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The continuous left-right (LR} model which is characterized by the
orientation angle of SU(2)r generator in the group space is suggested.
This model reproduces all the known LR models. The cross sections of
the processes

z, — ff, pp—-»Z,.—{»X,pf)—»Z,,-+—X,ff'——»W,"'VV,+ (n,k,1=1,2)

are obtained. The comparison of the symmetric version of this model with
the experiments is fulfilled.

PACS numbers: 12.15. -y

1. Introduction

The parity violation (PV) in weak interactions is one of the puzzles of
modern physics which cannot get the satisfactory explanation within the
standard model of electroweak interactions (SM) in which the gauge sym-
metry is broken spontaneously while the parity is broken explicitly. The
most attractive enlargement of the SM is the left-right symmetric (LR)
model based on the SU(2)1, xSU(2)r xU(1) gauge group, where the observed
PV in weak interactions is connected with the mechanism of the sponta-
neous symmetry breaking. The PV could be caused by the difference in the
SU(2)L and SU(2)g sectors between the following quantities: (a) elements
of Kobayashi-Maskawa matrix; (b) couplings constants g(SU(2)L) = g
and ¢(SU(2)r) = gr; (c) gauge boson masses; (d) Majorana neutrinos
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masses. The LR model also has some other attractive features: (a) quan-
tum numbers of group U(1) are identified with B—L what allows to connect
the violation of the parity and local B—-L symmetry (where B and L are
baryon and lepton numbers); (b) the theory due to see-saw mechanism pro-
vide the existence of light left-handed and heavy right-handed neutrinos; (c)
the effect of the weak CP violation both in quark and lepton sectors is caused
by the mechanism of spontaneous symmetry breaking and its values (the
ratio of decay amplitudes of K? and K? mesons into pions, a charge asym-
metry parameter of lepton decays of K{’ mesons, electric dipole moments of
a neutron and charged leptons, etc.) are the same order as it follows from
the experiment.

In this work both the symmetric and asymmetric left-right (LR) the-
ories are investigated. There are a lot of papers in which such models are
considered [1-5]. Many of them are discriminated one from the other by
the choice of the transformation to mass eigenstate basis in the potentials
space of the neutral gauge bosons. This transformation is determined by
the Higgs sector structure and can be written as the product of two matrix
A and Uy which carry out the transition from the initial basis to the final
one by the chain

3u Iy 1p
A Un
wWR A, R ,
3pu Z M Z zp | ?
w Au Au

where W;‘ l;R and B, are the gauge fields corresponding to the SU(2) and
U(1) groups, respectively. The Uy has the same form in all the theories

cg 383 0
UN=(—345 cE 0)

0 0 1

while the expression for the matrix A might not coincide in the different
versions of the LR models. For example, two versions of the symmetric LR
models proposed in Refs [1, 2] (further I shall call them LR1 and LR2) have
the matrix A which is defined by the following expressions

1 —1 0
V2 V2

) 2 _ .2
wz"w) \/("wz w) —SW\/§

Ay = \/(cz
s

2
w sw C%/V — Sy
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in LR1 and
CW —-3§v “JW\/CW—JW
w cw
2 _ .2
Ay = 0 ‘w ~Sw —sw
cw cw
sw sw ¢ty — s%,

LR2 respectively, where ¢g = cos¢, sg = sind, cw = cosbwy, sw =
sinfw, & is the mixing angle of the neutral gauge bosons. For our anal-
ysis it is convenient to unify all both symmetric and asymmetric models
in the one common model. That could be achieved by the corresponding
parametrization of the matrix A. In Section 2 a theoretical description of
such a model is provided. In Section 3 we analyse the model from the point
of view of experiments coming from LEP I and future colliders. Finally, the
work is summarized in Section 4.

2. Description of the model

Now, I should like to make some remarks on the electroweak models.
In the SM the choice of the gauge group fixes the form of both the neutral
current Lagrangian Lync and the Lagrangian describing the trilinear-gauge-
boson couplings (TBC) Lwwz. In superstring motivated extra U(1) models
the situation is not the same. In the most general case there are two extra
Z-bosons called Z,, and Z,. The former arises when Eg breaks down to the
SO(10)xU(1), and the latter arises when the SO(10) breaks down to the
SU(5)xU(1)y. The mass eigenstates of the new gauge bosons are

Z, = Zycosf + Zysinf
Zn=—2ZysinB+ Zycosp, (2.1)

where the angle 3 being dependent on the vacuum expectation values (VEV)
of the Higgs fields and the gauge couplings g, , determines the orientation
of the U’(1) generator in Eg space. The choice of the 3 fixes both of Lnc
and Lwwz. Now depending upon the chosen value 8 we have the fol-
lowing models: (a) ¥-model, (8 = 0°); (b) X-model, (8 = -90°); (c)
n-model, (8 = 37.36°); (d) I-model, (8 = 52.24°). In literature it also
considered the continuous extra U(1) model (8 arbitrary) [6]. It should
be noted that the parameter § redistributes the roles between the mixing
angle ¢ and the masses of new neutral bosons mz, (n = 2,3). As is well
known it is displayed in distinction of the experimental constraints on &
and mz, for different extra U(1) models. It is natural to wait for arbitrari-
ness of the generators orientation in the group space and accordingly the
appearance of the analogous parameter in any electroweak theory with an
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extended gauge group. We face the situation when E¢ breaks down to the
SU(2)L,xSU(2)r xU(1)L, xU(1)’r. In above mentioned examples the kind of
the transformation to the mass eigenstate basis of the neutral gauge bosons
is fixed by the structure of the grand unified theory (GUT) to be exact
with the earlier stage of the symmetry breaking. Up to now we can not
give preference to the definite GUT with confidence. Then, investigating
the SU(2)L, xSU(2)r xU(1) gauge theory as a low energy approximation of
GUT we should consider the most general parametrization of the matrix A.
The matrix A is the product of three-single parameter orthogonal transfor-
mations in the space of the potentials W}“, W:ﬁ‘, B,. Therefore, it has the
form

Cp3Cpr ~ Sp3Sp1Sp;  CypaSer T 5030393 Sp3Cyy
A= ( 230, CozCe “3p; ) v (2:2)
TCp1Sp3 T Cyp3Sp1Sp; 3133 T CpsCoy Sy  Cup3Coy
where c,, = cos;, 8, = sing;, the angles ¢; are the functions of the
VEV’s and the gauge constants.
The relation

Q=T + Tsr + B5% (2.3)

ensuring the conservation of U(1)ey, symmetry and masslessness of a photon
fixes the third line of the matrix A. It gives the set of equations

TCo1303 T Cop3Sp159r T G

301303 T Cp3Cpy8p; = g

CpaCoz = g7 s (2.4)

where sy = sinfw, cw = cosfw and the electric charge is defined by the

equation
gLgRY'

e= .
\/gﬁyﬁ +9'(gf + 9R)
It is easy to see that only two equations in (2.4) are linear-independent.

Then we can exclude y2 and ¢3, for example, what gives the following
expression for the matrix A

(2.5)

e(b7Ycy + bata—_s,) e(b7ls, —baya_c,) —ebg'"lay

A= —bg'1s, bg' ey, —ba_ ,
S . e
9L 9R g

(2.6)
where a4 = gils“, + gf:]c,,, a_ = gﬁlcv — gglstp, b=4/9'""2+ a? and
we suppress the index 3 at ¢. So, we have the model with parameter ¢.
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Changing ¢ we can reproduce all the known LR models. Further on, we
shall name this model the continuous symmetric LR model (CSLR) when
gL = gr or the continuous asymmetric one (CALR) when g1, # gr. From
(2.6) it follows that the LR1 is reproduced at ¢ = —= /4, and LR2 does at
p=0.

Let us consider the situation when we begin to build the electroweak
theory from the SU(2)y, xSU(2)gr xU(1) group directly. The Lagrangian of
the theory has the form

L == %(WI?[.LV I?;w + Wﬁvaﬁ“u + B#VB;UJ)

+i Y (D" + P D, 8D) + Y 1Dl + Ly - v,
! i
(2.7)

where D, are the usual covariant derivatives Wfpu’ Wg " B,, denote
the SU(s)L, SU(2)r and U(1) gauge fields, Ly is the Lagrangian describing
the interaction between Higgs particles ¢; and fermions, V is the Higgs
potential. In the most general case the V' can be represented in the form

V= Z AV (g5, 0:) + Z #ijle(4)(Soi7 Pir Pis PL) 5 (2.8)
i ik,

where A; and p;ji; are constants, V(2)(p;, ;) and V®)(p;, pj, ok, @) are
the quadratic and the bi-quadratic on ¢; terms (their obvious form is de-
fined by the symmetries imposed on (2.8)). We introduce an arbitrary
number of the following Higgs multiplets (in brackets their numbers Ty, TR,
(B-L)/2 are given): (a) doublets Xy,(3,0,—3), Xr(0,3,—1); (b) triplets
6.(1,0,1), 6r(0,1,1); (c) bi-doublets 45(%, %,0). A minimum of the poten-
tial V' corresponds to the following choice of VEV’s of Higgs fields

cumr= (0 ), <sLR>=(A3 ) @=(4 o) @9

LR
The neutral-boson (mass)? matrix is
AL, B (L
My = ( B  Ap CR) ) (2.10)
CL Cr G
where
ALr =9 R(BLr + @), CLR=—-yggi rALR, B = —gLgra,
G=¢"(BL+PR), a=iT(kP*+I¥7),

BLr = 3l rl? +2X|ALRI?.
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The matrix A which together with Uy diagonalizes My according to
Un AMN(Un4)T

is defined by the expression (2.6) both for g, # gr and for gy, = gr. In
the former case all the quantities m,,, m,,, &, ¢, 6w parametrizing the
neutral current interaction

a, .BLa ,BR’ 9L, gR, g' Mz y Mzy, GW’ ﬁ’ 12

are independent. In the latter one the ¢ is the function on m,,, m,,, &, fw
and its values lie in the interval from 0 to —= /4.

Now one might determine the interaction Lagrangian in this model.
After straightforward (though somewhat tedious) calculations we obtain
the following expressions

Lo = (Wi, o)V, + W,:,pg‘,’)vu,,) Wi, (2.11)
Lnc =1 Z'/’f‘)‘u [QA + 3 Z gvn + g£n75)Zn“] Pe, (2.12)
n=1
7 —
Lee = 2971’2 > [Ki@vu(l+75)8WL + (L~ R)],  (213)
j=e,d
=v,u

where

y=a Vy'—ayVF’ (VuzAu, Zn”_) n=1,2,

P = Qo (2.14)
PS[ V= cosz(f + E612) gL D11 + sinz(f + 1512)9RD12 s (2.15)
AoV = p{fV) = 1 sin26(gL D11 - gRDIZ) k#1, (2.16)

gxffn = [TstgLDnl + TR oDz + (1 - )(B L)g'Dyns), (2.17)
Ghn = [TdoLDm1 — T{RgRDnz—éff.,g( S —TH)Das).  (2.18)

Dypm and K;; are the elements of the matrix UnA and the Kobayashi-

Maskawa one, respectively, @ is the charge of the particle, £ is the mixing
(22) (Z3)

angle of charged gauge bosons, and the expressions for p;;*’, p;7*’ and
pgk 2) follow from (2.15) and (2.16) by the substitution

gLD11 — grD22, grD12 — g1 D21 E— -¢,  (2.19)

respectively.
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From expression (2.11) it follows that in this model the magnetic dipole
py and the electric quadruple (., moments of Z;-boson have the same
values as those of the SM Z-boson. However, the weak dipole uz, and the
weak quadruple Q z, moments of Z;-boson (by this we mean the moments
corresponding to the Wi W; Z;-couplings) are defined by the expressions

ez Ak, ezAkl
- - 2.2
7 = (nz)sm+ 3 = = (Qz)sm - (2-20)

where (pz)sm and (Qz)sm are the multiple moments values in the SM,
Ak = 2(p{5) — e2), ez = e ctg Ow.

I should like to remind that in any LR model one cannot avoid the
existence of neutrinos masses. The crucial question that one must answer
in these models is why the neutrino masses are so much smaller than the
corresponding charged lepton masses. There is, fortunately, a very nice
explanation for this problem which ties the existence of low mass neutri-
nos with the possibility of large PV in the theory. The V-A approximate
structure of the weak interactions, arising from the asymmetric breakdown
in which mwy > mw,, has a counterpart in the neutrino mass spectrum.
Namely, in the limit mpy; — oo in which the weak interaction become
purely left-handed the masses of the left-handed and right-handed neutri-
nos tend to 0 and oo, respectively. That was shown in Ref. [2] with the
help of the see-saw mechanism (SSM) proposed in Ref. [7]. It is easy to see
that SSM can be used in the continuous LR model without any changes.
So, following the results of Ref. [2], in (2.12) and (2.13) we must make the
substitution
vy, — vicosa — Nysina } (2.21)
viR — Njcosa + ysina | ° )

where v; and N; are the Majorana spinors describing the mass eigenstates,
and the mixing angle a is very small.

3. Physical implications

In this section we investigate some processes in the continuous LR
model. First of all, we consider the decay width of Z,-boson into fermion
pairs. It is worth to remind that as a rule the cross sections of the pro-
cess going in the second and higher orders of the perturbation theory are
compared with the experiment. Such parameters of New Physics as the
masses of the additional bosons mz, and mw,, to which the cross sections
are the most sensitive, enter the second order processes already at the tree
level. Then varying mz,, mw, and the values of the other parameters of
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both LR1 and LR2, one might find the set of parameters which could repro-
duce the SM in the neutral sector (see, for example, Refs [8, 9]). However,
the first order processes going with the participation of the SM particles are
less sensitive to the variation of mz, and mw, because the effects connected
with them enter the cross sections at the level of radiative corrections (RC)
only. Thus the investigation of these processes allows one to reduce the
class of the SM extensions corresponding to the experiment significantly.
The decay of Z-boson is the example of such a process. In our investigation
we shall be limited to taking into account the oblique RC i.e. RC caused by
self-energy diagrams. As it is known they lead to the change of the scale of
the Born approximation (BA), which is called improved AB after including
RC. In this approximation the decay width of Z,,-boson into fermion pair
is determined by the expression

r __mz,pNc (1 3 2""[)2

X [(1 + 2m2) (6%.)° + (1 - :::?)(gﬂn)z] @)

2
MZn Zn
where
mg, sin ¢ 2
p=1+A4pz, +Apw, + Ape + ..., Apz, = Tz )
1
. 2 2
mw, sin 3Gpm mw,
A ~ —2———) Apy ~ £ = 1
PW, ( mw, ’ Pt 8\/—2-‘3'2 ’ B mw, ’
1, for leptons,
Ne = 3(1 + ajf—n) , for quarks,

f # b, m¢ is the mass of the fermion f, the effective 3"{,‘, is connected with
the s, = sin? Oy of the SM by the relation

2 _ 2 sy
sw =8y — 55—~ (Apz, + Apw,) -
(¢w - 3w)

With dots in the definition p we marked contributions of Higgs particles,
heavy right-handed Majorana neutrinos, etc. For f = b in (3.1) the changes
should be done [10]
1 + Apt — 1__3A 3 } (3.2)
s}, — s}, ——1’-11'*'234
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Using (3.1) one could show the validity of the approximate relation

le——»ff' ~ mz, (3 3)

f I’Zz—'ff mZ2

Now we take into account the results of LEP I experiments to obtain
the bound on ¢ for the CSLR, i.e. in the case g, = gr = ?m_%'; and

(4

' —_ " . » LR .
g = Teosstm The experimental values of high energy quantities used in

our analysis are: (a) the total decay width I'y = (2.487+0.01) GeV; (b) the
partial width to charged leptons I'. = (83.2 % 0.55) MeV; (¢) the axial and
the vector couplings (g%, )% = (1.16 +:0.41) x 1073, (g4)? = 0.2493 +0.0013.
Comparing the theoretical and experimental values of the quantities quoted
above one can conclude that the allowed values of the angle ¢ are

¢ =0t Ap, (3.4)

where pg = 0°, 180° and Ap = 3° — 5°. To obtain the precise answer a
complete knowledge of all the RC is needed and we are going to do this
elsewhere. It should be noted that the current constraints on parameters
of LR models which include RC are found for LR2 only. However, the
complete calculation RC even at one-loop level was not done elsewhere.
Thus, in Ref. [9] the RC connected with the new gauge structure relatively
the SU(2), xU(1) were ignored. The obtained constraints on parameters
of LR2 which are found on the analysis of high-energy processes at LEP
I and SLC connected with low-energy data (atomic parity violation, and
ve, eD, uC scatterings) have the form

myy, > 477 GeV, €] < 0.031, 0.008 < tan ¢ < 0.044, mz, > 564 GeV .
(3.5
‘In Ref. [11] at the analysis of I'z it was not taken into account thg
RC due to the W;-boson exchange and the angle £ was considered to be 0.
That led to the increase of the low bound on mz, up to 950 (800) GeV at
my = 100 GeV (1 TeV). It should be noted that in the case ¢ = 180° we
have the model which follows from LR2 by the change of the sign in the Z,,
couplings to fermions and W,,-bosons only. Therefore, the analysis of Refs
[9, 11] give the same bounds on the model parameters for the case ¢ = 180°.
For Z,-bosons the decays into the channels

Z, - WIW{ (3.6)

should be kinetically allowed (z, £ = 1, 2). The calculations of those widths
lead to the result
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zZ 2
Sy (p52)) mzp Mi\? (2
L pwrwp = 1-—) -\ —

964/(1 + 82) Yik Yik
X [2 + y—z’z ~ My (192& — oy + 2 2Mik '2';:“)] (3.7)
where i, i+ i,
Yik = ;zmsz’ My = W .
The decay width FZz—»W{' wi displays a strong dependence on the an-

gle ¢. For example, in the case CSLR it increases by an order of magnitude
when varying ¢ from 0° up to 5°. It should be noted that the Z3-boson
decay into W~ W;’ is suppressed relatively to the decay into W~ W;" by the

factor
(mw1 sin 2§ ) z
my, '
We now proceed to consider the single production of Z,,-boson at hadron
colliders. In the lowest order of Drell-Yan approximation the process
ab—- Z,+ X, (3.8)
where a, b = p, p, is caused by the subprocess
qid; — Zn (3.9)

(7 is the quark flavour). Let us introduce the rapidity variable of Z,-boson
in the center of mass system of the reaction (3.8)

E+p||
E —-py

. |
y=3 3

where E and p| are the energy and the Z,-boson longitudinal momentum,
respectively. Then the differential cross section can be written in the form

do T

dy " 24m?_ 1+ )

x [(9%.)" + (s%.)°] (3.10)

3 [0 01 £ Q%) + (4 & @)
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where

2
m a
r=—2, z.,=vrep(ty), s=@at+m), £ Q%)

is the distribution function of the quark flavour ¢ in hadron a, the parameter
Q? whose value is of order § = (pq‘ + Pq; )2 includes QCD corrections in
the leading logarithmic approximation.

Having integrated (3.10) we obtain the total cross section in the form
dLq.5.
-—&“T’i, (3.11)

WZ[(Q ) +(9 )]

where the differential luminosity 7dLg;5;/d7 is defined by the following ex-
pression

q'q' /[ ((z,Q%)f (b)( Qz) + (g & ('li)]%z' (3.12)

(z = 24/Tshy).

Fig. 1. The total cross section for Z3-production in pp (solid line) and pp (dashed
line) collisions.

We shall neglect the distribution of the sea quarks ¢, s, t, b and use the
parametrization of the parton distribution of Ref. [12] (set 2). In Fig. 1 it
is shown the total cross section of the reaction (3.8) versus /s with n = 2
for LR2 in case of pp (solid line) and pp (dashed line) collisions. In our
numerical calculations we used the following values of parameters

mgz, = 600 GeV, sin’fy =023, £=10"%, ¢=4x10"%. (3.13)
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The obtained results show that the advantage of pp collisions stretches
to the field of larger values 7 than it takes place at the Z-production in the
SM. For the SM the advantage of the pp beams is important only when
VT > 0.01, while for LR2 in (3.13) it takes place when /7 > 0.6.

From (3.11) with n = 1 it follows that the values of the SM deviations
for LR2 are of order sin? ¢. One could see that the Opp—2Z34+X 1 Tpp—Za+X
is smaller by a factor 10~2 than the Opp—2Z1+X s Tpp— 7+ X - However, the
number of Z3-bosons produced in the reaction (3.8) is large enough. For
example, the number of events in a year predicted by LR2 are the following:
(a) for Tevatron (/s = 2 TeV, [Ldt = 103pb—1) are 5 x 10%; (b) for LHC
(Vs =17 TeV, [Ldt = 10%pb—1) are 5 x 10%; (c) for SSC (/5 = 40 TeV,
JLdt =10%pb~1) are 107. The leptonic decays

Zy —e"et, pmput

should produce a clear signal with essentially no background expecting such
instrumental problems as e/7 separation only. The observation of reaction
(3.8) also provides nice opportunity to study I'z, — W W1+ . It is known
(13] that the Z;-production and its subsequent decay into Wy Wi lead to
the “anomalous” events, i.e. to the events with large transverse momentum
of the lepton pair recoiling against hadron jets. The relation of “anomalous”
events to decays
Zy — e"et

greatly depend on ¢ and mz,. Thus for example in CSLR at mz, = 600
GeV

Iz, e-e++ =~ 0.67 GeV r

Zz—'Wl_W; ~ 1.99 GeV

when ¢ = 0 and

Iz, e-et ~081GeV T

W wy = 19.57 GeV

when ¢ = 5°. So the investigation of the momentum distribution of the

lepton pairs in the final channel of the reaction (3.8) is a good tool for the

angle ¢ definition. Because of a large value of the QCD background it is

expedient to analyze the effective mass distribution of the final state of the

reaction (3.8) at Zz-peak (the ratio signal/background is maximum here).
Now we consider the reaction

fifi - Wywl, (3.14)

where %,k = 1,2. Again, we shall be limited to including the RC at the level
of improved BA. The differential and the total cross section of the reaction
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(3.14) in this model follow from the corresponding formulae of the Ref. [14]
after the multiplication on p and the changes

(n)

T B T ey
7—5%?2; ~ 9Vns 75;%; = gl (3.15)
6.pb
20+
15r
10r
sl

0160 260 360 460 560
5 .Gev

Fig. 2. The total cross section for the W-pair production in e*e~ collisions. The
solid and dashed lines stand for SM and LR2, respectively.

In Fig. 2 we present the total cross section of the reaction (3.14) with
i=k=1and f; = e” as a function of the energy in the center of mass
system /2. The dashed line corresponds to the LR2, the solid one does to
the SM. In numerical calculations we used the following parameters values

mgz, =564 GeV, mwy, =477 GeV, my, = 80.13 GeV,
mz, =91.172 GeV, m; = 145 GeV, $=2x107%, £ =4 x 1072,
(3.16)

The maximum value of the total cross section of the W-pair boson pro-
duction in the LR2 has the order 21 pb at /2 ~ 200 GeV. That is larger
than the total cross section of the fermion pair production which dominates
below that energy.

In practice it is convenient for the analysis to use the quantity § which
is determined by the relation

5= (Dsm— (U)Lnﬁ, (3.17)

V(o)sm
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where LT is the integrated luminosity of the collider in units of pb~1. The
quantity é gives the deviations from the SM expressed in the standard error
units. In Fig. 3 the dependence of § on /s is shown for LR2 at the values
of parameters (3.16) and LT= 100 pb—!. As it follows from Fig. 3 the
deviations from the SM reach the values of some standard errors already at
the energies of the order of 200 GeV. Comparing the obtained results with
those of Ref. [15] we see that the inclusion of RC leads to the sizable increase
of the deviations from the SM for the LR2. It should be noted that the main
contribution is caused by the redefinition of sy, i.e. the RC connected with
the self-energy diagrams of the neutral and the charged gauge bosons. The
total cross section greatly depends on mz, while the dependence on { and
& is weak enough. For LR2 the value 564 GeV is the low bound for the
Zz-boson mass. At the increasing mz, the I'z, grows quickly what leads
to the increase of the (o)Lr2 in the energy region up to Zj-peak. This
circumstance together with the growth of the contribution from RC cause
the increase of §. One can see that the investigation of reaction (3.14) on
LEP II will be decisive for symmetric LR models at allowed values of their
parameters.

60 180 200 220 240
s ,GeV

Fig. 3. The & versus 1/s.

4. Conclusions

The continuous LR model is suggested to unify all the known LR mod-
els. This model is characterized by the orientation angle ¢ of SU(2)gr gen-
erator in the group space. It should be stressed that the role of ¢ is not
reduced to the redefinition of the neutral gauge bosons mixing angle ¢.
There is a principal difference between these quantities. The angle ¢ de-
scribes the rotation in three-dimensional space while the angle ¢ works in
two-dimensional space only. The comparison of the symmetric version of
this model with the experiments shows that the ¢ allowed values lie near 0°
and 180°. It should be reminded that CSLR reproduces SM in the sector of
SM particles at ¢ = £ = ¢ = 0. The case ¢ = 180° follows from one ¢ = 0°
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by the sign change in Lnc and Lwwz, only. It has been shown that the
cross sections of the reactions

Zn—ff, pp— Zo+X, fIoWIWS
have the same values for ¢ = 0° and ¢ = 180°.

The author would like to thank the organizers of the XXXII Cracow
School of Theoretical Physics for constructive and nice atmosphere. He
would also like to thank all the participants of the School for their responses
and criticism.
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