parameter 7 to be the physical time z9,
r=2" =t

In the case of Ansatz (10) the induced metrics (2) has the simple diagonal
form,

(gab) = (hzét) —rg(t)) ’ (11)

where
h? = 1-¢#% 32, (12)

Notice that g,; does not depend on o.

For r = 0 the metric tensor is singular. Therefore we restrict the range
of the r variable to r > 0. In the case of metric tensor (11) the Laplacian
Af of a function f(t,0) is given by the following formula:

af= 200 (Lo0f) - 503F. (13)

Direct derivation of equations of motion for the hoop-like string with
rigidity by inserting Ansatz (10) into Eq. (4) is quite tedious. We prefer
to proceed in the following manner. First, adapting a reasoning presented
by S.Coleman [16] we prove that we may first insert the Ansatz (10) in
Lagrangian (1) and to consider only the two Euler-Lagrange equations for
r(t),z(t) following from such reduced Lagrangian. Next we shall use canon-
ical formalism for theories with higher derivatives, [17,18]. In this way,
instead of two equations for r(t),2(t) with the fourth order derivatives with
respect to time we shall have a set of simpler equations of motion with
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derivatives of the first and second order. Canonical formalism for the string
with rigidity in the general case is discussed in papers [19,12].
Let us consider action § for the string with rigidity,

i3 2%
S = /dt/da'[,,
t 0

where Lagrangian £ is given by formula (1). General variation of the action
S can be written in the following form [12]

ta 2x
S = /dt/da’]ﬁjz" + boundary terms, (14)
4 0

where R, denotes the Lh.s. of Euler-Lagrange equation (4). In our case the
boundary terms vanish because we consider the closed string and because
we require that

§z¥ =0 = éz*
at the ends t3,t; of the considered time interval. It is easy to check that for

our Ansatz (10) R, depends on ¢ in the same manner as z* does, i.e., R
and R3 are constant with respect to o,

Ry = f(t)coso, Rz = f(t)sino, (15)

where f(t) depends on r(t), z(t) and their derivatives. Notice that the de-
pendence on ¢ has the form of particular terms from Fourier expansion. Also
a generic variation §z#(t, o) which obeys the imposed boundary conditions
can be written in the form of Fourier series

szt (t,0) = 8 (t) + i (6ak(t) cosna + 8b4(t) sinna). (16)

n=1

Because different terms in the Fourier series are orthogonal to each other
with respect to the integration f02 ™ do, nonvanishing contribution to the
r.h.s. of formula (14) give only the following terms from the expansion (16):

§c* with pu=0,3, da}, 6b3 = da].

The relation between §a} and 6§52 is due to the special form (15) of Ry
and R,. Therefore it is sufficient to consider variations §z#* of the following
form:

(62*) = (6c°(t), 8a}(t) cos o, da](t) sina, 6c3(t)) . 17
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Variations of this form are more general than the variations which follow
from the Ansatz (10) by varying =(¢t) and z(¢). In the latter case

(62*) = (0, r(t) cos o, r(t) sin e, §2(t)) .. (18)

Variations (18) leave Ry arbitrary, while variations (17) lead to the equation
Ry = 0. However, this equation follows from a Noether identity coming
from the reparametrization invariance of the action §, and from equations
R; =0,1i=1,2,3. The required identity has the following form [12]

R,i" = 0. (19)

It is obeyed by all smooth functions z#(t, o), irrespectively whether do they
satisfy the equations of motion or not. For our Ansatz (10) this identity
implies that

R, = #(1)f(t) + 2(t)R°.

Therefore it is sufficient to consider equations
f(t)=0, R*=0.

These equations follow from variations (18).

Thus we have shown that we may insert the Ansatz (10) into Lagrangian
(1) and to compute Euler-Lagrange equations for the functions »(t) and z(t)
from such reduced Lagrangian. The reduced Lagrangian has the following
relatively simple form:

22
L=—(yr+ %)h - %{ - %g (1= 2)# + (1 — #2)35? + 27373)
- i—‘: (1 = 22)F + #23) . (20)

It is easy to check that the last term on the r.h.s. of formula (20) is the full
time derivative of lzﬁ In a theory with Lagrangian involving the second
order derivatives such term does not contribute to equations of motion and
to Hamiltonian. Therefore we drop it out. Thus the final form of the
Lagrangian is

ar?

v a
L——(77‘+ T)h_ rh

- 5 (1= 2) + (1 - )22 2i5),  (21)

where )
h=(1-7%-3%)72,
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Euler-Lagrange equations following from this Lagrangian have the following

general form
d? (8L d (0L 6L
i (a7) - & (52) + 3o (22)

where ¢1 = r, g2 = 2. These equations are nonlinear and they involve
derivatives of the fourth order with respect to time.

For o = 0 we obtain reduced Lagrangian for the hoop-like configurations
of the Nambu-Goto string:

1
Lo = —yr(1 - 7% — 2%)2, (23)

3. Equations of motion for the hoop-like string with rigidity

Let us first take a look at the Nambu-Goto case. Euler-Lagrange equa-
tions following from Lagrangian (23) have the following form:

dp, _ dp, _ 2 _ =21}
P 0, T o -2, (24)
where
p: = E%, p, = E7, (25)
and )
E = yr(1-#% - 2%)"3 (26)

is the conserved energy following from Lagrangian (23). It is related to the
conserved energy En_g of the hoop-like Nambu-Goto string by the formula
En_g = 2xE. Formula (26) for the energy indicates that entire energy of
the string is due to the string tension. There is no intrinsic mass attributed
to the matter the string is made from. It is easy to see that Eqs (24) imply
42

2z = const, 74 BT = 0. (27)
Thus, the radius of the hoop harmonically oscillates with the frequency
w = v/Ey, which depends on the initial data. In particular, if 2 = 0 and
# = 0 at the initial instant of time ¢t = 0,

- t
w=ryl, r(t) =rocos - (28)
0

where 7g is the initial radius of the hoop.
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In contradistinction to the Nambu-Goto case, equations of motion for
the hoop-like string with rigidity cannot be explicitly solved. Below we show
that these equations are equivalent to a system of three ordinary differential
equations with derivatives of the second order. We are familiar with such
Newton-type systems from classical mechanics of point-particles in three
dimensional space. In the case of hoop-like string with rigidity the system
turns out to be nonintegrable. The Newton-type system is obtained with
the help of canonical formulation of theories with higher derivatives [17,18].

As the first step, we define the canonical momenta

oL oL
Pz = 33’ Pr = 7’ (29)
dL d (9L dL d (3L
r=g-a(%) r=7-a(%) (30)
and the Hamiltonian
H = #p, + ip; + #Py + iP; — L. (31)

In Hamiltonian (31) # and Z are regarded as functions of the variables
r,2,%,z,pr and p., obtained by inverting relations (29). At this point a
problem of constraints might appear. This problem is not present in our
case because assuming Ansatz (10) we have implicitly fixed the gauge. In
general, Hamiltonian (31) can depend on the variables r,z,#, z, py, p, Pr
and P, which are regarded as independent canonical variables. In our case
(Lagrangian (21)) the Hamiltonian does not depend on z, and the depen-
dence on P, and P, is explicitly seen on the r.h.s. of formula (31) — it is
linear. Hamilton equations of motion have the following form

é—i}?_ ,'._QI. fz'_a_H ;:—GH (32)
— 9P, TP, T ap, ' op,’

; OH 8H . OH .,  8H

=g =g =gy =g (3

This system of equations is equivalent to the Euler-Lagrange equations.
In the case of Lagrangian (21)

pr = 2ar ((1 )i+ FiF), (34)

2ar ((

Pr = 1- zz)r + rzz) (35)

By inverting these relations we obta.m

s B .
i=o— (Fipr - (1- *)p2), (36)
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. k.. .
r = 5&—1' (szz — (1 - Tz)pr) ) (37)

and

H =#P, + P, + vyrh + ;‘%(1 ~ 1?)

h3 . . .s
~ dor ((1 — zz)pz +(1- rz)p,z. — 2rzp,.pz) . (38)

The first two of Hamilton equations of motion (32) are merely trivial iden-
tities, the next two are identical with formulae (36), (37). Four equations
(33) can be written in the following form

P, =0, (39)
. 1

P.=~2vyh+ ;(H - 2P, - 7.'P1')’ (40)
_ 33 s R

Pz =—.Pz+h—2(H—rP,.—sz)— EP:("'P‘I"‘“ZPZ)

. . 22
-t o
br == Pot Se(H =Py = 2P2) = I p. (i, + ip2)
h2 r z 2ar r r Z
h rh rh3’

(42)
where H is given by formula (38).

The Hamiltonian H is constant during the motion, as well as P,, see
Eq. (39). Multiplying these integrals of the motion by 2x we obtain the
energy and the z3 component of the momentum for the string with rigidity
with Lagrangian (1). With the help of the formulae (7)-(9) it is easy to
check that the only nonvanishing integrals of motion for the string with
rigidity, which follow from Poincaré invariance are Py = 2xH, P; = 2« P,
and o

ar
Mys = 21r( —tP, +zH + _h_3-z)

The rather complicated set of Eqs ((36),(37),(40)-(42)) can be signif-
icantly simplified. The time evolution of the z variable can be computed
from formula (43) regarded as the second order differential equation for z(t):

(43)

212 =a”! (th -zH + yz—:i) (44)
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Relatively simple equation for the function r(¢) can be obtained in the fol-
lowing manner. Using equation (37) we obtain

d (2ar, .y e . .d,, )
i\ ) ="pr + #(#pr + 2pz) + ra(rpr + 2p,).

Next, we can eliminate p,,; p,, ¥, Z on the r.h.s. of this formula with the help
of Egs (36,37,41,42). We obtain

d [2ar . . 2af
E(h_3r)=Pr~Hr+Tf;_' (45)

Equations (44,45) and (40) form a closed system of equations from which
we can in principle determine the functions r(t) and z(¢). From this system
of equations we shall pass to another system of equations such that all

equations have the Newton-type form. To this end we introduce an auxiliary
variable y defined by the formula:

2r - ” 2r H 2 2
y=h—3(zz+rr)«--h-+-é;(r + z°). (46)
With the aid of Eqs (44,45) it is easy to check that

% = a~}(rP, + 2P,). (47)

On the other hand, Eq. (40) can be written in the form

%(rP,. + 2P;) = ~2yhr + H.

Thus H
s _o¥ il
§=—22hr+—. (48)

Formula (46) can be written as

o ¥V B 2 2,2 2 Mos
PE 2ar(r z)+h ar (th+ 2z )’ (49)

r

where we have used Eq. (44) to eliminate Z.
Equations (44), (48) and (49) form the Newton-type set of equations
for the hoop-like string with rigidity. The constants H, P, and M3, as well
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as the initial data y(0), #(0) are determined by the initial data for the origi-
nal equations of motion (22), i.e., (0), 2(0),#(0), £(0),7(0), 2(0),7(0), Z(0).
The value of H can be computed from formula

2

_ ay 1  aof 2af .. .. ar,..o . .2
H_(7r+ r) PR ORI (## + 22) - h5(r +7)
207 e ey DOP L
+ fs:(" + 2Z) + —:,-,:(rr + zz)z, (50)

which follows from the definitions (29,30,31) and formula (21). The value
of P, is given by the formula

d (rZ .
Pz = 2&5 (F) + ZH, (51)
obtained by differentiating formula (44) with respect to the time. y(0) and
9(0) can be computed from formulae (46) and (47), with P, determined
from formula (45). The constant My; is given by formula (43). We see
that in the case ¥ = 0 H, P, and Mj3 are proportional to a. Therefore, in
this case, Eqs (44), (48), (49) in fact do not contain the parameter a. On
the other hand, if ¥ # 0 then the r.h.s. of Eq (48) suggests nonanalyticity
of the function y(t) in the parameter a at a = 0 if the function y(t) has
nonvanishing the second derivative §(t). The static solution (55), which
is presented in the next Section, does not obey this condition — for that
solution y is constant.

4. Radial motions of the string with rigidity

In this section we consider motions during which z is constant, e.g.
2(t) = 0. For such trajectories

P, =0, and h=(1-7%)},

The Hamiltonian H given by the formula (50) reduces in this case to

2 2

a1 of 6ar? 2arir
H=(1r+7) 5~ om— g+ [E
2a7%F  bari?
h5 + %]

(52)
Instead of equations of motion (48,49) we may use the condition

H = const, (53)
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except for solutions with # = 0. The point is that if # # 0 we can compute
from formula (52) the third derivative ¥ thus obtaining the equation of the
form

r = F(r,#, 7, H), (54)

from which we can determine the trajectory r(t¢). Here F is a function to
be determined by actually performing the calculation.

The static solutions, i.e., the ones with # = 0, have to be found from
equations (48,49). It is easy to see that there is only one static solution

r(t) =ro = \/g. (55)

This solution was already found in paper [20]. It exists only if « > 0. Notice
that this solution is analytic in the parameter 8 = \/a.

It is not possible to.find a general form of the trajectory r(t) because the
condition (53) is rather complicated. For this reason, we shall only present
a particular solution, which nevertheless gives interesting insight into the
dynamics of the string with rigidity. Namely we shall consider the motion
of the string which started at ¢ = 0 with the initial velocity #(0) = 0. The
initial radius of the hoop is equal to #g. The corresponding solution for the
Nambu-Goto string is given by formula (28). For small ¢

r(t) 7o (1 - % (%)2 + EIZ (;to-) 4) . (56)

The trajectory (28) obeys also the equations of motion for the string with
rigidity. However, the string with rigidity, being the higher derivative dy-
namical system, possesses twice as much degrees of freedom as the Nambu-
Goto string. By this we mean the fact that the initial data now consist of
four numbers

r(0) = ro, #(0) =0, #(0), ¥(0). (57)

The Nambu-Goto solution (28) corresponds to the following particular ini-
tial data for the string with rigidity

r(0)=ro, #0)=0, H0) =1, F(0)=0. (58)

It is clear from (57) that in the case of string with rigidity the Nambu-Goto
solution (28) is embedded into a much wider set of trajectories parametrized
by the initial values of # and . Such new trajectories lie also in a close
vicinity of the Nambu-Goto solution — it is sufficient to choose the initial
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data close to the ones specified by (58). As an example, let us consider
trajectories with the following initial data

—-1+4+¢

r(0) = ro, #(0) =0, #(0) = , 7(0) =0, (59)

where ¢ is arbitrary. For sufficiently small times ¢ we may seek the solution
in the approximate form

- 4
1tep et (60)

)=
0= ot =0 2473

Inserting this function in formula (52) and requiring that H is constant up
to the order ¢t we obtain the following value of the coefficient ¢

: 5 77.2
=1-4 20, 1
c €+ 6e 3¢ 5 (61)
For ¢ = 0 we obtain from formula (61)
c=1,

in agreement with (56).

If the rigidity term in the Lagrangian (1) is regarded as a small correc-
tion to the Nambu-Goto Lagrangian, then it is natural to suppose that the
parameter ¢ should differ only slightly from its value for the Nambu—Goto
solution. For instance, we may take

£ = a?b, (62)
where a is regarded as a small constant and b is a dimensionless parameter

which is not too large. Then

2
ex1- l;i)—ab+ O(a?). (63)

The energy H for this solution is equal to

3

H =qro + gge R - yro + -2i—b + 0(a®). (64)
_ To To 7o

The radial motions of the hoop-like string with rigidity seem to be

nonintegrable. The phase space is four-dimensional ((r, #,pr, Pr)) while we

have only one integral of the motion, namely the energy H. For the inte-

grability a second integral of motion is necessary. Therefore we expect that
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the trajectories r(t) will be unstable in general. On the other hand it is
possible that the trajectory r(t) will not show a chaotic behavior in spite
of the nonintegrability, because the hypersurfaces of constant energy in the
phase space are not compact. These questions require further investigation.
The Nambu-Goto trajectories are periodic. In nonintegrable systems tra-
jectories initially close to periodic trajectories typically diverge from them.
Therefore we expect that the trajectories (60) will stay close to the Nambu—
—Goto trajectories (28) only for times sufficiently small in comparison with rq.

In the case v = 0 we can give an exact solution of the equations of
motion — it is the so called hyperbolic motion,

r(t) = (a® + )3,

where a is an arbitrary constant. For such trajectories H = 0.

Finally let us note that the classical mass spectrum for the radial mo-
tions of the hoop is non-negative, i.e., M2 > 0. This follows from the fact
that for the radial motions P, = 0, P, = P, = 0. Therefore

M?=H?_P2=H?>0.

The classical energy spectrum for the radial motions is unbounded from
below, as it is clear from formula (52).

5. Tachyonic trajectories of the string with rigidity

In the previous Section we have shown that due to the presence of the
degrees of freedom related to the higher derivatives there exist solutions
which are different from the Nambu-Goto solutions but they stay close
to them for some time. In the present Section we point out that there
exist solutions which cannot be regarded as close to Nambu—Goto solutions.
These solutions may be called tachyonic, because they have negative value
of the classical mass squared, t.e.,

M?=H?-P? <),

where for the hoop-like configurations P= (0,0, P,). Similarly as the so-
lutions of the previous Section, the tachyonic solutions exist because of the
presence of the degrees of freedom related to the higher derivatives. The
tachyonic solutions are of “run-away” type, and we think that it is unlikely
that they have some relevance for physical applications of the string with
rigidity. Rather the presence of these solutions signals shortcomings of the
model.
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The presence of the tachyonic solutions is obvious if we recall formulae
(50), (51) for H and P,. H depends linearly on z and 7, while P, depends
linearly on z. It is clear that we can choose initial data in such a way
that M? is negative. The trajectory determined by these initial data is
the tachyonic trajectory. Of course, we take the initial data such that the
motion of the string is subluminal, i.e.,

R=1-32-72>0.

It is clear that the existence of the tachyonic solutions for the hoop-like
string is tied up with nonvanishing of the first term on the r.h.s. of formula
(51) for P,. Otherwise, P, = :H and M2 = (1—32)H? > 0 because 3% < 1.

One may wonder whether a tachyonic trajectory which has started from
a subluminal initial data can reach the light-cone (i.e., h = 0) after a finite
time, and later on continue as a superluminal trajectory. Formulae (50),
(51) imply that this cannot happen. For the superluminal velocities h is
imaginary. Therefore after the crossing of the light-cone H is imaginary,
while before the crossing it was real. Because H is constant during the
motion, it must vanish for such trajectories, H = 0. Similarly, from formula
(51) follows that P, = 0. Thus M? = 0 - the trajectory is not tachyonic. Let
us mention here that is not possible to cross the light-cone even if we choose
subluminal initial data such that H = P, = 0, but we will not discuss this
case here.

Equations (44),(48) and (49) contain no singularities for » > 0. There-
fore, there is no problem with existence of the solution for a given choice
of initial data, at least in a finite interval of time. We have not found the
analytic form of the tachyonic solution. However, we have performed a nu-
merical study of it. As expected, there were no problems with generating
such solution. Details of the numerical solutions are not so important —
for this reason we do not present here this numerical solution.

The question whether the tachyonic solutions exist also for arbitrarily
large time t is much more difficult. Numerical methods cannot help us in
this problem. A constructive way to solve it is to find an asymptotic form of
the tachyonic solutions for large time t. We have found such asymptotics in
the particular case of ¥ = 0, i.e., when the Nambu-Goto term is absent. In
this case there exists the following particular asymptotic solution for large ¢,

r(t) =t +art™ +at™3 4+ 0(t7°),
z(t) = byt~ 4+ bot™3 4 0O(t7°), (65)

where a; > 0 is an arbitrary positive constant, while b;,a; and b; are
expressed by a; and the corresponding values of H and P,:
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by = (4&)_1(2a1)%Pz, (66)
er = -1t (14 2o~ w2 + Za et (67)

b2 = ~(3a)"'VZai P; (14 9(4a) a1 P? + (20)}(2a1) ) . (68)

Formula (66) follows from Eq. (44), formula (67) follows from formulae
(66) and (50) in the limit ¢ — oo, and formula (68) follows from Eq. (44)
and formulae (66), (67). It is clear that formulae (66-68) make sense for any
values of P, and H, in particular for the tachyonic ones (i.e., H? — PZ <
0). Solution (65) is not the most general one, nevertheless it provides the
example of the tachyonic solution.

Solution (65) is of the “run-away” type in the sense that the radius r(t)
of the hoop increases with the velocity # approaching the velocity of light.
Notice also that this solution does not depend on a because H and P, are
proportional to a.

For P, = 0 the solution (65) reduces to the hyperbolic motion men-
tioned in the Section 4.

6.Comments and remarks

a) Numerous shortcomings of the string with rigidity model, like the
indefiniteness of energy or the tachyonic mass spectrum indicate that this
model is not a good candidate for a fundamental theory. This is certainly
true for the unquantized version of the model. On the other hand, we cannot
a priori exclude the possibility that after an appropriate quantization the
model will be free of the unpleasant features. The example of free Dirac
field shows that such thing can happen. The trouble is that at present
there are no hints how to find the appropriate quantization procedure. This
problem is a part of a wider problem how to quantize theories with higher
derivatives, see e.g.[21] for a discussion. In the present paper we regard the
string with rigidity as an effective model which arises in a string-like limit
of vortices in classical string theory [6].

b) We regard the string with rigidity as an approximate description of
a vortex, e.g.of the one present in the Abelian Higgs model. The Nambu-
Goto string can also be interpreted in this manner [1,2]. The main difference
between the two kinds of strings lies in the fact that the string with rigidity
has more degrees of freedom than the Nambu-Goto string. In this sense,
the string with rigidity is an intermediate model, which is placed in between
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the extreme simplification of the vortex dynamics provided by the Nambu-
Goto string on one side, and the full field-theoretical complexity of the
vortex dynamics on the other side.

We have seen that the presence of the additional degrees of freedom
makes the dynamics of the string with rigidity much richer. In general,
for the hoop-like string with rigidity the dynamics becomes non-integrable.
The periodic trajectories of the Nambu-Goto type (28) are still present, but
they are surrounded by infinitely many other solutions. Some of them stay
close to a Nambu-Goto solution during certain time interval. The example
was given in Section 4. There are also solutions for which there is no close
Nambu-Goto solution. The tachyonic solution is the example. Also the
static ring solution mentioned in Section 4 cannot be regarded as close to a
Nambu-Goto solution.

The existence of the static ring solution is sometimes regarded as an
argument that the string with rigidity exhibits intrinsic stiffness, in con-
tradistinction with the Nambu-Goto string. However, the fact that all
Nambu-Goto trajectories are viable also in the case of string with rigid-
ity points to the lack of the intrinsic stiffness.

We have seen in Section 3 that the hoop-like string with rigidity can
be regarded as a family of 3-dimensional Newton-type dynamical systems
parameterized by values of H, P, and Mp3. Similar observation was made
in [22] for a point-particle model with action functional involving second
order derivatives £ of the trajectory z#(r). Characteristic feature of these
Newton-type systems is the lack of integrals of motion which would depend
only on dynamical variables r,z,y and their first derivatives 7,z and g.
Therefore these systems are likely non-integrable. This explains why it is
not easy to find analytic form of trajectories, except in very special cases.

¢) Because of the presence of the additional degrees of freedom one
might hope that the string with rigidity will approximate the vortex in a
more accurate way than the Nambu-Goto string. However, the indefinite-
ness of energy and the presence of tachyonic trajectories which are absent in
the field-theoretical description of the vortex, indicate that the string with
rigidity can be a good approximation to the vortex in a restricted region of
phase space in the best case. This problem we are leaving for another in-
vestigation. For the time being we will be satisfied with the following rough
estimate. Lagrangian (1) can be regarded as the beginning of an infinite
series of terms which arises if we try to describe the full vortex dynamics
in terms of the string variables z#(r, o) [6]. The further terms in this series
can contain still higher derivatives, e.g.A(Az,)Az* or higher powers of
Dz, e.g.(Az,Az*)?. For the hoop Ansatz (10) such terms are relatively
small if the following conditions are simultaneously obeyed:-
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(i) yr? is sufficiently large,
(#%) *,z are not too close to 1,
(iii) v~ 172,712 are small.
We expect that the string with rigidity is a good approximation to the
vortex if these conditions are satisfied. The trajectories of the radial motion
discussed in Section 4 obey these conditions if the time interval is not too
large. For the tachyonic trajectories these conditions are not satisfied.

Notice that our conditions (i) — (#ii) are not satisfied by the Nambu-
Goto trajectories (28) if r is small. We think that dyramics of small vortex
rings is not described correctly neither by the Nambu-Goto string nor by
the string with rigidity.

d) We would like to close our investigations of the string with rigidity
with the following remark. The exact description of dynamics of the vortex
requires infinitely more degrees of freedom in addition to the degrees of
freedom the simple Nambu-Goto string possesses. Better approximation to
the vortex we wish to have, more degrees we have to add to the Nambu-
Goto string. One may try to partially account for those additional degrees
of freedom by passing from Nambu-Goto string to a string with higher
derivatives in the Lagrangian, e.g. to the string with rigidity. However,
the resulting model has many formal shortcomings, like the indefiniteness
of energy or the tachyonic trajectories. Moreover, there is no transparent
relation between the degrees of freedom introduced by the higher derivatives
and some degrees of freedom of the vortex. Due to this shortcoming, the
degrees of freedom introduced with the help of the higher derivatives have
no clear physical interpretation. Therefore we think that it is necessary to
search for a way to approximate the vortex by a string without invoking the
theories with higher derivatives.
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