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A summary is presented of the current status of efforts to solve the
problem in which pairs are produced in a strong electric ficld, are acceler-
ated by it, and then react back on it through the counter-field produced
by their current. A review of recent developments in this back-reaction
problem is given. A simple version of the theory of pair tunneling from
a fixed electric field, is first presented and then a sketch is provided as
to how this has been applied to the quark-gluon plasma. Then we turn
to a field formulation of the problem for charged bosons, which leads to
the need to carry out a renormalization program, outlined again in sim-
ple terms. Numerical results for this program are presented for one and
for three spatial dimensions, and the corresponding physical behavior of
the system is discussed We exhibit a phenomenological transport equa-
tion embodying physics that is essentially identical to that of the field
formulation Last, we present the extension to the fermion case and to
the formulation in terms of boost-invariant variables (as required for the
quark-gluon plasma).

PACS numbers: 05.60. +w, 11.10. Lm, 12.38. Mh

1. Introduction

The main motivation for this work arose from studies [1] of the behavior
of the quark-gluon plasma, and especially its oscillations, using transport
equations. In order to establish a firmer basis for the use of the transport
method, we have attempted to study exact field formulations for a quantized
boson or fermion field in interaction with a homogeneous, classical, infinite
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electric field. Pairs tunnel out of the electric field, are accelerated by it,
and react back on it — the so-called back-reaction problem. Results from
this program have begun to appear in the literature [2-4], based heavily on
the doctoral thesis at Tel Aviv University of Yuval Kluger [3], and so the
emphasis in this paper is on a didactic summary of the current status of
the back-reaction problem; technical details are generally suppressed in the
hope of setting forth the main physical issues more clearly.

In a very simplistic scenario for the first stage of the production of a
quark-gluon plasma at ultra-relativistic energies, one might imagine that
two highly contracted nuclei collide, generate color charges on each other,
and then pass through each other. In their wake they leave a chromoelectric
field produced by the color charges on them. In our treatment this chromo-
electric field is taken in a radically simplified view: We treat it as an Abelian
— and therefore an ordinary electric — field; we further take it to be a clas-
sical field [4], and regard it as filling all space homogeneously. These are,
of course, highly unrealistic assmmptions insofar as the quark-gluon plasma
application is concerned, but, as we shall see, even with these grotesque
simplifications the back-reaction problem remains remarkably recalcitrant.
Thus we exploit all of them in order to make progress with back-reaction,
and hope to restore a more realistic framework after that has been done.
Out of the (chromo)electric field there now tunnel pairs of partons, quarks
and gluons of opposite “charge”, that are eventually to comprise the plasma.

The tunneling mechanism in question has been extremely well known
for over 60 years now [5], and an exact solution [6], for the pair creation rate
in the presence of a fixed, external electric field has been available for some
40 years. In simple terms (7], what is happening in the tunneling process
can be thought of in the following terms: The pair we are considering is
initially latent in the Dirac sea. We imagine a fictitious potential that binds
this latent pair at the combined rest-mass energy 2mc?. The electric field
provides a further potential —eEz, and the overall potential then allows the
pair to tunnel through to the outside. The point at which they emerge is
z = 2m/eE, implying, for small fields, a long tunneling distance. A rough
estimate of the rate of pair production is then given by

2m/eE 1
rate ~ exp [- / F dr] ~ exp[-2 / -2-(2m-2m)‘/ 2 dz]
0
4m? wm?
"~ exp ['“_E“] ~ e ['T] ! )

where the last expression is that to emerge from a more precise treatment.
As is to be expected, the tunneling process is quantal by its nature, and no
perturbative expansion about E = 0 is possible for it.
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Now the application [1, 8, 9] of this pair tunneling rate to the scenario
for quark-gluon plasma production has been made through the use of a
Boltzmann equation in which the pair rate serves as a source term on the
right-hand side,

o, ¢ 9
ot ' (p? + m?)1/? 9%

s OF xm?
+eE(t)-:9—}_),- pair rate = .- -exp [—m]’ (2)

where, of course, f(Z, P, t) is the density of particles at position Z, with
momentum p and at -time t. We have again indicated only very loosely
the structure of the equation; more precise forms for our present context
will eventually be given below. Further, the applications to the quark-
gluon plasma are generally made in terms of boost-invariant variables and
coordinates. We shall return to a consideration of this point towards the end
of this paper. (We note that a very closely analogous back-reaction problem
arose years ago in inflationary cosmology {4, 10]; there the time-dependent
metric plays the role of the time-dependent electric field here.)

In allowing the electric field in Eq. (2) to be time-dependent, we have
anticipated the inevitable appearance of back-reaction: Once the charged
pairs make their appearance, they will be accelerated by the electric field,
producing a current, which in turn produces an electric field. This field will
oppose the direction of the original field, and eventually field and plasma
oscillations will be set up. This effect enters our theoretical description
through a simple application of Maxwell’s laws for this case,

Be) = =310 = e [ dp T 15,5, 3

where, for the case of a homogeneous system filling all of space, only a
constant magnetic field can arise, which we ignore. The two equations (2)
and (3) now form a coupled set which must be solved to incorporate back-
reaction and exhibit oscillatory behavior.

It is clear, however, that there is an inconsistency built into the con-
struction of this set of coupled equations: The expression for the rate of
pair production used on the right-hand side of Eq. (2) is derived [5-7] for
the case of a field fixed (by an external agent) in time, while back-reaction
necessarily involves a changing field. Furthermore, one might easily sup-
pose that pairs produced directly from the time variation of the field will
be generated at a faster rate than those that emerge from tunneling [11].
In fact, Eq. (2) has not really been “derived” from any basic field equations
through the use of a Wigner representation, say, but instead has been put
together on the grounds of a healthy physical intuition for the problem.
This immediately raises the two questions, (i) How would back-reaction
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emerge in a description of this same physical system based on field theory,
and (ii) can one derive a transport equation resembling Eq. (2) from the
field-theory formulation? In this work, we provide an answer for the first of
these questions, and are able to find a transport equation very much along
the lines of Eq. (2) above, whose solutions bear a striking resemblance —
at the quantitative level — to those of the field theory. The question of
a direct derivation of the transport equations from the field equations is
touched upon briefly at the end.

2. Formulation of back-reaction in field theory

In line with our didactic purpose here, we shall continue to formulate the
back-reaction problem in its simplest form; a far more complete discussion
is given in Ref. [4]. We take a system of charged bosons of mass m satisfying
a Klein-Gordon equation

—(8 — ieA)*(0 —ied) o+ m?¢p =10, (4)

where for the homogeneous electric field filling all space we take a vector
potential (in a particular gauge)

A, = (0; A(t)), (5)
which satisfies the Maxwell equation
A(t) =7 = —ie[¢'Vo — (Vol)g] — 2624914, (6)

The form of the boson field after second quantization is

450 = [ 5om E [ Felt) ag explif 21+ 5 (o) 8L explik- 2], (1)

where a; and bt—l’é are the particle annihilation and antiparticle creation
operators, respectively. The forms f; are the mode amplitudes for bosons

with momentum k, which, upon substituting Eq. (7) into Eq. (4), are seen
to satisfy .
fi(t) + () fz(8) = 0, (8)
where . .
wi(t) = (k- eA(t))? + m?, (9)

just as one would anticipate. The boson commutation relations imply a
constraint on the mode amplitudes,

lag al] = bg, 8L] = (@x)° 6(E-K') > fpfy - fify=4i.  (10)
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Last, using Eq. (7) the Maxwell equation becomes

)= G0) =« [ grs@-cA) 2508, ()

where the brackets on j(t) are necessary in order to yield a classical electric
field, according to the restriction we have chosen. They will imply, for our
present purposes, an expectation value in the initial vacuum, although more
general formulations are, of course, possible [4]. There immediately arises
the question as to whether this integral for the current converges.

3. Renormalization

As we shall in a moment see, the convergence of the integral in Eq. (11)
is by no means guaranteed, and a renormalization procedure is required for
the back-reaction problem [4]. It is a rather intricate case since the dynamics
of the system are intrinsically interwoven with the renormalization. Put
another way, there is no simple answer to the question of the convergence
of the integral for the current, since that convergence is governed by the
behavior of f;(t) at large E, which in turn is to be known only after the
solution of the coupled equations describing the system dynamics. And,
of course, no such solution is possible so long as there is no finite result
for the current. The general considerations pertinent to the problem of
renormalizing — an issue having a long history — are presented very lucidly
in Ref. [4], where previous literature on the subject is also noted. The only
viable approach appears to be to study the high-k behavior of f;(t) using a
WKBJ-like ansatz, which, as one might expect, rather readily lends itself to
the investigation of the high-energy limit, and an assumption of adiabaticity.
We therefore make the general ansatz

1 [t NN
f;(t) = Wexp {—l‘/ Qz(t )dt] s (12)

where it is easily seen that, as for the usual WKBJ treatment in quantum
mechanics, Q;(t) satisfies
02

G. 302
QL)+ =& — & = L2(1). (13)
k 29; 4Qi. k

The Maxwell equation (11) then becomes

.
-

A0 = Gy = [ gy @ - ed) 5 (14)
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In order to proceed with an investigation of the behavior of f;(t) at

high k, we have no choice but to suppose that i(t) varies adiabatically in
this limit. This is in some sense consistent with one’s expectations for a
renormalization program since a violent variation in the time dependence
of the physical quantities at large momenta would certainly appear to rule
out any hope of renormalizing them meaningfully. In the present case, we
shall, at the end, find a kind of a posteriori justification for this procedure
in that the physics that emerges from it is consistent with a quite differ-
ent phenomenological formulation of the problem. Assuming adiabaticity,
we replace the time derivatives of Q(t) with those of wg(t), and suppose
wk(t)/w ) <1, wk(t)/w (t) < 1; we then expand in these small ratios.

For the quantlty entering in the Maxwell equation, we have

1 1 3 @
= 1- o] 1
T0 o [t 4o

To the order in 1/k that we need, terms in the first and second time deriva-
tives suffice, and, again to the necessary order, these derivatives are

—eA(F— e —ed - (F -
wic' wié k

It is then clear from the antisymmetry of the integral in (14) in the variable
(k — eA) that the first term on the right-hand side of Eq. (15)—the “1” in
the brace—makes no contribution. The second term gives a finite integral.
But the third term diverges logarithmically. We eliminate this divergence
by adding and subtracting the logarithmically divergent integral

) Ak k2eA(t)
(27) wwi(0) ~ °J (@r)F120%(0)°

This added integral can then be regrouped with that of Eq. (14) to produce
a finite result, and the subtraction of the identical integral is absorbed into
the definition of the renormalized charge, e = Ze?, where the infinite
renormalization constant is

Z= [1 v [ (225)3 12j2(0)} -

"The electromagnetic field is correspondingly renormalized by Ap = A4/2/2,
so that the combination eA which appears throughout is unchanged, and we
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therefore need not bother to label all the quantities e and A with a subscript
R. The renormalized Maxwell equation now reads

At)=e

dE [ig..ej(t) kzei(t)], (17)

(2x)3 | Qz(t) 12w%(0)

where it is to be understood that all the electromagnetic quantities appear-
ing refer to their renormalized values, and the integral on the right-hand
side is finite.

Still a problem remains, however: There is no guarantee that, for a given
choice of initial values, the resulting solutions for fz(t), or, equivalently, for
Q ;(t), will remain adiabatic at all future times, a property upon which the
entire renormalization scheme rests through the use of Eq. (15). Cooper

and Mottola? therefore proposed to require that at all times these quantities
fulfill

11 _e(l?—-e/i')-/.i' (P
R R ) T B (k, ), (18)

where r(ié, t) must fall off faster than 1/k?, thus guaranteeing adiabaticity
at all times. Then

Ay = [ oo (= ede) r(k. 1), (19)

where the factor preceding the integral on the right-hand side results from

explicitly carrying out the integrals that multiply A. This integral is, of
course, finite, and the coupled equations (13) and (19) can now, in principle,
be solved, at each stage in time imposing Eq. (18). In fact, it would appear,
rather peculiarly, that Eq. (19) is no longfr required except at ¢t = 0, since

Eq. (18) will allow the determination of A at each time by isolating — as
we must do anyway to carry through this procedure — the part of 1/Q;(t)
that falls off with 1/k* at large momentum. It is as if the main use of
the Maxwell equation were to establish the need for renormalization, after
which that stiff requirement alone suffices to generate solutions. In reality
it emerges that this strange situation is not the one encountered physically.

4. Results for the case of one spatial dimension

Both because of the intricacy of the renormalization procedure and the
numerical difficulties of the full three-dimensional problem, it has proved
important first to study [2] the back-reaction problem in one spatial dimen-
sion (14 1) in order to gain some insight in preparation for attacking the
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problem with three spatial dimensions (3 + 1). In this case, insofar as the
adiabatic assumption for Q,(t) is valid, no renormalization is needed. Let
us start by looking at the integrand in Eq. (14) as a function of momentum
k after some time has passed in this 1+ 1 case. The result is shown in Fig. 1,
where we see on the left-hand side a highly oscillatory result for it. At the
technical numerical level this oscillatory behavior means that a very fine
grid in k is required from the start of the problem at ¢ = 0. For this reason
reliable numerical results are tedious to come by. Furthermore, it rules out
a renormalization program based on isolating terms that decay as a recip-
rocal power in k, which becomes impossible in the face of the oscillations.
We return to this point briefly below.

3
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Fig. 1. The number of pairs produced per unit volume (or length, since we have
only one spatial dimension here) and momentum (in units of the particle mass
m) interval dk at p = k — eA for ¢2/m? = 1 and E(0) = eE(0)/m? = 1 at time
7 = mt = 550, all in scaled, dimensionless units as indicated. In the right-hand
figure, the solid line shows the result of smoothing the exact numerical solution
on the left by combining 100 bins into one, and the dashed line is the solution of
Eq. (20) for f(p,t) under these same conditions.

Figure 2 shows E(t), and its derivative j(t), as functions of time for
an initial value £(0) = 4 and e?/m? = 0.1. The quantities are scaled for
1+ 1 such that they become dimensionless, i.e., E = eE/m?, j= ej/m3,
and 7 = mt, and adiabatic initial values have been taken for Q4(0) =
wk(0) and Q;(0) = @i(0). All these quantities show plasma oscillations
with slightly increasing frequency as time goes by, corresponding to the
additional production of pairs in the electric field, mainly at its peak values.
The current j(t) shows a quite flat plateau where its first (and, in some cases,
second) oscillatory peak is expected. This occurs because the initial number
of pairs produced is not very great, and the subsequent acceleration of the
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Fig. 2. Results for E(r) and j(r) for E(0) = 4 and e?/m? = 0.1 in the same units
defined in the caption to the previous figure. The solid line shows the solutions
to the coupled field equations; the dashed line is for the Boltzmann equation (20);
and the dot-dash line — which for short times is almost indistinguishable from the
solid line — is the Boltzmann equation modified by a boson enhancement factor.

particles brings them to the speed of light, leading to a saturation of the
current, This is in fact a rather useful property since it gives us a way to
measure the number of particles present at the early times: The current is
given by j = 2nev, where n is the density of particles (or antiparticles) of
charge e, and +v is their velocity. At the plateau |v| = 1, and n may be read
off from the plateau height. Since the precise definition of particle number
is unclear in a field formulation so long as the electric field is nonzero, this
gives us a physical way to extract the operative number. At later times we
may use the connection between the relativistic plasma frequency and the
particle number for this purpose.

5. A classical Boltzmann model yielding equivalent results

All of these physical points may be sharpened considerably by consid-
ering a Boltzmann model [2] close to that of Egs. (2) and (3), but now with
benefit of the field solutions of Egs. (13) and (14) to test it. The model in
question has the transport equation

of
Bt

0f IeE(t)I

+eB()2 tog [1+ exp [~ 22 |5(), 20
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Fig. 3. Results in three spatial dimensions (3 + 1) for E(r) and j(r) for E(0) =7
and e?/m? = 4 in the same units defined in the caption to Fig. 1. The solid line

shows the solutions to the coupled field equations and the dashed line is for the
Boltzmann equation (20).
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where the right-hand side is the pair-production rate of the tunneling mech-
anism in one spatial dimension, with a distribution in momentum space sug-
gested by microscopic arguments on pair tunneling (see especially the first
paper noted in Ref. [7]). This can be inserted into the Maxwell equation
(3), and the resulting single equation in A(t) and its derivatives is easily
solved. A comparison of this solution, shown by the dashed line, with that
obtained from the field equations is given in Fig. 2, and is seen to reproduce
the initial oscillatory and plateau behavior quite remarkably. Later, the
oscillations drift out of phase, presumably because the classical Boltzmann
equation has no mechanism for direct production of pairs through time vari-
ations in E(t), as is allowed in the field case. The agreement is made even
more striking — shown in Fig. 2 by the dot-dash line — if an enhancement
factor for induced boson emission (2f + 1) is inserted to multiply the right-
hand side of Eq. (20). Of course, the highly oscillatory numerical results
for 1/V dN/dk bear no resemblance to the smooth distribution f(p, t), but
if we smooth the former, say by grouping every 100 momentum points into
one bin, we obtain the curve shown in Fig. 1 on the right-hand side, which
again shows a remarkable resemblance to the result for f(p, t) given on the
right-hand side of Fig. 1 by the dashed line. Thus for purposes of physical
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Fig. 4. Results for fermions in 1+ 1 dimensions with an initial field E(0) = 4. The
dashed curve on the left-hand side is for the unblocked Boltzmann equaiton, while
the dot-dash curve on the right includes blocking.

interpretation the Boltzmann problem can in a major degree replace the
field formulation, very much along the lines of the applications [1, 8, 9] to
the quark-gluon plasma.

A representative calculation in three spatial dimensions is shown in
Fig. 3 for E(0) = 7 and €?/m? = 4. It has features very similar to those
of the 1 + 1 calculations, including very good agreement between the field-
theory calculation and the result of the (Bose-enhanced) Boltzmann calcu-
lation. This case requires renormalization of course. A consistency loop,
based on Eq. (19) and guaranteeing that Eq. (18) is indeed satisfied for
all ¢, is inserted into the coupled equations. The already tedious numerical
work of the 1 + 1 problem becomes, rather more difficult in this case.

6. Fermions

The main question of importance in turning to the case of fermions
is whether there exists any hope for the success of a classical transport-
equation description in that situation. We do not discuss here in any detail
the technical difficulties that arise in carrying out a similar program for
fermions [2]. The main issue that needs to be addressed there has to do
with the necessity, in our approach, of having sensible initial conditions
that incorporate adiabaticity, since otherwise, as we have seen above, we
have no hope of carrying out a sensible renormalization program. To do
this, one must use a representation for the Dirac spinors that embodies the
symimetry between particles and antiparticles in a convenient manner. Once
this is done, results very similar to those for the boson case ensue, including
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once again the good agreement with the Boltzmann description. A sample
case in 1 + 1 dimension is shown in Fig. 4, for an initial field strength of
4 units. Perhaps more striking is the result for the particle distribution in
this case, shown in Fig. 5. In the upper part of that figure, one sees that the
field solution quite properly confines itself to particle occupation between 0
and 1 particle per momentum bin. This quite naturally averages over bins
to a distribution that fluctuates very close to the value 1/2, as shown in the
lower figures. Of course, the Boltzmann distribution has no knowledge of
the Pauli principle and is quite prepared to put 6 fermions in a bin, as seen
in the figure at the lower left. But once the Boltzmann formula of Eq. (20)
is modified with a Pauli-blocking facotr of (1 — 2f), as shown on the lower
right, a surprising degree of agreement is once again restored.

n(k)

1B —os

n(k}

L |
-2 0 20
P

Fig. 5. Particle distributions for the case of the previous figure at time + = 200. The
upper figure is the result of the field-theory calculation. The lower left curve shows
this distribution with rebinning to smooth the rapid fluctuations as a function of
momentum; it is compared with the unblocked Boltzmann distribution. The lower
right shows the smoothed field-theory result in comparison with the Pauli-blocked
Boltzmann calculation.
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7. Boost-invariant variables

The study of the use of boost-invariant variables for the back-reaction
is important because the application for the quark-gluon plasma requires
it [1], because it is an opportunity to see what may happen when spatial
dependence — however specialized — is introduced, and because the expan-
sion of the system implied by such variables will lead to a much more rapid
and much more physical decay of the electric field involved. Again there
is a technical difficulty, and again we do not address it here [3, 12]. This
time the difficulty has to do with the inevitable singularity arising in such
variables at proper time 7 = 0. An easy way to deal with this problem is by
making the same substitution of variables 7 = exp(u) that is used [13] in the
usual three-dimensional WKBJ approximation, for instance. This sends the
singularity at 7 = 0 off to u — —oo, where it is harmless. A sample result
for bosons is shown in Fig. 6, and again the transport-equation description
is seen to work very well as a stand-in for the full field-theory solution.

Frr T T T I

E(u)

T PSR R I
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xxxxx

b

Fig. 6. Results for boost-invariant variables starting with a field strength
E(u=0)=4.
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8. Summary and outlock

We believe that the present calculation provides, for the first time, re-
liable numerical results for the formulation of the back-reaction problem as
one of coupled fields in 1 + 1 dimensions. It allows the elucidation of the
main physical effects of plateaux in the current at early times, and plasma
oscillations throughout. It also implies that a modification of the renormal-
ization scheme based on Eq. (19) is required. Last it provides a mapping
to an equivalent classical and phenomenological Boltzmann formulation for
the problem, which may be of great value for considering the physics of
systems where back-reaction is important, but quantum details may not be
essential. These results pertain for bosons and for fermions, in cartesian
and in boost-invariant variables.

Much has yet to be done before one can feel satisfied with our mastery
of even this simplified problem:

1. The question remains as to how to derive a transport equation di-
rectly from the field formulation by use of a Wigner representation. In fact
this issue becomes rather more mysterious in the light of our results here,
since it is well known [14, 15] that transport equations derived in that fash-
ion — and exhibiting pair production — are generally homogeneous in the
transport function, which makes the appearance of a source term on the
right-hand side of Eq. (20) quite surprising. It does seem to be possible,
however, to carry out such a program [16], based on a single-time formalism
for the Wigner function and a proper identification of the pair-production
mechanism.

2. It is, of course, essential for physical applications and for our general
understanding of the back-reaction problem to make the extension to a
problem with spatial dependence [17], and, in particular, to the case of a
finite volume. Work on this is currently underway.
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and by the Ne’eman Chair in Theoretical Nuclear Physics at Tel Aviv
University. It was written while the author was visiting the Institute of
Theoretical Physics at the University of Frankfurt, and he wishes to thank
that institution for its warm hospitality and the Alexander von Humboldt
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